IIIIIIIIIII]IIIIIIIII!IIIIIIIIIIIIIIIIIIIIﬂl'aleE

“The classic, defm,ﬁnve work onthe IBM PCAg o ws
nowfullyrevused and enlarged by the world’s E&dmg
exp.er.t on IBM mggnpcomp‘ﬂt s T o

- = ~ ,
Access to Advanced Features and Programming W
L

REISEDARD ENLARGED Y.

Inside the IBM PC

Revised and Enlarged

Peter Norton

New York

Inside the IBM PC, Revised and Enlarged

Copyright © 1986 by Brady Books, a division
of Simon & Schuster, Inc.

All rights reserved

including the right of reproduction

in whole or in part in any form

BRADY

Simon & Schuster, Inc.
Gulf+Western Building
One Gulf+Western Plaza
New York, NY 10023

DISTRIBUTED BY PRENTICE HALL TRADE

Manufactured in the United States of America

8 9 10

Library of Congress Cataloging in Publication Data

Norton, Peter, 1943-
Inside the IBM PC.

Bibliography: p. 361

Includes index.

1. IBM microcomputers. I. Title.
QA76.8.12594N67 1985 004.165 85-25562
ISBN 0-89303-583-1 (paper edition)
ISBN 0-13-4b7325-5 (book/disk)

Printed in the United States of America

Contents

Introduction | viii
A Maze to Think About / x
Some Things To Try / xi

1 A Family Tree | 1
1.1 Some Family History / 1
1.2 The PC Family / 4
1.3 The 8086 Family / 8
Some Things To Try / 11

2 Fundamentals: What a Computer Is | 13
2.1 My Computer, the Model / 13
2.2 An Outline of the Computer / 15
Some Things To Try / 20

3 Data! | 23
3.1 Bits, Bytes, and Characters / 23
3.2 Learning About Hexadecimal / 27
3.3 Standard Numbers / 31
3.4 Hot Numbers / 34
3.5 Stringing Along / 37
Some Things To Try / 39

4 The PC Character Set | 41
4.1 A Character Set Overview / 41
4.2 The Ordinary ASCII Characters / 43
4.3 The ASCII Control Characters / 48
4.4 A Cast of Odd Characters / 52
Some Things To Try / 56

5 Hardware: The Parts of the PCs | 57
5.1 The Breakdown / 57
5.2 Options and Adapters / 63
5.3 Key Chips / 67
Some Things To Try / 71

6 Brains: Our Microprocessors | 73
6.1 What the Microprocessor Can Do / 73
6.2 Math Auxiliary: the 87s / 78
6.3 Tools at Hand: Memory and Ports, Registers and Stacks / 82
6.4 Interrupts: The Driving Force / 87

iii

10

11

12

13

iv

6.5 Special Features about the 286 / 94
Some Things To Try / 96

The Memory Workbench | 99

7.1 Memory Overview / 99

7.2 Getting Into Memory / 102

7.3 The PC’s Memory Organization / 105

7.4 Into Extended Memory / 114

7.5 Memory Banks and Expanded Memory / 117
Some Things To Try / 120

Disks: The Basic Story | 121
8.1 Basic Disk Ideas / 121
8.2 Varieties of Disks / 126
Some Things To Try / 132

Disks: The DOS Perspective | 133

9.1 DOS Disk Overview / 133

9.2 The Structure of a DOS Disk / 138
9.3 Learning About File Formats / 142
9.4 ASCII Text Files / 144

Some Things To Try / 148

Disks: Deeper Details | 149

10.1 Hard Disk Features and Partitions / 149

10.2 Detailed Disk Structure / 154

10.3 Nonstandard Formats and Copy Protection / 161
Some Things To Try / 163

Video: An On-Screen Overview | 165
11.1 How the Screen Works / 165
11.2 Video Mode Overview / 168
11.3 Exploring Video Modes / 177
Some Things To Try / 179

Video: Text Fundamentals | 181
12.1 Text Mode Outline / 181

12.2 Details of the Text Mode / 185
12.3 Text Mode Tricks / 193

Some Things To Try / 197

Video: Graphics Fundamentals | 199
13.1 Graphics Mode Outline / 199
13.2 A Tour of the Graphics Modes / 204

14

15

16

17

18

19

20

21

13.3 Graphics Details / 211
Some Things To Try / 215

Keyboard Magic / 217

14.1 Basic Keyboard Operation / 217
14.2 Keyboard Tricks / 226

Some Things To Try / 229

Other Parts: Communication, Printers and More | 231
15.1 Printers: The Parallel Port / 231

15.2 Communication Lines: The Serial Port / 233
15.3 Sound / 236

15.4 Miscellaneous Parts / 240

Some Things To Try / 245

Built-In BIOS: The Basic Ideas | 247
16.1 The Ideas Behind the BIOS / 247
16.2 How the ROM-BIOS Works / 249
Some Things To Try / 254

Built-In BIOS: Digging In / 255

17.1 Working Principles and Machine Problems / 255
17.2 The BIOS Services / 257

Some Things To Try / 264

The Role of DOS | 267

18.1 What Any DOS is About / 267

18.2 History and Concepts of Our DOS / 269

18.3 Installable Drivers and Flexible Facilities / 272
18.4 Visual Shells: TopView and Others / 274
Some Things To Try / 276

DOS Serving Us | 277

19.1 Command Processing / 277
19.2 Batch Processing / 281
Some Things To Try / 282

DOS Serving Our Programs | 285
20.1 DOS Services and Philosophy / 285
20.2 All the DOS Services / 287

How Programs Are Built | 293
21.1 A Little Talk About Programming Languages / 293
21.2 Translating Programs / 303

21.3 Putting Programs Together / 309
Some Things To Try / 312

22 Exploring and Tinkering / 315
22.1 The Point of Exploring and Tinkering / 315
22.2 Working with DEBUG / 317
22.3 Working with NU / 320
Some Things To Try / 326

A Program Listings | 327
MAZE / 327
HEXTABLE / 330
ALL-CHAR / 331
REF-CHAR / 332
BOXES / 333
MSG-HUNT / 337
VID-MODE / 338
COLORTEXT / 340
GRAPHTXT / 342
COLOR+4 / 343
KEY-BITS / 346

B Narrative Glossary | 349

C Products and Trademarks | 359

D Other Sources of Information | 361
Index | 363

User’s Manual for the Optional Diskette | 373

vi

About the Author

Peter Norton was born in Seattle, Washington, and educated at Reed
College in Portland, Oregon. During the past 20 years, he has worked with
a wide variety of computer equipment from personal computers to the larg-
est main-frames, and he has worked on every kind of software from the
most intricate system programming to thoroughly mundane commercial
applications.

Shortly after he began working with microcomputers, he created, for
the IBM PC family of computers, the now-legendary Norton Utilities soft-
ware package.

Although Mr. Norton continues to develop software for small com-
puters, his work now concentrates on writing about the use of personal
computing.

Limits of Liability and Disclaimer of Warranty

The author and publisher of this book have used their best efforts in prepar-
ing this book and the programs contained in it. These efforts include the
development, research, and testing of the theories and programs to deter-
mine their effectiveness. The author and publisher make no warrantyof any
kind, expressed or implied, with regard to these programs or the documen-
tation contained in this book. The author and publisher shall not be liable in
any event for incidental or consequential damages in connection with, or
arising out of, the furnishing, performance, or use of these programs.

Note to Authors

Have you written a book related to personal computers? Do you have
an idea for developing such a project? If so, we would like to hear
from you. Brady produces a complete range of books for the per-
sonal computer market. We invite you to write to Editorial Depart-
ment, Brady Books, Prentice Hall Press, One Gulf+ Western Plaza,
New York, NY 10023.

vii

Introduction

his is the beginning of a marvelous voyage of discovery into
the secrets, wonders, and mysteries of the IBM Personal
Computer and the family of computers that has grown up
around it.

From the day it first appeared, the IBM Personal Computer has been
stirring up excitement and fascination, because the PC—as everyone calls
it—marked the coming of age of personal computing. Today, the PC is
solidly established as the power tool without equal for helping business and
professional people improve their performance and the quality of their
work. The PC has also spawned a great many other computers—some from
IBM, and some from the makers of ‘‘PC compatible’’ computers—that
have become what we call ‘‘the PC family.”’

This book is designed to help you understand the remarkable PC and
its entire family. In this book, we—you and [—will set off to discover the
mysteries and wonders of what the PC is and what marvels it can perform. I
am excited and enthused about the PC and the PC family, and I want to lead
you into understanding the workings of this marvel and sharing with me the
excitement of knowing what it is, how it works, and what it can do.

As you must have already realized, this isn’t a book for people who
are having trouble finding the On/Off switch on their computers. Instead,
it’s for people like you who have both the intelligence and the curiosity to
comprehend this wonderful family of machines. My goal is to make under-
standing the PC easy for you and fun as well.

This is, more than anything else, a book of understanding, written to
help you learn what you really need to know about the PC. You can very
successfully use a PC without really understanding it. However, the better
you understand your PC, the better equipped you are to realize the potential
in the machine, to recognize the best software and hardware for your
machine, and—Iet’s not forget this—to deal with emergencies that might
arise when working with a PC. After all, when something goes wrong in
your PC, the better you understand the machine the more likely you are to
make the right moves to fix the problem, rather than goof up and make
things worse.

There are a lot of reasons why we might want to understand the inner
workings of our PCs. One reason, a really good one, is simply for the
intellectual satisfaction and sense of mastery that comes with understanding
the tools that you work with. Another reason is to open up new realms for
yourself. After all, there is plenty of demand these days for people who

viii

have PC savvy. But perhaps the most practical reason is the one that I
suggested above. By analogy, we might think back to the early days of the
automobile, when you had to be an amateur mechanic to safely set out on a
journey by car. It doesn’t take the skills of a mechanic to drive a car today,
because cars have been tamed for everyday use. We’d like it to be that way
with computers, but frankly computing hasn’t progressed that far yet.
Today, to safely and successfully use a personal computer you need some
degree of expertise—and the more expert you are, the better you can deal
with the practical crises that sometimes arise.

This book is here to help you, to take you as far as possible into the
realm of expertise, to help you join that select band of wizards who really
know how to make the PC perform its magic.

If you know anything about me, Peter Norton, or about the first edi-
tion of this book, you know that I made my reputation, and this book
became a best-seller, by explaining the technical wizardry of the PC. In the
early days of the PC, that was what PC users needed most—an inside
technical explanation of how the PC worked. The world of the PC has
matured and changed since then, and so have the needs of the mainstream
of PC users. Today people still need to understand their machines, how
they work, and what it takes to make them sing, but the focus of people’s
needs has changed, so this new edition of Inside the IBM PC has changed
as well.

You will still find in here lots and lots of interesting and useful techni-
cal information that will help you understand what makes the PC tick. But
now, I’m drawing a dividing line between two kinds of material that you’ll
be seeing here. The first and main part of this book explains the basic
principles of the PC and the PC family covering all those elements that you
need to comprehend the PC without having to plow through a great deal of
technical information; that part of the book is for all readers, and you can
easily identify it because it appears as normal text.

For readers who want to go further, dig deeper, and understand more
technical details, the second phase of the book, identified by this head:

TECHNICAL BACKGROUND | 1 1 H B I I

will cover the heavier stuff. In these sections, we’ll go into the hardware
and programming details that show the underlying engineering that gets
things done in the PC family. These more advanced sections are for anyone
who wants to have more than simply a practical understanding of the PC—
this part is for anyone who wants to actually wear the wizard’s cap and

ix

perform, or at the least know how to perform, the real magic that the PC
can be made to do. When you see this head, you’ll know we’re going into
deeper country, and you should stay back or come along, as suits your
needs.

Another thing that you’ll find in this book are some sample programs
that we can use to show off some of the PC’s capabilities, to illustrate and
exercise features of the machine, or just to have some fun. These programs
will generally use the BASIC programming language, so that it will be
relatively easy for you to try out what they have to show you by simply
keying them in from the listings that appear here. You’ll also find, at the
end of each chapter, a few things to do that you can use to test your
understanding or a few exercises that you can perform to develop your PC
skills. Along those lines, we have a bit of fun for you.

A Maze to Think About

For the fun of it, I wrote a little program in BASIC that illustrates what
a lot of life is like, including the process of learning to fully understand our
PCs. (You’ll find the listing for the program, called MAZE, in Appendix
A, where we’ve placed all the longer programming examples.) In Figure
I-1, you will see what it looks like in the middle portion of a program. The
program has drawn two boxes marked START and FINISH, and it’s started
working a path from one to the other. In this case the program doesn’t
know where it’s going, so it winds a random path until it stumbles onto the
goal; but when it gets there it rewards you with some fanfare (as you’ll see
if you try running the full program).

Fortunately this book isn’t like that. We’ll be working our way in a
purposeful fashion toward our goal of understanding the PC. Sometimes,
though, it can feel like the path from START to FINISH is as aimless as the
operation of this particular program.

I’m offering this toy program to you for two reasons. The first is that
you might actually find a use for it—for example, if you ever have to
convince someone just how circuitous the path to success can be, you can
use this program to make the point. You can use it to tell your boss why
results haven’t been appearing instantly and to explain to your friends the
easy path you took to mastery of personal computing. The second reason is
to provide a little food for thought.

One of the most important and valuable things for us to learn about our
computers is just how complex a task it is to add polish and refinement to
computer programs. If you understand that, then you’re better prepared to

START

FINISH

Figure I-1. The start-to-finish maze in progress.

understand the realities of the program you work with (or any programs you
might want to design and build). So, here are some questions to ponder
about our toy MAZE program before we plunge into the Chapter 1 and
explore the basic ideas of computers.

Some Things to Try

1.

If you haven’t already taken a peek at the MAZE program listing
in Appendix A, ask yourself how complex a task it is to write a
program that draws a random path from START to FINISH and
recognizes when it gets there. Write an outline—in English or in
any programming language that you’re familiar with—of a pro-
gram to do what this program does. How would you make sure
that the lines don’t run off the edge of the screen? How would you
know when the program reaches its goal?

Take a look at the MAZE program listing in Appendix A. Is it
longer and more complex than you thought it would be, or less? If
you know how to ‘‘read’’ a BASIC program, or if you can puzzle
your way through it, check to see if my version of the program
includes any important details that yours didn’t or vice versa; did
you cover any significant details that I missed?

Xi

Xii

As the MAZE program draws its path, it just writes over any lines
that have already been drawn. What if we want to recognize when
we cross an old line, or to avoid retracing along an existing line?
Without getting into the programming specifics, try to work out
the logical details that have to be added to the program. What
details are most important? Which details might just be called
icing on the cake? Does adding a feature like this make the pro-
gram much more complex? What does that suggest to you about
the overall character of computer programs?

1

A Family Tree

ne of the most important—and interesting—things about the
IBM Personal Computer family is that it is a family, a group
of related computers instead of a single computer. This makes
the story of the PC a richer and more fascinating one, and it
makes the PC more important and more useful to us, because, as a family,
the PC gives us a wide selection of computers differing in features, price,
and performance.

In this chapter we’re going to take a look at the PC family tree. It’s a
multi-dimensioned story, because there are several different ways to view
the PC family. One dimension of the story is historical—it covers the
chronological unfolding of the original IBM PC and its relatives. Another
dimension—another way of analyzing the PC family—looks at the different
models of PC. This aspect of the story, the model-by-model aspect, empha-
sizes the range of computing power and the range of features in the PC
family. A sidelight to both of those dimensions is the role that non-IBM
members of the family play. These are the so-called PC clones, distant
relatives of the PC and members of the extended family. And still another
dimension to the story is the tale of the family of microprocessors that
power the PC and that will lead it into the future.

We’ll take a look at all that in this chapter, so that we have a good
overall understanding of what the PC family is, and where it’s going.

1.1 Some Family History

The public history of the PC began in August 1981, when IBM first
announced ‘‘The IBM Personal Computer,’’ what we all know as the origi-
nal PC. The behind-the-scenes story began earlier, of course, but not as
long before as one might guess. From the decision to try to make an IBM
Personal Computer to the day of announcement took, we’re told, just about
a year—a remarkably short time for so large and so deliberately-acting an
institution as IBM. The prehistory of the PC, as interesting as it may be,

INSIDE THE IBM PC

realy isn’t our concern here (but I’ll pass on to you one fascinating tid-bit,
in the sidebar How the PC Became a 16-Bit Computer). What is of real
interest and use to us is a brief history of how each model of PC appeared,
so that we can better understand how the PC family came to be, and where
it is headed.

How the PC Became a 16-Bit Computer

At the time that the PC was being planned, all personal computers
belonged to a now-obsolete category called 8-bit computers. (For
more on 8- and 16-bit computers, see the last section of this chapter,
and Chapter 3, titled Data!)

According to one legend, the PC almost became an 8-bit computer,
which would have severely reduced its capabilities compared to what
it was to become, and would have made the growth of the original
PC into a PC family much more difficult.

As the story goes, IBM was planning to make the PC an 8-bit
computer because that was the clear standard of the time. But one of
the industry experts that IBM consulted in the planning of the PC
was Bill Gates, the legendary founder of Microsoft Corporation. Bill
understood that although 8-bit computing was strong at the time, its
days were numbered. For the IBM PC to be really successful, it had
to lead the way into the much more powerful realm of 16-bit
computing. Bill knew this and talked IBM into changing its plans.

Whether this story is truth or legend, the decision to make the PC a
16-bit computer was extremely important in making the IBM PC the
dominant desktop computer it is today.

The history outlined here is necessarily incomplete, because there are
many details that I don’t have space to relate and because the history of the
PC family continues to unfold even as I’m writing this. But here is the main
story.

The IBM PC made its first appearance in the fall of 1981. By spring of
1982, PCs were being shipped in volume, but to everyone’s amazement
demand far exceeded the supply. The PC was clearly ‘‘an overnight suc-
cess.’”” While this success may have caught IBM and the rest of the com-
puter industry off guard, everyone quickly woke up to the possibilities that
this created.

During the earliest days of the PC, a number of experienced computer
executives and engineers realized that there was a real need for a version of
the PC that could be carried around—that idea turned into Compaq Com-

1.1 SOME FAMILY HISTORY

puter Corporation. Their first addition to the PC family (the first addition
by IBM or anyone else) was the computer known as the Compaq. The
Compaq was announced in the fall of 1982, just over a year after the
original PC was announced.

The following spring, in 1983, saw IBM’s first addition to the PC
family—the XT model, which added a high-capacity hard disk storage
facility to the PC. Compaq matched the XT with a portable version in the
fall of 1983 called the Compaq Plus.

In 1983 word began leaking out that IBM was planning a
less-expensive scaled-down version of the PC that could be used as a home
computer or just a more economical model of PC for business and profes-
sional use. This machine was the PCjr, widely known as ‘‘the Peanut.”’

Nearly everyone expected the PCjr to be an even bigger hit than the
original PC, but when it first appeared at the end of 1983, it was an enor-
mous disappointment. The PCjr was doomed to a short life, thanks to a
hard-to-use keyboard, seemingly limited expandability, and other
problems—such as interference between the keyboard and diskette drive
that made the jr annoying to use—combined with less-than-expected inter-
est in home computers in the jr’s price range. Throughout 1984 the jr
limped along, despite several heroic attempts on IBM’s part to make it a
success. In 1985 the jr was discreetly allowed to die, awaiting IBM’s
revised plans for the low end of the PC family.

But if 1984 was a year of disappointment for the low-end PCjr, it was
an exciting year for the high end of the PC family. The summer of 1984
saw two high-powered models of PC appear. First there was Compaq Desk-
Pro, the first member of the PC family to have more basic computing power
than the original PC. Shortly after that, IBM introduced the AT model,
which had a much greater computing speed than the PC and XT or even the
new DeskPro.

All during this time, IBM was adjusting to the remarkable success of
the PC family and the growing importance of personal computing. This led
to a gradual and subtle change of philosophy in IBM’s management of the
PC family, which I call ‘‘mainstreaming.’’ This is a tendency to change the
focus of the PC family away from isolated and individual personal comput-
ing into a more institutionalized approach that fit the PC family better into
the central parts of IBM’s computing business. This marked the end of
some of the wild-and-woolly days of the PC, and passed into an era of
somewhat less personal personal computing.

That’s a short summary of the main points of the history of the PC
family. But there’s another way to view the chronology of the PC family
that’s less detailed and precise, and which gives us a sweeping overview

INSIDE THE IBM PC

and analysis of the PC’s history. It’s a summary of what has characterized
each of the first six years of the PC:

= 1980—planning:
IBM decides to make a PC, and begins design.

= 1981—announcement:
The PC design is finished and, in August, the PC is
announced, surprising everybody.

= 1982—runaway success:
The PC appears in stores, and is wildly successful, beyond
anyone’s expectations, including IBM’s.

= 1983—hard disks and home thrills:
Early in the year the XT is introduced, adding a hard disk to
the PC line; at the end of the year after overblown anticipation
and speculation, the PCjr is announced.

= 1984—jr fades and Sr appears:
The PCjr passes through the main period of its disappointing
history; in the summer the AT is announced, pointing the way
toward the new generation of PCs.

= 1985—the changing of the guard:
IBM consolidates and refines the PC line, preparing to replace
old models with a second generation; the PC family is redi-
rected into the mainstream of IBM’s products.

In summary, that’s the history of the PC family. Now let’s take a
closer look at the various models of PC to see how they relate to each other.

1.2 The PC family

The historical perspective that we’ve just gone through gives you some
sense of how the PC family as we know it today has evolved, and it should
give you a feeling for the irregular fits and starts that naturally accompany
computer family life. But it doesn’t make coherent sense of the various
members and how they relate to each other, in power and in features.
That’s what we’re going to take a look at now.

As I did in the last section, I have to offer a disclaimer here to alert
you to the limitations in this family outline. Three factors constrain how
complete our view of the family can be. The first is a constraint of passing

1.2 THE PC FAMILY

time: no sooner can 1 describe the current state of things than new develop-
ments arise. What we’ll find here is as complete as it could be when I wrote
these words. The second constraint is space: if we tried to mention every
obscure and distant relative of the extended PC family, the family tree
would spread out wider than you or I are likely to have patience to compre-
hend. Finally the third constraint is my own judgment, in deciding which
elements of the family tree are most important and most worth discussing.

With those honest limitations in mind, let’s take a look at the main
models of computer that make up the PC family tree. Figure 1-1 gives you
a rough sketch of the family. The line in the center indicates the main trunk
of the PC family, arranged in the order of how powerful each model is,
from the least powerful PCjr at the top to the most powerful AT at the
bottom. Spreading to the sides are the models with diverging features.
Figure 1-1 gives a rough sense of just how unusual, strange, or maverick
each model is by how far away from the main trunk it appears.

Let’s begin by talking our way down the main trunk of the tree, from
top to bottom. The first, and least powerful member of the family is the
ill-fated PCjr. To give some measure to the idea of how powerful and
capable each model is, we’ll compare them to a more-or-less standard PC,

PCjr

— _Compag __ ps — DG1
3270 PC Portable PC PIC =~X370

Compaq Plus =™ XT

Compaq Desk Pro

AT —AT 370

Compaqg-286 = Compaq Desk Pro-286

Figure 1-1. The main PC family tree.

INSIDE THE IBM PC

in terms of computing speed and disk storage capacity. By both measures,
the PCjr is about half of a standard PC; by another measure, internal mem-
ory capacity (which doesn’t vary between most other models), the PCjr is
also about half a standard PC’s memory.

Next in scale comes the original PC—by its own standard, it’s 100
percent of what a PC should be. It has the computing power to perform
roughly a quarter-million instructions per second; in computer jargon, that’s
% “‘mips.”’ Its disk storage capacity is typically 360,000 characters (bytes)
in each of two ‘‘floppy’’diskette drives—for a total of almost % of a million
bytes. Its internal memory capacity (which is, in effect, the workspace
where the computing activity takes place) is typically a quarter million
bytes, but it can be increased to two and a half times that much.

The next step in succession is the XT model. The XT exactly matches
the PC in both computing speed and internal storage. What sets it apart is a
much larger (and also faster working) disk; this kind of disk is called a hard
disk (or a fixed disk) as opposed to the conventional floppy diskettes that the
PC uses. A computer’s disk acts as a combination of file drawer and work-
ing library, and so a larger and faster disk significantly increases the practi-
cal working capabilities of the computer, even though the XT has the same
computing speed and the same internal working memory space as the PC.
The size of the XT disk is ten million characters, over a dozen times as
much as a PC; and the effective working speed of the XT’s hard disk is
about five times as fast as the PC’s floppy diskettes.

A small step further down the line comes the Compaq DeskPro model.
The DeskPro uses a different and faster microprocessor than the PC and
XT, so it has a faster computing speed; relative to a PC, the DeskPro has
about 50 percent more computing power. (In Section 1.3 we’ll see what
this faster microprocessor is.) The disk capacity is also greater in the Desk-
Pro, with up to 20 million bytes, twice what the XT has. Thanks to the
faster computing speed and the bigger disk, the DeskPro seems to be an
even bigger jump beyond the XT than the XT was beyond the PC. But in
practice it’s a much smaller step; nevertheless, an important step.

The next big jump in capacity comes with IBM’s AT model. Like the
DeskPro, the AT uses a different microprocessor engine to gain extra speed
over the PC; but the AT’s is faster still, much faster. That gives the AT the
computing power of about five PCs or more than three DeskPros—that’s a
lot more computing power. To go along with that computing power, the AT
has a 20-million byte disk, twice the XTs, and it can accommodate even
larger disks if needed. Just to sweeten the cake even further, the AT can
take on more internal working memory than any of the previous models, as
much as three or more million bytes; under ordinary circumstances, though,

1.2 THE PC FAMILY

we can’t take advantage of this extra working storage, so we’ve got to
discount its importance.

The final step (so far) in the main trunk of the PC family is the
Compaq Deskpro-286 model. The Deskpro-286 is much like IBM’s AT
model, but its engine revs one-third faster than the AT’s, giving it a third
more raw computing power; it comes equipped with a hard disk that holds
30 million bytes.

Scattered along this main part of the PC family are a number of PC
clones, which aren’t of any special interest by themselves, though some of
them can be distinct bargains when it comes to buying. Among the many
that fall into this category are the Tandy models 1000 (equivalent to a PC)
and 1200 (equivalent to an XT); the NCR PC-4 and the Zenith 150 (PCs);
and the Texas Instruments Business Pro (an AT class of machine).

Branching off the main trunk, we find a number of very interesting
variations on the PC mainstream. The first branch consists of the portables
(also called transportables or ‘‘luggable’’ since they can be carried, but not
easily). The portables bring together the main computer and a display
screen into one rugged case—which makes it practical to carry them
around, check them as airline luggage, or even ship them. Four portables
are noteworthy: the original Compagq (the first, and some consider the best
of the PC clones) and the IBM Portable PC model, both of which are
equivalent to a standard PC; the Compaq Plus, a portable that’s equivalent
to the XT; and finally the Compaq Portable-286, a portable mate to the
Deskpro-286, more than equivalent to the standard IBM AT model.

Also in the broad category of portables, but a in a distinct class by
itself (at least for a while) is the lap-sized Data General One, or DG-1. The
DG-1 is a partly failed attempt to take the ‘‘lug’’ out of portable computing
by making a PC that’s small and light enough to carry easily. Due to its
unique design, the DG-1 has 85 percent of the computing power of a PC—
slightly less than standard—but twice the disk space. The DG-1 was a
heroic but unsuccessful attempt to make a truly portable PC; it’s sure to be
followed by more successful ones as the advance of technology permits. By
itself the DG-1 isn’t an important member of our PC family, but it repre-
sents a class of machines that are likely to become important.

Finally we get to the most exotic realm of PC family members, the
ones that have truly unusual capabilities. There are three models from IBM
worth mentioning; all of them are essentially PCs that can also do double
duty as something else. The 3270-PC acts as an XT-class of PC, and it also
serves as a standard-type terminal (called a 3270) that can talk to and work
with a large ‘‘mainframe’’ IBM computer. The other two exotics in the line
are the XT-370 and the AT-370. These little wonders can function as an XT

INSIDE THE IBM PC

or AT, and also carry out much of the work of a full-sized mainframe
computer. These three, needless to say, are quite special machines, but they
are part of our PC family.

The last category of computers for us to discuss are the distant rela-
tives of the PC, computers that are similar to, and partly—but only partly—
compatible with the IBM PC. Notable among these are the Tandy model
2000, the Texas Instruments Professional Computer, the Wang PC, the
DEC Rainbow, and the NEC APC-III. Frankly, there are more of these
sometimes-oddball distant relatives than anyone can keep track of. They’re
not of a great deal of interest to us, but I’'m mentioning some of the more
widely known ones so that if you hear of them, and wonder where they fit
into the PC family portrait, you’ll know.

1.3 The 8086 Family

One of the keys to understanding the PC family is understanding the
microprocessor that acts as the working ‘‘brains’’ of the computer. Unlike
the mainframe computer tradition, microcomputers like our PC aren’t
designed and built in an independent way. Instead, nearly all microcomput-
ers incorporate many standard components that are designed independently
of the computers in which they are used.

If a computer maker, such as IBM, designs a computer from scratch,
then they can determine what the features and capabilities of the computer
will be. This includes the instruction set, or internal language, that the
computer will have. However, most microcomputers, including our PC,
aren’t made that way. Instead, they get their thinking power (and instruc-
tion set) from one of several standard microprocessors offered by com-
puter chip makers. IBM could have chosen from several possible
microprocessors to serve as the brains of the PC. The one they chose
would both define the current instruction set, or language, for the PC, and
also define a great many things about the direction the computer could
take in the future.

IBM chose the Intel 8088 microprocessor as the brains or engine inside
the PC. The 8088 is just one member of a whole family of microprocessors,
called the 8086 family, that was designed by the pioneering silicon chip
maker, Intel. By choosing the 8088 for the original PC, IBM committed the
PC family to live within the range of possibilities that are defined by its
microprocessor family. To understand what the PC family is (and can
become), we need to understand the main points of its microprocessor
family, the 8086 family.

1.3 THE 8086 FAMILY

Before I cause any confusion, I need to make clear that while each
member of the PC family of computers uses a member of the 8086 micro-
processor family for its brain, there isn’t any direct correspondence between
the PC family and the 8086 family. There isn’t a separate member of the
PC family for each member of the 8086 family. Since each PC includes
something from the 8086 family, knowing about this family can help us
understand the directions that the PC family can take.

The founding member of the Intel 8086 family is the 8086 chip itself,
the chip that the whole family is named after. The 8086 was designed to
introduce the concept of 16-bit computing, which means that the computer
can deal with 16 bits of information at a time (we’ll get a clearer idea of
what that means when we discuss bits and our computer’s data in Chapter
3). The previous generation of Intel microprocessors, the 8080, were 8-bit
computers.

The 8086, as a 16-bit microprocessor, had a much greater range of
capabilities than its predecessors. The power of a microprocessor is only
very loosely implied by describing it as ‘‘8-bit’’ or ‘“16-bit’” or ‘‘32-bit’’;
the features of each new generation of computer chips go far beyond what
the bit rating suggests. But this bit rating does at least tell us how much data
the computer can sling around at a time, and the 8086 could sling twice as
much as the 8080 that went before it.

There was an inherent practical problem, though, in using the 8086 as
the base of a computer design. While the 8086 had 16-bit capabilities
internally—which is very good—it also had to work exclusively with other
computer components that handle 16 bits at a time as well. When the PC
was being designed, 8-bit parts were plentiful and cheap; 16-bit parts were
more expensive and in shorter supply. This presented an obstacle to anyone
designing a computer around the 8086.

Intel found a simple, practical solution to this problem with the 8088
chip. The 8088 internally has all the 16-bit skills of the 8086, but when it
communicates with other circuitry around it, it talks only 8 bits at a time;
this slightly reduces the speed of the 8088, but it makes it possible for the
8088 to work with other components that are cheap and plentiful.

For practical reasons, IBM designed the original model of PC around
the 8088—a microprocessor with 16-bit power, but 8-bit economy. The
8088 formed the heart of the first four models of PC from IBM—the PC,
the XT, the Portable PC, and the PCjr—as well as the first two Compaq
contributions to the family—the Compaq and the Compaq Plus. Most other
*“PC clones’’ also used the 8088. However, when Compaq wanted to add
more computing power to their third model, the DeskPro, they used the
8086 for its greater speed.

INSIDE THE IBM PC

After designing the 8086 and its junior brother the 8088, Intel began
working on some improvements and extensions to this family of microproc-
essors. Up to this time, all microprocessors, including these two, relied on
the assistance of other related computer chips which played a supporting
role in getting the computer’s work done. Intel realized that there were two
important disadvantages in having these support functions performed by
separate circuit chips: working with separate chips slowed down the opera-
tion of the computer, and increased the total cost of making a computer. If
many of the support functions were incorporated into the same chip as the
microprocessor, it could work faster, and using fewer chips would reduce
the cost.

This thinking led to the development of the Intel 80186 and 80188
(which are usually called the 186 and the 188 for short). These two new
microprocessors had some extra instructions and capabilities that their pred-
ecessors didn’t have, but their main feature was that they integrated several
support functions into the microprocessor. As you’ve probably guessed
from the model numbers, the 186 is like the 8086 in being 16-bits inside
and out, while the 188, like the 8088, has an 8-bit external face with 16-bit
internal skills.

Either of these 18x chips could be used to power major members of the
PC family, but that hasn’t happened. They have been used in quite a
number of distant relatives of the PC, including the near-PC-compatible
Tandy 2000 computer. Neither IBM nor Compaq has used either of these
two chips, even though the 188 would have been a natural for the PCjr and
the 186 would have been perfect for the Compaq DeskPro. The reason why
is very simple: when the 18x’s were the hottest thing around, they weren’t
available in large enough quantities to safely design a best-selling computer
around. By the time they were plentiful, there was something much more
exciting to design a computer around.

While the 18x’s were an important (if little-used) extension to the 8086
family, they didn’t really add dramatically to the capabilities of the chips
that went before them. To do that, Intel labored mightily and came up with
its proudest achievement to date, the 80286 (or 286 for short).

The 286 goes enormously beyond the capabilities of its predecessors in
three main ways. First, it can accommodate much more working memory
than the previous chips; the others were limited to a million bytes, or
characters, of memory. The 286 can have up to 16 million bytes—a major
addition. Second, the 286 can perform an important computer trick known
as virtual memory, which allows it to appear to have even more memory
than it actually does. Both of these memory extensions greatly increase the
scale of the work that the 286 can undertake. The third new feature of the

10

SOME THINGS TO TRY

286 is something known as hardware multitasking; this feature lets the
computer work on more than one problem at a time in a safe and reliable
way. (The previous chips could attempt multitasking, but without hardware
support, it isn’t completely reliable and it’s subject to unexpected
breakdowns.)

IBM introduced the 286 to the PC family with the appearance of the
AT model in the summer of 1984. This was followed by a number of
AT-clones, most notably the Compaq Deskpro-286 and the Compaq Porta-
ble-286. Like the Compaq models before them, these 286 models matched
IBM’s machines and added some small but important extras. The most
interesting is a ‘‘power switch’’ that allows the Compaq-286s to either run
at the same speed as an AT (for pure speed compatibility) or one-third
faster for greater computing power.

Like the 18x’s before it, the 286 features the integration of support
chips and faster speeds than previous chips. Initially the 286-based
machines didn’t take significant advantage of the powerful new capabilities
that were inherent in them. Instead they were treated simply as faster PCs,
very much as if they had been designed around the 186 instead of the 286.

Needless to say, the Intel 8086 family doesn’t end with the 286. By
the time the 286 saw commercial success in the AT, Intel was busy plan-
ning the next major extension of the family, the 386. Among the new skills
that the 386 will bring to the 8086 family, and our PC family, is the ability
to work with data 32 bits at a time.

However the 8086 family evolves, you can be sure that our PC family
will also evolve to take advantage of the additional power that any new
chips provide.

Some Things to Try

1. Do you see any gaps in the PC family tree? Discuss what you
think might be the most sensible spectrum of computers in this
family.

2. Does adding a hard disk to a PC—making it an XT—actually add
to the computer’s ability to work for us? What sort of computer
work would be easier to perform on an XT than a PC? What sort
of work can an XT perform that a PC cannot?

3. Is computing speed important all the time? Is there computing
work for which the AT’s speed is no advantage over the PC, or
even the PCjr?

11

2

Fundamentals:
What a Computer Is

oday, computers are something familiar to everyone, since they

are used so much in our lives. Increasingly those computers are

personal computers, like our IBM PC. Having them as an every-

day thing in our lives makes them something we’re comfortable
with, and that’s very good; but it doesn’t mean that we understand them, or
know how they work.

This book is written to make it easy for you to understand the ins and
outs of the IBM PC. But before we get into the PC specifics, we need to
make sure that we understand the basic ideas that underlie all computers, so
that we know what a computer is and isn’t, and we know in a general sort
of way how computers work. That’s what this chapter is for: to explain the
basic, fundamental ideas about computers.

2.1 My Computer, the Model

Computers are based on the simple idea of modeling or imitation.
Radios and phonographs work that way too, and if we pause to think about
them we’ll understand our computers more easily.

When we play a record on a phonograph, we hear music—but there
isn’t a musician inside the phonograph. Instead, the phonograph contains
an electronic model or imitation of what sound is like. Our radios and
phonographs are possible because we discovered a way to capture the
essence of sound, to create a mechanical or electronic imitation of sound,
and to build machines that will reproduce the sounds we want. The same
sort of thing goes on with the visual images provided by television and
motion pictures.

Our computers do essentially the same thing, but they do it with num-
bers and arithmetic. The most fundamental thing that goes on within a

13

INSIDE THE IBM PC

computer is that electronically the computer imitates and creates a working
model of numbers and arithmetic.

If we set out to invent a machine that can do arithmetic, we need to
find a way to match what machines can do with whatever the essence of
arithmetic is. Needless to say, accomplishing this calls for a great deal of
intellectual creativity and some heavy-duty theory in mathematics. Essen-
tially a meeting ground had to be found where math and machines could
merge, and it was found in the idea of binary arithmetic.

The numbers that you and I work with are based on the number ten:
we use the decimal number system, which works with ten symbols, 0,1, 2,
and so on through 9, and builds all our numbers using those ten symbols.
However, there is nothing fundamental about the decimal system; we can
base our numbers on eight symbols, or three, or two. Math theory, and
some simple exercises demonstrate that you can write the same numbers
and do the same arithmetic operations in any number system, whether it’s
based on ten, three, or two. The mathematical theory of information, how-
ever, has proven that you can’t go smaller than two—the binary, or base 2,
number system captures the smallest essence of what information funda-
mentally is.

That’s something of a lucky break. It is very easy to make a
machine, particularly an electronic machine, that represents, or models,
binary numbers. A binary number is written with two symbols, O and 1
(just like our decimal numbers are written with ten symbols 0-9) and
electric parts—such as switches—naturally have two states: a switch
can be either on or off. Once we see that, it’s easy for us to make the
leap of imagination to see that an On-Off switch can represent, model,
or imitate a binary O or 1. In fact, it’s such a natural connection, that
you’ll see the power switches on many appliances and machines labeled
0 and 1 meaning off and on.

Of course it’s a giant step between seeing that a switch or an electric
current on or off can represent a number 1 or 0 and having a computer that
can perform marvels of calculation. It’s a very big step indeed. But it
shouldn’t be too hard for us to see how this electronic model of a simple
binary number can be elaborated, or built up into something much larger.
It’s like knowing that once children have learned to write simple sentences,
they can grow up to write essays, term papers, and books. There’s a lot of
work in between and a lot of complicated steps involved, but the idea, the
basic principle, is clear enough.

That’s the foundation on which our computers are built. Information,
including numbers and arithmetic, can be represented in a binary form;
electronic parts, such as switches that are turned on and off, are binary at

14

2.2 AN OUTLINE OF THE COMPUTER

heart. Using switches and other parts, an electronic machine can imitate, or
model, numbers and all other forms of information.

What we’ve discussed so far is good enough to give us an idea of how
it’s at all possible to make such a thing as a computer. But that hasn’t yet
told us a great deal about computers. So that you can understand a building
made of bricks, we’ve talked about what bricks are. That doesn’t tell us
much about architecture, though, or what a finished building looks like.
That’s what we’ll do next.

2.2 An Outline of the Computer

There are five key parts to a computer: the processor, the memory, the
Input/Output (I/0O, as it’s almost always called), disk storage, and the pro-
grams. We’ll take a quick look at each of these key parts here and then in a
little more detail that will fill up this chapter. The rest of the book will be
devoted to burrowing into the really fascinating deeper details.

The processor is the ‘‘brains’’ of the computer, the engine, the main
working heart of this marvelous machine. It’s the processor that has the
ability to carry out our instructions (our programs) to the computer. The
processor is the part that knows how to add and subtract and to carry out
simple logical operations. In a big mainframe computer the processor is
often called a Central Processing Unit, or CPU. In a miniaturized or
“‘micro’’ computer, like our IBM PC family, the processor is usually called
a microprocessor. That’s the term we’ll be using almost exclusively in this
book. You already know, from our discussion of the PC family history in
Chapter 1, that our PC family is powered by the 8086 family of microproc-
essors. Later in this chapter we’ll learn more about what processors do, and
in Chapter 6 we’ll cover the specifics of what the PC’s microprocessors can
do.

The memory is the computer’s work area: its desktop, its playing
field. A computer’s memory is nothing like our own memory, so the term
can be misleading until you understand what a computer’s memory is and
what it’s used for. The memory is the computer’s workplace. It’s analo-
gous to the desktop of an office worker, the workbench of a carpenter, or
the playing field of a sports team. The computer’s memory is where all
activity takes place. The analogy with a workbench is particularly good,
because it helps us understand when the amount of memory is important
and also when it’s not. Like the size of a workbench, the size of a
computer’s memory sets a practical limit on the kinds of work that the
computer can undertake. A handyman’s skills and other factors are really

15

INSIDE THE IBM PC

B .=
Processor Z -
.

Programs

Figure 2-1. The five parts of the computer.

the most important things that determine what the handyman can and
can’t do, but the size of the workplace matters as well. This is true with
our computers. That’s while you’ll often hear of computers rated by the
amount of memory they have, usually in kilobytes (thousands of bytes
which we’ll learn more about in Chapter 3). For example, a fully-loaded
PC has 640 kilobytes of memory.

Input/Output, or 1/0, are all the means that the computer uses to take
in or spit out data. It includes input that we type in on the keyboard and
output that the computer shows on the video display screen or prints on the
printer. Every time the computer is taking in or putting out data, it’s doing
I/O using 1/0 devices, which are also called peripheral devices in computer
jargon. Among the many kinds of I/O devices is one that’s so important and
critical to the successful operation of the computer that we single it out as
the next of the five key parts of a computer.

Disk storage is a very important kind of /O—it’s the computer’s
reference library, filing cabinet, and tool box all rolled into one. Disk
storage is where the computer keeps its data when it’s not in use inside the
computer’s memory. Data can be stored in other ways besides disk, but
disks are the most practical and most important way of storing data. In fact,
as we saw in the outline of the PC family in Chapter 1, a big increase in
disk storage is enough to mark the difference between a member of the
family that’s considered high-powered (the XT) and one that’s not (the
original PC).

Programs are the last of the five key parts of a computer—they are
what makes the computer go, what brings it to life, what turns it from a

’

16

2.2 AN OUTLINE OF THE COMPUTER

heap of fancy parts into a powerful working tool. Programs are the instruc-
tions that tell the computer what to do.

With that simple summary out of the way, let’s take a slightly more
detailed look at each of these key parts, bearing in mind that we’re still
providing brief descriptions. The real details will come in the following
chapters.

The microprocessor is the part of our computer designed to carry out
or execute our programs. The whole point of the entire computer is to make
a machine that can perform, execute, or carry out the series of steps that we
call a program. So both the purpose and the internal organization of the
computer come together in this one key component, the microprocessor. In
order to be able to perform this ingenious miracle, the microprocessor has
to have some particular skills that it calls on to perform its work. The first
skill is the ability to read and write information in the computer’s memory.
This is a critical skill, because both the program instructions that the micro-
processor is to carry out and the data that the microprocessor is to work on
are temporarily stored in the computer’s memory. The next skill is the
ability to recognize and perform a series of very simple commands or
instructions so that our programs are carried out. The last skill is for the
microprocessor to know how to tell the other parts of the computer what to
do, so that the microprocessor can orchestrate the entire operation of the
computer.

As you might imagine, there is a lot to how a microprocessor can carry
out its assigned task, and how it gets these skills that we’ve been mention-
ing. Later we’ll get into the details of the microprocessor. Chapter 6 is
devoted to telling you how the microprocessor performs its magic.

Throughout this book we’ll be talking constantly about programs and
data: programs that the microprocessor carries out and data that the pro-
grams act on. To the microprocessor, the distinction between programs and
data is vital—one indicates what the microprocessor is to do, and the other
is what the doing is done to. Not every part of our computer makes this
distinction, which we’ll see shortly.

The memory, as we’ve already seen, is where the computer’s micro-
processor finds its programs and data, when the microprocessor is actually
doing its assigned task. As we’ve mentioned, the memory is the activity
center, the place where everything is kept when it’s being worked on. For
us to understand our computers it’s important to understand that the com-
puter’s memory is just a temporary space, a scratch pad, a workbench, a
black board where the computer scribbles while work is being done. The
computer’s memory is not a permanent repository of anything, unlike the
memory inside our own brains. Instead, the computer’s memory simply

17

INSIDE THE IBM PC

provides a place where computing can happen. It’s the playing field where
the game of computing is played. After each game, the memory playing
field is relinquished to the next team and the next game.

While the computer’s microprocessor makes a vital distinction
between program and data, the computer’s memory does not. To the com-
puter’s memory (and to many other parts of the computer) there is no
difference between programs and data—both are just information that can
be recorded, temporarily, in the memory. A piece of paper neither knows
nor cares what we write on it—whether it’s a love poem, the figures from
our bank balance, or instructions to a friend. So it is with the computer’s
memory. Only the microprocessor knows—or has the ability to tell the
difference—between programs and data. To the computer’s memory and
also to the I/O devices and disk storage, a program is just some more data,
some more information that can be stored.

The computer’s memory is more like a chalkboard than a piece of
paper in that nothing is permanently recorded on it. Anything can be writ-
ten on any part of the memory, and the writing can be changed in a wink by
writing over it. Unlike a chalkboard, the computer’s memory doesn’t have
to be erased before anything new can be written down; the mere act of
writing information into the computer’s memory automatically erases what
was there before. Reading information out of the memory is as simple and
as straightforward as reading anything written on paper or a chalkboard.
Both the microprocessor and all the computer’s I/O devices have the natural
ability to read (and write) data from or to the memory.

Together the microprocessor and the memory are the actors and the
stage on which the drama of computing is performed. But by themselves
they make up a closed world. Input/output devices open up that world and
allow it to communicate with us. An input/output device is anything that
the computer communicates with other than its memory. As we’ve men-
tion, these devices include the keyboard that we type on, the display screen
that we stare at, the printer, a telephone line that’s connected to the com-
puter, and any other channel of communications into or out of the com-
puter. Taken together the I/O is the computer’s window on the world—
what keeps the microprocessor and memory from being a closed and use-
less circle. We devote plenty of time and effort to understanding the PC’s
various I/O devices in later chapters of the book.

In-general we can say that all the I/O devices that the computer can
work with have us as their real target. One way or another, everything that
the computer takes in (particularly from the keyboard) comes from us. And
everything that the computer puts out on the screen, on the printer, or
wherever, is intended to be seen by us. But there is one special category of

18

2.2 AN OUTLINE OF THE COMPUTER

I/O that is intended only for the computer’s private use: the disk storage
devices.

Disk storage, as we’ve said, is only one kind of I/O, one type of
device that the computer can use to read data into its memory or write data
out of its memory. There is one key difference, though, between disk
storage devices and essentially all other devices—the information on the
disk storage can’t be read or written by us, and it’s not for our use; it can
only be read or written by the computer itself. The other /O devices are an
interface between us and the computer. The computer ‘‘sees’” what we type
on the keyboard, we see what the computer writes on the printer or display
screen. This is true with the disk storage devices. Instead, the disk storage
is the computer’s library, toolbox, and lumberyard. It’s where the computer
keeps its instruction manuals (our programs), its raw materials (our data),
and any other information that it needs to have on tap. We’ll be covering
the PC’s disk storage in lots of detail, so that you can understand how it
works, what it does for the computer, and how we can help safeguard the
information stored on our computer disks.

Finally, we have to consider programs. Programs tell the computer
what to do. Programs are the hardest part of computing because com-
puters ‘‘consume’’ programs, using them as fuel. That’s not exactly true,
because unlike an engine that burns fuel it can’t use again, a computer can
use a program over and over again. But even if a computer doesn’t con-
sume or burn up programs, our computers do have an endless appetite for
programs, the way we have an endless appetite for newspapers, maga-
zines, and books. Once a book is written, any number of people can read
and enjoy them, endlessly. So it is with programs for computers. But we
also have an unending need for new books, new magazines and new
newspapers; so it goes with programs for computers. There is always
something new that we want to do with our computers, so there is always
a need for new programs.

As it turns out, there are two very different kinds of programs, and we
need to learn about the difference right from the start. These two kinds of
programs are called systems programs and applications programs. All pro-
grams do something, accomplish some kind of work. Systems programs
work to help operate the computer; in fact, the inner workings of a com-
puter are so complex that we cannot get them to work without the help of
programs. Applications programs carry out the tasks that we want done,
whether it’s adding up a column of numbers or checking the spelling of
something we’ve written on the computer. In summary, applications pro-
grams get our work done and systems programs help the computer manage
itself (and carry out our work).

19

INSIDE THE IBM PC

Some of the systems programs that the IBM PC needs to manage its
operations are permanently built into it. This is a part of the computer
called the ROM programs, because they are permanently stored in
Read-Only Memory (unlike the reusable main memory that we’ve been
talking about). These kinds of systems programs do the most fundamental
kind of supervisory and support work, which include providing essential
services that all the application programs use. These service programs are
called the Basic Input/Output Services, or BIOS for short. You’ll often hear
them referred to as the BIOS, or as the ROM-BIOS, since they reside in
ready-only memory, or ROM.

Other systems programs build on the foundation of the ROM-BIOS
programs, and provide a higher level of support services. Operating sys-
tems, such as the PC’s familiar DOS (Disk Operating System), are exam-
ples of these higher-level systems programs, which aren’t built into the
computer. Systems programs are one of the major topics that we discuss in
the rest of this book. Although applications programs are very important,
and we’ll discuss them and learn how they are put together, systems pro-
grams are a more important topic for us. That’s because our goal is to
understand the workings and the potential of the PC—and both are closely
tied to the PC’s systems programs.

The outline of the computer that we’ve been looking at here gives us a
good basis to start with, a springboard for diving into the details of comput-
ing power. Before we proceed, though, we ought to pause to consider just
what it is that the computer—particularly the computer’s microprocessor—
can do for us and what it can’t.

Some Things to Try

1. We’ve said computers ‘‘model’’ arithmetic just as radios or pho-
nographs ‘‘model’’ sound. Are there other machines that work by
“‘modeling?’’ We could say that television models both sight and
sound. Do our computers model more than numbers?

2. Suppose that electrical switches were somehow completely differ-
ent than they are. Instead of having two settings or states (On and
Off) they always had three states. Would it still be possible to
make a calculating machine out of them? Would anything be fun-
damentally different, or would the details just change, but the
principles stay the same?

20

SOME THINGS TO TRY

List any computer programs that you’re familiar with. Which ones
would you categorize as systems programs and which as applica-
tions programs? Do you think that there is a strict dividing line
between the two groups? Are there programs that have both
characteristics?

21

3

Data!

n this chapter we’re going to introduce ourselves to the basics of
computer data and the main data formats that the PC uses. When
we’re done, we’ll have a clear foundation for understanding what
the PC really works with: data!

3.1 Bits, Bytes, and Characters

The starting point of computer data—the smallest, most fundamental
unit—is called the bit. The word ‘‘bit’’ is a charming contraction for a
longer and clumsier expression, binary digit. We’re all familiar with the ten
decimal digits, O through 9, that are used to express the numbers that we
work with. Binary digits, bits, are similar, but while there are ten distinct
decimal digits, there are only two different bit values, zero and one, which
are written, naturally enough, as O and 1.

The bits 0 and 1 represent Off and On, False and True, No and Yes.
They have the obvious numerical meaning that you’d assume they do: the
bit value O really does mean zero, or nothing, and 1 does mean one. As we
mentioned in Chapter 2, it is the concept of the bit that makes informa-
tion-handling machines—computers—possible. Because it’s practical to
make electronic machines that work with On/Off signals at great speed, it’s
possible to make machines that actually work with information, that actu-
ally process data. It all depends, however, on our ability to match informa-
tion that’s meaningful to us with the ‘‘model’’ of information that the
computer can work with—and that depends on our ability to construct real
information out of the simple bits of 0 and 1.

Common sense and some heavy mathematical theory both tell us that a
bit is the smallest possible chunk of information. Bits serve as building
blocks with which we can construct and work with larger and more mean-
ingful amounts of information. By themselves bits usually aren’t of much
interest and only on occasion will we be talking about bits, individual bits,

23

INSIDE THE IBM PC

in the course of this book. It’s when we string bits together, into larger
patterns, that we get something more useful and interesting.

The most important and the most interesting collection of bits is the
byte. A byte is eight bits, taken together as a single unit. Bytes are impor-
tant to us because they are the main practical unit of computer data. You’re
undoubtedly used to hearing of the memory capacity of a computer or the
storage capacity of a disk measured in bytes (or in kilobytes, which we’ll be
discussing shortly). That’s because the byte is really the main unit of data; a
bit may be the atom, the smallest grain of sand of computer data, but the
byte is the brick, the real building block of data.

Our computers work mostly with bytes. They can work with larger
aggregates of bytes, and they can get into the bits inside a byte, but our
computers are designed mostly to manipulate and work with bytes.

As we mentioned, there are eight bits in a byte. That means that there
are eight individual O or 1, Off or On, settings inside a byte. The math of
combinations tells us that if we’ve got eight things (these bits) and each one
can be one of two ways (0 or 1) then the number of possible distinct
combinations of bit settings in a byte is 2 to the eighth power, which is 256.
So there are 256 different values, or bit combinations, that a byte can take
on. This number will be important to us as we go on; we’ll see it cropping
up again and again, so we need to remember it.

Most of the time we won’t be interested in anything smaller than a
byte, but there will be times when we need to refer to the individual bits
inside of a byte—particularly when we get into some of the more technical
matters. To learn about how we refer to individual bits, see The Bits Inside
Bytes and Words sidebar.

TECHNICAL BACKGROUND | | 1 H H I I

The Bits Inside Bytes and Words

When we want to look at the bits inside a byte, we need a way of
referring to them. This is done by numbering them from the
right-most (or least significant byte) starting with the number zero, as
shown in the table at the end of this sidebar.

It may seem screwy to number the bits from the right and to start
numbering them from zero, but there is a fundamental reason for
doing it this way. The identifying bit number is also the power of 2
that represents the numeric value of the bit in that place (when we
interpret the byte, and the bits in it, as a number). For example, bit 3
has a numeric value of 8, and 2 to the third power is 8.

24

3.1 BITS, BYTES, AND CHARACTERS

A similar scheme applies when we’re looking at two bytes together
as a word. Instead of numbering the bits in the individual bytes
separately, we number them all together, from O through 15. But this
is only done when we’re looking at a pair of bytes and treating them
as a single unit, a 16-bit word.

Bit number Numeric value
76543210

A byte inside our computer is raw data, which can be used for any-
thing. Two of the most important things that we do with our computers is to
work with numbers and to manipulate written text (such as the words you
are reading here). Bytes are used as the building blocks of both numbers
and text (character) data.

There is nothing fundamental about a byte, or any other collection of
data, that makes it either numeric or text. Instead, it is simply a matter of
what we want to do with our computers. If we’re working with numbers,
then the bytes in our computer are treated as numbers, and the bit patterns
inside the bytes are given a numerical interpretation. On the other hand,
when we want to work with character text information, the bytes are inter-
preted as characters that make up the written text information. Each byte
represents one character of text.

Basically, we (through the programs we use) put bytes to work as
either numbers or characters, depending on what we need them for at the
time. In effect, bytes are raw clay that we can mold into numbers or text
characters to suit our purposes. To do this, a meaning is assigned to each
pattern of bits in our bytes. The patterns aren’t unique, though, and there is
nothing intrinsic about the meaning that we give to these patterns. The
same pattern of bits could be, for example, the letter A or the number 65,
depending upon what we were using them for.

We’ll be seeing how bytes can be used as numbers and characters, and
how several bytes taken together can be treated as more complicated num-

25

INSIDE THE IBM PC

bers or strings of text characters. That will occupy us for most of the rest of
this chapter. The business of how bytes are interpreted as individual charac-
ters, and all the fascinating characters that our PCs can work with, will be
covered separately in Chapter 4. It’s such an interesting and rich topic that
we need to give it a chapter of its own.

Before we go on to more details about interpreting data, we need to
discuss a special term that will be cropping up now and again—that term is
word. While the byte is the most basic and convenient unit of our com-
puter’s data, sometimes our computers need to work with bytes in pairs, so
that they’re handling not eight bits but 16 bits at a time. We need a name
for a pair of bytes that are handled together as a single unit, and that name,
in computer terminology, is word. ‘‘“Word,”’ as we’re using it here, is a
technical term, meaning 16 bits of data, two bytes, taken all together. It
doesn’t have anything to do with the common everyday meaning of the
word ‘‘word,”’ so be careful not to be confused by it. We won’t be talking
about words a lot in the course of this book, but when we do, take care that
you understand them correctly.

By the way, if you have ever heard of computers being referred to as
being so-many-bit computers—8-bit, 16-bit, or even 32-bit—that’s talking
about how much data they can deal with in one gulp. Our PC family
members are all 16-bit computers, because they can, in many of the things
that they do, process data 16 bits at a time; 16 bits is the ‘‘word size’’ of
our computers—that’s what makes them 16-bit computers. Despite this,
most of the time our computers and the programs that make them go will be
handling data in individual bytes, one at a time.

Finally, there is one more piece of basic terminology concerning com-
puter data that we need to cover—the kilobyte, commonly called a K.

It’s always handy to be able to talk about things in round numbers,
particularly when we’re dealing with large quantities. Our computers deal
with large numbers of bytes, and so people have become accustomed to
handy ways of dealing with computer data in round numbers. But, com-
puters being what they are—binary critters—the round number that’s used
is a round number in binary, and only roughly a round number in our
familiar decimal numbers. This mysterious round number is 1024; that
happens to be 2 raised to the tenth power, so it actually is a round number
in binary. It’s also reasonably close to a round number, 1000, in decimal,
which is one reason why it’s used so much.

This number, 1024, is called a K, or sometimes kilo (borrowing the
metric term for one thousand). So 1024 bytes are referred to as a kilobyte,
or 1Kb, or sometimes just 1K. When you hear people talking about 64K,
they mean 64 times 1024, or exactly 65,536.

26

3.2 LEARNING ABOUT HEXADECIMAL

Be aware that the term K is sometimes used loosely and sometimes
precisely. The precise meaning of K is exactly 1024; the looser sense is
1000 or anything near it.

There’s a related term that we also need to know about—meg or mega.
This refers to a K of K, 1024 times 1024, or exactly 1,048,576. That’s
roughly one million, and that’s what a megabyte refers to—roughly one
million bytes of storage. We call this a meg when we’re being casual about
it. ““My AT has a 32-meg disk in it’’; that’s how people use this term.

With that fun taken care of, we’re ready to move on to learn more
about our computer’s data. We can learn about the fearsome hexadecimal,
and we’ll go on to explore more about numeric data.

TECHNICAL BACKGROUND | |1 1 I H I I

3.2 Learning About Hexadecimal

If you want to really understand the inner workings of the PC or any
other computer, you need to have a good working grasp of the com-
puter-oriented number system known as hexadecimal, or hex for short.
Understanding hex certainly isn’t necessary to be a masterful user of the
PC, but if you want to comprehend the machine and be able to use some of
the more sophisticated tools for the PC—including the DEBUG program
which is a part of DOS—then you have to have a working knowledge of
hex, which is what we’ll be covering in this section. As you can see, we’ve
marked this section with the Technical Background head to indicate the
more technical and arcane parts of our material.

Hex, simply put, is a practical solution to a tedious problem: express-
ing the exact data that’s coded inside our computers.

As we’ve already discussed, the smallest building blocks of computer
data are bits that individually represent the values O and 1. If we write down
computer data in its binary, or bit, form, we get a rather long string of zeros
and ones. Just writing out a single byte in binary form is rather lengthy; for
example, 01010101. It takes 80 bits to write out the bits that represent the
word ‘‘hexadecimal’’; a typical diskette has a total of about three million
bits recorded on it. When we want to write out the exact data in our
computers, we need a way to represent all the bits, but we also need a way
that isn’t as long and tedious as binary, which is where hexadecimal comes
in.

Hex is simply, a short hand for binary notation, where one hexa-
decimal digit represents four binary digits (bits). If we look at bits individu-

27

INSIDE THE IBM PC

ally, they have two values, 0 and 1. If we grouped them in pairs, there
would be four different possible combinations of bit values in the pair: 00 to
start with, 01, 10, and finally 11. Taking that idea two steps further, if we
lump bits into groups of four, we’d find that there are 16 possible patterns
of four bits: starting with 0000 and ending with 1111. (The math of it, of
course, is that the number of distinct combinations of the two bit values
taken four at a time is 2 to the fourth power, or 16.)

In the decimal numbering system that we use every day, we use ten
different symbols, O through 9, to represent ten digit values. We then
combine these decimal digits to make larger numbers, like 100. The same
principle applies with binary notation, where we can use the two bit sym-
bols, 0 and 1, and combine them to make larger numbers. This same idea
applies to hex, but instead of the two binary digits or the ten decimal digits,
hex uses 16 distinct hexadecimal digits to represent 16 distinct values. The
16 hex digits are 0 through 9 (which have the same numerical meaning as
our decimal digits 0-9) then come six more hex digits, to indicate the six
additional hex values. They are written using the letters A, B, C, D, E, and
F. These last six hex digits, A through F, represent the six values after the
value nine: A is ten, B is 11, and so forth, to F, which has a value of
fifteen.

Each of the 16 hex digits 0-9, A-F, represents a value of O through 15,
and it also represents a pattern of four bits. For example, the hex digit A
represents the bit pattern 1010, F represents the bits 1111. Table 3-1 shows
a list of the 16 hex digits, their decimal equivalents and the binary values,
or 4-bit patterns, that they represent.

There are two ways to view these hex digits (and the four bits that each
of them represents), and it’s important to understand the distinction. It’s a
distinction that applies to all the computer data that we look at, something
that we covered in different ways in Section 3.1 and Chapter 2. When we
consider a hex digit, say B, we might be interested in the numerical value
that it represents (which is 11) or we might be interested in the pattern bits
that it represents (1011) without it having any numerical meaning. Bear in
mind that whether we’re talking about hex, bits, or any other computer
data, the same data takes on different meanings, depending upon how we
are looking at it.

One question that might come to mind is, ‘“Why hex?”’ It’s easy to
understand that bit notation is too long and clumsy, and that something
more compact is needed to express bits several at a time. But why hex?
Why four bits at a time, when that leads us to using digits as unfamiliar as
A through F? The answer is that hex is a reasonable compromise between
what’s closest to the machine, and what’s practical for you and I to work

28

3.2 LEARNING ABOUT HEXADECIMAL

with. Since the most common unit of computer data is the byte, hex can
conveniently represent all the bits in a byte with two hex digits, each one
representing four of the byte’s eight bits. Hex fits neatly into the fundamen-
tal scheme of our computer’s data.

So far we’ve talked about individual hex digits, but we also need to
work with larger numbers expressed in hex. Particularly, later in the book,
we’ll be talking about the memory addresses used in the PC family that take
us into four-, and even five-digit hex numbers. Therefore, we need to have
a sense of the size of larger hex numbers and we need to be able to do some
arithmetic with them.

Hex arithmetic, of course, works just like decimal arithmetic, but the
value of the numbers is different. The largest decimal number is 9 (nine)
and the number after it is ten, which is written, in decimal, as 10. The same
principle applies in hex (or any other number base): the largest hex digit is
F (which has a value of 15) and the number after it is written 10, which has
a value of 16; next comes 11 (which is 17) and so on.

Two hex digits are all we need to express all the possible bit combina-
tions in a byte. With eight bits in a byte, there are two to the eighth power
different combinations, or 256 different bit patterns to a byte from
00000000 to 11111111. In hex, 00000000 is 00 and 11111111 is FF. The

29

INSIDE THE IBM PC

first four bits are represented by the first hex digit, the last four by the
second hex digit.

We can use Table 3-2 to translate between any pattern of bits and their
hex equivalents. That’s what we do when we’re just looking at hex and bits
as arbitrary data. When we want to interpret some hex digits as a number
(which we’ll be doing from time to time in this book) we need to know how
to convert between hex and decimal, and we need to know how to do
simple arithmetic in hex.

First let’s see how to evaluate a hex number. It helps to pause and
think of how we evaluate decimal numbers, say the number 123. 123 really
means 100 plus 20 plus 3. Each position over to the left has a value that’s
ten times higher than the place just to the right. The same principle works
in hex, but the multiplier is 16, not ten. So, if we interpret ‘123’ as a hex
number, it’'s 3 + 2 times 16 + 1 times 16 squared (which is 256): that
totals up to 291 in decimal. In Table 3-2 the value of hex digits is in the
first five places.

If you want to manually convert between decimal and hex, you can
use the numbers in Table 3-2 to look up the equivalents. For example, to
convert the hex number F3A into decimal, we’ll look up the value of A in
the first column (it’s decimal 10), 30 in the second column (48), and FOO in
the third column (3,840). Totaling them up, we get 3,898 as the decimal
equivalent of hex F3A.

3.3 STANDARD NUMBERS

To convert decimal into hex, we work the other way, subtracting as
we go. For example, to convert the decimal number 1,000,000 we look up
the largest entry in the hex table that’s not over our decimal number. In this
case, it’s FOO0O at the end of the last column. We subtract its decimal value
(983,040) from our starting number and continue the process until there’s
nothing left—then the series of hex numbers we subtracted out combine to
make the hex equivalent of our decimal number. In this case it is hex
F4240.

Fortunately, there are some tools that do the work of hex-decimal
conversion for us, so we don’t have to resort to this manual process. One of
them is the Sidekick program, by Borland International, which includes a
calculator that converts from hex to decimal and does arithmetic in either
form. Another is BASIC. Here are two little programs that demonstrate
BASIC’s ability to easily convert numbers between hex and decimal:

10 ' Convert hex to decimal

20 !

30 INPUT "Enter a hex number ", X$

40 PRINT "The decimal equivalent is "; VAL ("&H"+X$)
50 GOTO 30

10 ' Convert decimal to hex

20 !

30 INPUT "Enter a decimal number ", X

40 PRINT "The hex equivalent is "; HEX$ (X)
50 GOTO 30

If you ever need to do any arithmetic on hex numbers you can use
Sidekick’s calculator feature, or use BASIC’s ability both to do arithmetic
and, as illustrated in the short programs above, convert between decimal
and hex. If you’re forced to do hex arithmetic the hard way, or just want to
try your hand at it, you’ll find tables to do hex addition or subtraction and
multiplication in Appendix B. The HEXTABLE program in Appendix A
generates these tables.)

3.3 Standard Numbers

Since numbers are so important to computers, we’re going to look here
at the kinds of numbers our PCs can work with. We’re going to start this
section with the simple number formats that are part of the PC’s basic

31

INSIDE THE IBM PC

repertoire of numbers—the numbers that the PC has a native ability to work
with. Later, in the next section, we’ll look at some more exotic types of
numbers that the PC can use when we stretch its skills in a couple of ways.
But for now, we’ll just look at the kinds of numbers that come most natu-
rally to the PC.

You might be surprised to realize that the PC’s natural skills only
allow it to work with whole numbers—called integers in the terminology of
math—and with rather small numbers at that.

There are basically only two varieties of numbers that the PC has an
inherent, built-in ability to work with—integers that are one byte in size,
and integers that are two bytes, or a word, in size.

The PC, as you may already be aware, is called a 16-bit computer.
What that means in practical terms is that the fundamental design of the PC
(and of the microprocessor that provides the brain or working engine of the
PC) is structured to work with information up to 16 bits (two bytes) at a
time. All of the PC’s inherent skills at doing arithmetic can only be applied
to either single 8-bit bytes or to 16-bit (two-byte) words. With the assist-
ance of clever programs, the PC can work with larger numbers; for exam-
ple, by combining two 16-bit words into a larger 32-bit number. But this
can only be done with special software. When we’re talking about the PC’s
natural skills, we’re talking about only 8- and 16- bit arithmetic.

Just how big can 8- and 16-bit numbers be? Not very big really. As we
already know from looking at 8-bit bytes, there are only 256 distinct values
that an 8-bit byte can have—2 raised to the eighth power, which is 256. A
16-bit, two-byte word can have 2 distinct values of sixteenth power: 65,536
in all. That sets a rather small limit on the range of numbers that we can
work with using bytes and words. (If you want to explore 2-byte words or
other longer integer formats inside your computers, you need to know about
‘‘back-words’’ storage—see the How Words are Stored sidebar in Chapter
7.)

Each of these two sizes of integer can be interpreted in two ways,
which doubles the number of different numeric formats that we can have.
The two interpretations depend upon whether we want to allow for negative
numbers or not. If we don’t need to work with negative numbers, then the
entire range of values of each of these two sizes of integers can be devoted
to positive numbers. For a byte-sized integer, the range of numbers can run
from O up to 255, using all the 256 distinct bit patterns in a byte; for a
2-byte word, the range of positive integers is 0 through 65,535.

On the other hand, if we need to have negative numbers as well, half
the range of values is devoted to negatives, and we can only have numbers
half as large. In the case of bytes, the range of values is from -128 through

32

3.3 STANDARD NUMBERS

0 to + 127; for words the range is from -32,768 through O to +32,767. We
don’t get to choose the range, so we can’t get a wider range of positive
numbers by giving up some of the negative range. For more on negative
numbers, see the How Negatives are Represented sidebar. You’ll notice
that the range of negative numbers is one greater than the range of posi-
tives: there is a -128, but there isn’t a + 128; that’s just an odd byproduct of
the way negative numbers are handled.

Table 3-3 summarizes the range of numbers handled by the four inte-
ger formats.

U 0w e
768 to 0 to +32,767

As I mentioned before, the microprocessor inside our PCs can do all of
its standard arithmetic—add, subtract, multiply, and divide—on these four
integer formats, but that is the extent of all the basic calculating that the PC
can do.

As you might imagine, most programs can’t get along with just those
four simple integer formats for their numbers. For example, BASIC uses
three kinds of numbers. Only one of them, called integer in BASIC’s
terminology, is one of these four formats (it’s our signed 2-byte word
format). The other two, which BASIC calls single- and double-precision
have to be created by going beyond the PC’s ordinary skills. We discuss
this in Section 3.4.

How Negatives are Represented

Negative integers are represented inside the PC in a form known as
two’s-complement. It’s a commonly-used scheme in computers and
closely related to the borrow-and-carry tricks we were taught when
we first learned to add and subtract. It’s easiest to explain with an
example done with decimal numbers that we’ll make three digits
long; that’s analogous to the fixed length one- or two-byte binary
numbers that the PC calculates with.

In our 3-digit decimal numbers, zero is written 000 and one as 001.
If we subtract 001 from 001, we get 000. How can we subtract 001
again to get minus one? We can do it by borrowing from an

33

INSIDE THE IBM PC

imaginary 1 in the fourth place. We think of 000 (and all other
positive numbers) as having a 1 in front that can be borrowed from

like this:
(1)000 zero
— 001 subtract one
_— gives us

999 minus one

So minus one is represented as 999; minus two is 998, and so on.

The positive numbers start at 000, 001, 002 and go on up to 499.
The negatives go 999 (that’s -1), 998 (-2), and so on down to 500
which really means minus five hundred. The same trick works with
the binary numbers inside our computer.

Notice that the value of a number can depend on whether we
interpret it as signed or unsigned. As a signed number 999 means
minus one; as an unsigned number it means nine hundred and ninety
nine.

3.4 Hot Numbers

Most of our computing needs go beyond the simple integers that are
native to the PC. Whether we’re doing financial planning with a spread-
sheet program, performing engineering calculations, or just balancing our
checkbooks, we need numbers more powerful than the integers we’ve
looked at so far. Just dealing with money, the integers we’ve discussed so
far couldn’t handle anything more than $655.35, when we figure down to
the penny. So we need some hotter numbers.

There are two ways that the PC can give us a wider range of numbers,
and two ways to calculate with those numbers. Let’s look at the kinds of
numbers first, and then how those numbers can be calculated.

The first way to extend the range of numbers that our PCs can deal
with is to simply make longer integers. We’ve already seen one- and
two-byte integers. We can press on with that idea and use integers of three,
four, or more bytes. Anything is possible, but the most practical extra
length of integer is four bytes, and that gives us a much wider range of
numbers, to over plus or minus 2,000,000,000. That does a lot for us, but it
doesn’t do everything.

To handle fractional amounts, and to handle extremely long numbers,
our computers use a concept known as floating point. Floating point works

34

3.4 HOT NUMBERS

in a way similar to something you may have learned about in school called
scientific or engineering notation. In this scheme, numbers are represented
in two parts—one part represents the digits that make up the number; the
other part indicates where the decimal point is located. Since the decimal
point can be moved around freely, floating-point numbers can become
very, very large—astronomical, as they say—or very small fractions. No
matter how large or small the number becomes, it is just as accurate,
because the digits that determine the number’s accuracy, or precision, are
independent of the numbers that specify where the decimal point is.

In the BASIC programming language, the style of numbers known as
single- and double-precision are both floating-point formats. The difference
between them is that double-precision has more digits of accuracy. Other
programming languages make use of floating point, too.

Spreadsheet programs, like Lotus 1-2-3, also use floating point to
represent their numbers, because it gives them greater flexibility and
greater precision in the calculations that they perform.

These are the two ways that the PC’s number scheme can be
extended—Ilonger integers and floating point. But, as we mentioned, the
PC’s microprocessor, the PC’s ‘‘brain,”’ only has the natural ability to
work with the four simple integer formats we covered in Section 3.3. How
do we get any arithmetic done in these extended formats? There are two
ways, through software and through hardware.

Software is the most common solution. Every programming language,
including BASIC, and nearly every calculating program, including 1-2-3,
contains program routines that can do the work of performing calculations
on floating-point numbers or long integer formats. These subroutines use
the PC’s basic arithmetic and logic skills as building blocks to perform the
more complex calculations necessary to work with these other number for-
mats. This goes on at a cost, though. While the PC can perform its own
integer calculations very fast—typically in a few millionths of a second—a
floating-point subroutine takes perhaps a hundred times as long to do an
equivalent calculation, simply because the subroutine has to perform its
work using a hundred elementary steps.

For many purposes the speed of these software-based calculations is
still fast enough, but it isn’t as fast as it could be. To get more speed there
is another way, a hardware solution.

As we’ll learn more about in following chapters, the microprocessor
inside our PC has a companion designed for one task alone: fast floating-
point calculations. These companion chips are called numeric coproces-
sors. There are two of them for different models of PC: one is known as the
8087 chip, and the other is the 80287—for simplicity, most people simply

35

INSIDE THE IBM PC

call them the 87s. Most models in the PC family are designed to use an 87.
When an 87 is installed, and when a program knows how to make use of it
(which isn’t often), the speed and accuracy of floating-point calculations
can be enormously improved.

It’s worth bearing in mind that many programs just don’t do any float-
ing-point calculations. Word processing programs, for example, have no
use for floating-point numbers. These programs aren’t slowed down by
floating-point subroutines, or sped up by the presence of an 87 coprocessor.
Even programs that do perform floating point don’t all take advantage of an
87. For example, BASIC ignores any 87 that might be present; 1-2-3, on
the other hand, uses the 87 whenever it would help.

Unlike the integer formats that we discussed before, and unlike the PC
character set that we’ll explore in Chapter 4, there aren’t universal stan-
dards for what kinds of longer integers and floating-point numbers might be
used by a program. We can’t come up with a short summary of all of the
extended number formats, but we can take a look at the most common
ones.

First, let’s look at longer integers. Our programs could work with any
number of bytes to make a long integer, but one size is by far the most
common—four-byte signed integers. These numbers can range to slightly
over plus or minus two billion. The 87s are designed to work with four-byte
integers and eight-byte integers as well; they get as large as nine billion
billion. The 87s can also work with a special decimal integer format that
holds 18 decimal digits, which is also in the billion billion range. This
special decimal format that the 87s use is a unique example of a decimal
orientation; everything else that our computers do is essentially binary in
nature and not decimal.

Next, let’s look at what floating point can do for us. The two most
common sizes of floating-point numbers occupy four or eight bytes of
storage, like BASIC’s single and double precision formats. Four-byte float-
ing-point formats give us the equivalent of about six decimal digits of
accuracy, and eight-byte formats give us about 16 digits of accuracy. The
range—how large numbers can get—is in the neighborhood of 10 to the
38th power. Because there are several different ways to code a float-
ing-point number, there is some variety in the amount of precision and
range that we can get in the same general size of floating-point numbers, so
the figures that I’ve given you here are only rough ones. The 87s can also
work with a slightly larger format that occupies ten bytes; it gives about 18
digits of accuracy.

The kind of numbers that we can work with depends on the kind of
program that we are using. What we’ve described here applies to most

36

3.5 STRINGING ALONG

programming languages, but specialty programs may have their own unique
number formats. For example, it’s common for spreadsheet programs to
use their own variations on the idea of floating-point numbers. But what
we’ve talked about here gives you a clear idea of the kinds of hot numbers
that can be at our disposal when we work with our computers.

3.5 Stringing Along

Character or text data—letters of the alphabet and so forth—are very
important in our use of the computer. In fact, our computers are used more
for working with text data than with numeric data, which is ironic because
computers are first and foremost fancy calculators. But we’ve learned how
to make these fancy calculators do lots of useful work for us in manipulat-
ing written text, like the very words you are reading (which of course have
been handled by a computer from the moment they were written). It’s
important to understand some of the fundamentals of how computers handle
text data.

Text data is made up of individual characters, like the letter A. As we
saw earlier in this chapter, each letter is represented by a particular pattern
of bits and occupies a byte of storage. The ASCII coding scheme is used to
define the standard way, common to most computers, of determining which
pattern of bits represents which letter. In Chapter 4, we’ll take a more
detailed look at all of the individual characters that our PCs can work with.
What we want to talk about now is how we work with more than one
character at a time.

By themselves characters aren’t of a great deal to use, until we put
them together to form words and sentences. Similarly, inside our com-
puter’s groups of character bytes are more significant than individual bytes
by themselves. There is a technical term in computing used to describe a
bunch of characters handled as a single entity, and that term is string. A
string is a group of bytes, one right after another, that are treated as a
combined unit.

All of our computer’s programming languages, and many of the most
important kinds of software—such as spreadsheet programs like Lotus
1-2-3—work with strings of character data. Word processing programs—
such as WordStar, Volkswriter, Multimate, Microsoft Word—are primarily
designed to work with character strings. Strings are a very important part of
the computer data that we need to understand, which is why we’re devoting
this section of the book to making you aware of strings.

37

INSIDE THE IBM PC

Even though strings are important there isn’t a great deal to say about
them. But there are a few key things that you ought to know, particularly
about how they are stored and the limitations that are sometimes placed on
what sort of string data we can use.

Inside the computer’s memory and on the computer’s disks, strings are
stored in just the way common sense would have it: the character bytes are
recorded one right after another. That’s nothing special. However, what is
special about strings is that something has to tie them together. When we
discussed numerical data earlier in this chapter, every kind of data had its
own specific format that rigidly defined how big the data was, how many
bytes it occupied. Strings, however, are special because they don’t have
any fixed length—some are long, some are short. And something has to
define that length, to tie together the characters that make up a string.

As it turns out, there isn’t any one, universal way that it’s done.
Different programs use their own methods and rules to define what a string
is and what holds it together. We can’t lay out any universal rules that say
exactly how strings are defined—but we can look at some of the most
common methods, and that will give us some insight into how our pro-
grams work with strings and how the limitations on strings come about.

There are two main ways used by programs to define how big a string
is, where its end is. One is to simply keep track of the length of the string as
a number that’s recorded separately from the string (usually this
length-of-string number is placed just before the beginning of the string).
Here’s a hypothetical example:

4This2is1a6string2of5words

As you can see, each word in the example is a separate string, and the
number of character bytes in each word is recorded just before it. This is a
very common technique for dealing with strings and determining how long
they are. If you think about it, you’ll realize that this method places an
inherent limit on how big any individual string can be. The number that
represents the length of the string is recorded in some numerical format,
such as the ones we’ve discussed. The maximum number which that format
allows sets a limit on how long the string can be.

It’s very common for the length of a string to be recorded as a single
unsigned byte—which can’t be larger than 255. So many programs that
work with strings have a limit of 255 as the longest string they can work
with. (Sometimes the limit is a few less than 255, because a byte or two
may be needed for some overhead requirement.) The ordinary BASIC in

38

SOME THINGS TO TRY

our computers works this way, so strings in BASIC can’t be over 255
characters; but compiled BASIC happens to record its string lengths as
2-byte words, so the string length for compiled BASIC can be over 32,000.
Many word processing programs hold each line as a separate string and use
a 1-byte string length counter; that’s why so many of them have the limita-
tion that a line can’t be over 255 characters.

There is another way to determine the size of a string that doesn’t
place any arbitrary limit on how long a string can be. With this technique
the length of the string isn’t recorded, but instead the end of the string is
marked off with some sort of delimiter. Here’s another hypothetical exam-
ple, using asterisks as delimiters:

This*is*a*string*of*words*

The delimiter is used to mark the end of the string, but it’s not consid-
ered part of the string itself. There are two delimiters that are widely used:
one is a O-byte, a byte with all the bits off. (As you’ll see in Chapter 4, a
0-byte isn’t a bad choice of delimiter, since a 0-byte is normally never used
as an ordinary text character.) The other commonly used delimiter is a byte
with a numeric code of 13. Thirteen is the code for a carriage-return charac-
ter, which is normally used to mark the end of a line of text. Since it’s
common to treat each line of text as a separate string, it makes sense to use
the same byte code to mean both end-of-line and end-of-string. (We’ll learn
more about this when we cover text file formats in Chapter 9.)

There is one obvious disadvantage to using a special end-of-string
delimiter code—it means that the string can’t include that code value inside
the string. This may not be a major problem in most circumstances, but still
it is a disadvantage and a limitation that we need to be aware of.

Some Things to Try

1. BASIC can easily convert numbers between hex and decimal as
long as the numbers aren’t any bigger than the equivalent of four
hex digits. Try writing a program that works with larger numbers,
converting between hex and decimal.

2. Try your hand at some hex arithmetic. Add 1234 to ABCD. Sub-
tract 1A2B from A1B2. Multiply 2A by 2 and by 3.

3. Can you figure out a way to test either the accuracy or range of
numbers that a program can handle? Try writing a BASIC pro-

39

INSIDE THE IBM PC

gram that tests how large a number can become, or how precisely
a number is represented.

4. Analyze the problems inherent in the two ways of defining a
string. Think of practical situations where the limitations might
matter. Can you think of a scheme that would place no limit on
the length or contents of a string? Are there any disadvantages to
your scheme? Write a program in BASIC (or any other program-
mable software, such as 1-2-3) that finds out how long a string
can be by increasing a string character by character.

4

The PC Character Set

n Chapter 3, we took an overall look at the form data takes inside

our PCs, and what different kinds of data we can have. But we only

looked briefly at the PC’s character set. That was because there is so

much that’s interesting to know about the PC character set that
we’ve set aside this chapter to take a deeper look at these characters. We’ll
get an overview of the whole character set, see how the PC’s characters
relate to a widespread standard known as ASCII, and we’ll particularly dig
into and analyze the PC’s full set of special characters.

4.1 A Character Set Overview

Characters in the PC, as in most modern computers, occupy an 8-bit
byte, so that there can be as many as 2 to the eighth power, or 256, distinct
characters. We begin by looking at them all (see Figure 4-1).

There are two easy ways for you to see all the characters on the screen
of your own computer. One is to use the simple BASIC program called
ALL-CHAR found in Appendix A; this ALL-CHAR program was used to
create Figure 4-1. The other way is to use the popular program called
Sidekick. One of Sidekick’s many features is a quick and handy display of
the PC’s full character set. When you use ALL-CHAR, or Sidekick, you’ll
see the PC character set in exactly the way your computer’s screen shows
them, which can vary somewhat depending on the type of display screen
you have (we’ll learn more about that when we come to the chapters on the
video display). Figure 4-1 shows the characters in more-or-less their ideal
form (as printed by IBM’s Quietwriter printer) and gives you a quick and
accurate way of seeing just what each character is like for close comparison
to all the other characters.

For reference, we need another chart of the PC character set that
shows each character’s appearance together with the numeric character
codes in decimal and hex. You’ll find that in Figure 4-2. We’ll be refer-
ring to this figure a lot through the rest of this chapter. If you want to see

41

INSIDE THE IBM PC

the information from Figure 4-2 on your own computer’s screen, you can
use either the REF-CHAR program that’s listed in Appendix A or the
Sidekick program.

Figure 4-2 lists each of the 256 characters and their decimal character
codes, followed by the same code in hex (it’s the same code because the
two codes have the same numerical value, they’re just being expressed two
different ways) followed by a picture of what the character looks like. As
you’ll notice, Figures 4-1 and 4-2 are laid out in the same order, in columns
reading top to bottom, so it’ll be easy to match them up for comparison
whenever you want to.

Surprisingly, there is an awful lot to say about these characters,
because they are designed to do so many things and because some of them
take on a different quality, depending upon how they are being used. We
will discuss that in this chapter. We’ll begin with a quick overview.

If you glance at Figure 4-1, you’ll see that it begins with two columns
of very curious characters (the first 32 characters, with decimal codes O
through 31) followed by six columns of the characters we’re most familiar
with: the digits 0-9, the letters of the alphabet in upper- and lowercase, and
a lot of punctuation characters. These eight columns are the first half of the
PC’s character set, and they are called the ASCII characters, because they
follow a widespread standard that is used in most computers called
ASCII—the American Standard Code for Information Interchange.

> 0 @ P~ p ¢ E & i L 4L o =
@ « ! 1 A Q a g i & 1 # 4L £ g ¢
@ ¢ " 2 B R b r é E &6 £]Irz
v It 4§ 3 C S ¢ s a 6 u -|: n <
¢ 9 ¢ 4 DT 4d t & 6 # —EEJ
4 § $ 5 E U e u a o N tFo
¢ . & 6 F VvV £ v & 4 a { Lo
.§'7GWgwcf1911|t =
B + (8 H X h x & ¥ ¢ o °
o¢)9IYiyéor1|t ® -
@»*:szzétjﬂ]l_ Q -
o'<-+;K[k{'i¢%1|—[i6~/
@ « , < L N1 | i g 3], © n
> e L =mwimy iz i =F o
ﬂA.>N‘n~Ahs«=lﬁle-
v / 2 O _ o © A Ff » 4 = n

Figure 4-1. The full PC character set.

42

4.2 THE ORDINARY ASCII CHARACTERS

ASCII proper has only 128 characters in it, the characters with decimal
codes 0-127. Our PC character set has twice as many entries, including the
codes that go from 128 through 255. These higher codes, which make up
the other half of the PC character set, are usually called the extended ASCII
characters. Strictly speaking, only the first half, the codes 0-127, are ASCII
characters, but you’ll often find people using the term ASCII to mean just
any character or to mean the coding scheme that defines how characters are
represented in patterns of bits. There’s no harm in that, but you ought to be
aware that, depending on how it’s used, the term ASCII can have a precise
technical meaning or a broader meaning.

The ASCII half of our character set has an official meaning and definition
that ranges far beyond our PC family—it’s a universal code used by many
computers and other electronic equipment as well. The extended ASCII char-
acters, however, are another story. There is no universal convention for what
these character codes 128-255 will be used for, and these characters were
specially designed for the PC. Because of the importance and popularity of the
PC, these particular extended ASCII characters have been used not only by the
entire PC family, but have also been adopted into the character set of many
computers that are only very distant relatives of the PC.

This particular group of characters is on its way to becoming something
of an unofficial standard; but it’s only that, unofficial. Because of that, you’ll
find that there are many computers and lots of computer equipment—yparticu-
larly printers—that know nothing about our PC’s extended ASCII characters.
In fact, one of the reasons why some of the illustrations for this book have
been prepared using the IBM Quietwriter is that it is one of the few printers
that can display almost the entire PC character set; that’s something you’ll
want to keep in mind. After all, one of the main reasons why we’re poring
over the PC character set in detail is so you will know how to use this rich
collection to your full advantage—and that includes knowing that some parts
of the character set can’t be used as easily and as widely as other parts.

Now it’s time for us to dig into the details of our PC’s character set.
We’ll do it in three parts—two covering the ASCII characters (first the
most ordinary ASCII characters and then some special ASCII control char-
acters), and finally a section discussing the extended ASCII characters and
some other unique characteristics of the PC character set.

4.2 The Ordinary ASCII Characters

The ASCII character set, character codes 0-127, breaks into two very
different parts that can be readily seen by a glance at Figures 4-1 and 4-2.

43

Co~NOTUBE~EWNFO

e el
nNnHwmMhnhe— O

o
o
SoQEBOoORd e e €00

oo
= e
&

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

PV €101 1A= O A Y

4 »

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Figure 4-2. The PC character set with decimal and hex codes.

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

o~NOTULEEWNEFO

QO NV I A we e

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F

OzZXrrR"RuHIEOTOEHMUOAQOW>»®

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

N s, N X E<OHHWN-Oo

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F

O3 B RRL BTN HO AOD TP

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F O

v NG X E et f.OT

Od W4l FH.L HAISNI

194

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E

W) HD D D MO Do Y A A My £ O

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

Figure 4-2. The PC character set with decimal and hex codes (continued).

90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F

“MFEFKMmMe O arHhO0r0:OO@m B =

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

AQ
Al
A2
A3
A4
A5
A6
A7
A8
A9

AB
AC

AE
AF

- =N 1 7 e 10 1D S Sy O ey

¥ A

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

BO i

Bl
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

el

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

Q
o

Cl
c2
Cc3
C4
C5
cé6
c7
c8
C9
CA
CB
cC
CD
CE
CF

-

—_—r—t |-

==l ==l 1=

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

DC
DD
DE
DF

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

EO
El
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF

DM 8O0V ATET A MA TR

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

FO
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

0 It —— A IV I+ I

N & v e

SYALOVAVHD IIDSV AYVNIAIO dHL 'V

INSIDE THE IBM PC

The first part, which we’ll discuss separately in Section 4.3, are the first 32
characters, codes 0-31. These are called the ASCII control characters and
they are something quite different from what they appear to be in Figures
4-1 and 4-2. We’ll come back to them after we’ve talked about the more
conventional characters, codes 32-127.

If you look at the third through eighth columns of Figures 4-1 and 4-2,
you’ll see what we usually think about when we think of characters: they
are the everyday letters of the alphabet, digits, and punctuation. Although it
might seem that there’s little to discuss in these ordinary characters, there
are actually quite a few subtle details that we ought to run through, if you
really want to understand the ins and outs and tricks of these characters.

It seems all too obvious to point out that there are separate characters
for upper- and lowercase, that A isn’t the same thing as a, but there is
something here you shouldn’t miss. Whenever you’re using any program
that arranges data into alphabetical order (sorts data) or that searches for
data, this will matter, unless the program takes special pains to treat upper-
and lowercase the same (some programs do, some don’t, and some let us
choose). This means that a search for the letter a may not match the letter
A; and it means that, in alphabetical order, a comes after A and after Z as
well. We also should note that the number-digits come before the alphabet.

The next thing we need to consider are the punctuation and other
special symbols. There are lots of little points to see about these characters.
One thing to note is that they are scattered all around the digits and upper-
and lowercase letters: before, after, and in between. This means that the
punctuation characters as a group won’t sort into any one place relative to
the alphabet and digits. Some will come before, some after; sometimes
that’s important to know. There are some interesting and useful details
about these punctuation characters that you need to know.

The blank-space character has a decimal character code of 32—the
lowest of all the punctuation characters, so it appears at the beginning of
any alphabetic sort. (In the character charts in Figures 4-1 and 4-2 you’ll
see three different characters that appear to be a blank space—see the
sidebar Spaces and Nulls for more about that.) You’ll notice that besides
parentheses (), there are also two other pairs of characters that can be used
to enclose things: the brackets [] and the braces {}; people also use the
greater-than and less-than characters, (), as a way of enclosing things, like
(this). It’s good to know about all four of these embracing pairs, because
they can come in handy at times.

Let’s consider quotes. In the type styles used in a book you’ll find that
there are left and right quote marks, but ordinary typewriters don’t have
them; neither does our PC character set. Our PC set has only one dou-

46

4.2 THE ORDINARY ASCII CHARACTERS

ble-quote mark and one single-quote mark that are used on both the left and
the right hand side of a quotation. But there is also a curious character
known as a reverse-quote—it’s the one just before the lowercase a, with a
decimal character code of 96. But you shouldn’t think of it as something to
be paired with the ordinary single-quote character. It’s used to produce
foreign (that is, non-English) characters. It’s used in combination with
letters of the alphabet to form a letter with a diacritical mark. There are
several other characters that are used this way: the carat, *, code 94; the
tilde, ~, code 126; the single-quote, ’, code 39; and the comma, code 44.
This idea of combining characters only works when you can overstrike one
character on top of another—which you can do on a computer printer or on
a typewriter, but not on the computer’s display screen. To properly handle
these non-English characters of the alphabet the PC has them incorporated
into the extended ASCII characters, as you’ll see by a glance at the latter
half of the character tables. We’ll talk more about them in Section 4.4.

There are other characters that call for a brief mention. Besides the
regular slash character, /, code 47, there is a reverse slash,\, code 92. As
far as I know this has no ordinary use, but only some special uses in
computing. For example, in the BASIC programming language it indicates
whole-number division (the slash indicates regular division, which includes
a fractional result) and when working with DOS, it indicates directory paths
(which we’ll be discussing in a later chapter). Also take care not to confuse
the hyphen character, -, code 45, with the underscore character, _, code 95.
Finally, the carat character, ", code 94, is sometimes used to indicate
special ‘‘control characters’’ (which we’ll cover in Section 4.3) rather than
being an independent character in itself. This can cause confusion so when
you see a carat, check carefully to see if it indicates the carat character is
meant or these special control characters.

TECHNICAL BACKGROUND | 1 1 H H H N

Spaces and Nulls

In the character tables in Figures 4-1 and 4-2 you’ll find three or four
characters that appear to be blank. Only one of them actually is the
proper blank character—the one with character code 32. Character
codes 0 and 255 are called ‘‘nulls’’ or null characters. They aren’t
supposed to be treated as true characters at all, but as inactive
nothings. For example, if we send code 32 (the true space character)
to a computer printer, it prints a space and moves on to the next
location. But the null characters are supposed to be ignored, so that a
printer won’t move to the next location, leaving a blank space.

47

INSIDE THE IBM PC

In the proper ASCII character set, there are two nulls—codes 0 and
127. In our PC character set, code 127 is a real, visible character
with an appearance something like a little house. To substitute for the
ASCII null-127, our PC character set treats code 255 as a null.

Null characters don’t have any everyday use—they are mostly used
in communications, to mark time: transmitting nulls is a way of
keeping a line active while not actually sending any real data.

4.3 The ASCII Control Characters

The first 32 places in the ASCII character set, codes 0 through 31,
have a very special use that has nothing to do with the appearance of these
characters as they look in Figures 4-1 and 4-2. For the moment, ignore
what appears in those two illustrations, because in this section we’ll be
looking at these characters from an entirely different perspective.

When a computer ‘‘talks’’ to a printer, it needs to tell the printer what
to print and also how to print it—it has to indicate, for example, where the
ends of the lines are, and when to skip to the top of a new page. The
ordinary ASCII characters, which we discussed in Section 4.2, are the
“‘what to print’’ part of the ASCII character set. The ‘‘how to print it’” part
is the subject of this section—the ASCII control characters.

The first 32 codes in the ASCII character set are reserved to pass
special information to a printer, or to another computer through a telephone
line, and so forth. These codes aren’t used to pass information or data
itself, but to provide action commands, formatting signals, and communi-
cation control codes. There is a wide variety of different things that these
32 codes are used for, and the uses can vary in different circumstances.
We’ll cover the main items here, to give you a broad perspective on what
these characters are for.

First off, I need to tell you. that these 32 codes have special names
when they are used (as we’re discussing here) as ASCII control characters,
and not as the pretty picture characters that you see in Figures 4-1 and 4-2.
Table 4-1 gives you a summary of these codes, and the names that they
have.

Before we go into any explanations of the details of these control
characters, there are a few things about Table 4-1 that should be mentioned.
The first two columns of Table 4-1 are, of course, the numeric character
codes in decimal and in hex. The third column shows some special control
key codes that are used in connection with these characters. Each of these

48

' 4.3 THE ASCII CONTROL CHARACTERS

characters can be keyed in directly on our keyboards by simply holding
down the ““Ctrl”’ control shift key and pressing A (for code 1) or B (for
code 2) and so on. There is a conventional way of indicating these con-
trol-shift codes, by writing a carat, *, before the name of the key we press,
and that’s what is shown in the third column of this table. When we write
" A we don’t mean the carat character (") followed by the character A—

49

INSIDE THE IBM PC

we mean Control-A—the character that is keyed in on the keyboard by
holding down the control key and pressing the A key.

It’s worth remembering that this ‘‘carat notation’’ is used quite often.
In your reading you might run across “Z or " C, which we know mean
Control-Z or Control-C: two special codes that have a real meaning to the
PC, as we’ll see shortly.

In the last column of Table 4-1 is a descriptive name for each of these
32 special codes, and in the fourth column just before the description you’ll
find a two- or three-letter code, which is a standard abbreviation for the full
descriptive name of the control code character. You’ll find these short
codes sometimes used in writing about computers and communications.

Some of these ASCII control characters are very interesting and useful
to us, and others are rather obscure and technical in their use. Instead of
discussing them from first to last, let me cover them in a way that’s closer
to how important they are to us.

First let’s talk about the ones that are on our keyboard. As we men-
tioned, any of these characters can be keyed in with a Control-and-key
combination. But some of these characters actually have regular keys dedi-
cated to them so that we don’t have to use the control combination for
them. These are characters that are definitely important to our use of the
computer. There are four of them: backspace (BS, code 8), tab (HT, 9), the
Enter key or carriage return (CR, 13), and the escape key (ESC, 27).
(Don’t think that the Del key on your keyboard keys in the ASCII DEL, 16,
code: it doesn’t.)

A whole group of these control codes is used to indicate the basic
formatting of written material. These codes function as both logical format-
ting codes (which help our programs make sense out of our data) and
printer control codes (which tell our printers just what to do). The most
common ones are some we’ve already discussed, such as backspace (BS),
tab (HT), and carriage return (CR). Others are line-feed (LF, code 10),
which is used in conjunction with carriage return, form feed (FF, 12) which
skips to a new page, and vertical tab (VT, 11).

There are more characters that are of general interest and use. The bell
character (BEL, 7) sounds a warning bell or beep. If we send this character
to a printer or to our computer’s display screen, we’ll get an audible signal
as a result. The Control-C character (ETX, 3) is also known as the break
character, and keying Control-C on the keyboard usually has the same
effect as pressing the BREAK key. The Control-S and Control-Q characters
(DC3, 19 and DC1, 17) can often be used as a pause command and a restart
command, particularly when we’re working with a communications service
(such as The Source, CompuServe, or MCI Mail)—it can be handy to know

50

4.3 THE ASCII CONTROL CHARACTERS

about them. The Control-S ‘‘pause’’ command is not, however, the same as
the PAUSE key on our computer (which we’ll learn more about in Chapter
14). (If you don’t find the PAUSE key on your keyboard, that’s because it’s
not marked, but it’s there; it’s Control-NumLock, just as BREAK is Con-
trol-ScrollLock.) The PAUSE key actually stops our computer, while this
Control-S ‘‘pause’’ command just asks the program we’re working with to
pause (but our PC computer keeps right on working).

Then there is the Control-Z key combination (SUB, 26). This control
code is used to mark the end of text files stored on our computer’s disks.
We’ll learn more about this code, and the carriage return and line feed
codes in Chapter 9, when we discuss file formats.

Those are the ASCII control characters that are of the widest interest.
We’ll finish this section with an overview of some of the more techni-
cally-oriented control characters. You can skip over the following
paragraphs if you’re not interested.

TECHNICAL BACKGROUND | 1 1 H I I I

The rest of the ASCII control characters are used for a variety of
purposes that assist in communications, data formatting, and the control of
printers (and other devices). We can’t really cover this topic exhaustively
here, but we can give you an idea of what some of the details are like.

Codes 1-4 (SOH, STX, ETX, EOT) are used in communications trans-
missions to indicate the boundaries of header (descriptive) information and
actual text data and the end of an entire transmission. Those codes are
oriented particularly to text data. Other codes, such as 28-31 (FS, GS, RS,
US) are used as punctuation marks in other forms of data, to mark the
boundaries of files—*‘groups,’’ records, and ‘‘units’’—which take on dif-
ferent meanings depending upon the type of data that is being transmitted.

Other codes are used for the control of communications—for example,
acknowledge (ACK, 6) and negative-acknowledge (NAK, 21) are used to
indicate if data is passing successfully. ENQ, SYN, ETB, CAN, and other
codes are also used in the control of communications (which is much too
deep and specialized a subject for us to get into here). At least you might
want to know what these control codes are used for in general.

A number of our ASCII control codes are used to control printers and
other devices. Although the exact control codes vary widely from printer to
printer, there are some commonly used codes which are worth mentioning.
The shift-out and shift-in codes (SO, 14 and SI, 15) are commonly used to
instruct a printer to print double-wide or compressed-width characters. The

51

INSIDE THE IBM PC

four device control codes, DC1-4, 17-20) are set aside for uses such as
controlling printers, and many printers use them for such commands as
turning off double-width printing.

However, because most printers have more formatting and control
commands than there are ASCII control characters available, it is normal
for the escape character (ESC, 27) to be used as a catch-all command
prefix. When a printer receives an escape character from our computers, it
knows that a special command follows, and instead of printing the next few
characters, the printer interprets them as a control command; for example, a
command to set the location of the tab stops, or a command to turn on
underscoring of all the characters that follow.

If you want to learn more about these control characters, see Commu-
nications and Networking with the IBM PC (Brady Communications,
1983). For details of printer control codes, you’ll need to turn to the refer-
ence manual that comes with the printer you are interested in.

4.4 A Cast of Odd Characters

Now it’s time for us to look at all of the PC’s special characters—
that’s the entire second half of the character set: the extended ASCII charac-
ters with character codes 128 through 255, plus the PC-specific character
pictures for the first 32 ASCII characters. We’ll be discussing them in
groups, pausing to make comments and point out interesting highlights as
they appear.

Before we proceed, I need to discuss again a major source of confu-
sion, the first 32 characters, codes 0-31. There are two completely different
ways of viewing these characters. We discussed one way in Section 4.3—
interpreting them as ASCII control characters. When these characters are
interpreted as ASCII control characters, they do not have any appearance.
There is no picture of them—because they are not characters that look like
something (the way an A looks like an A), they are basically commands.
That’s the interpretation of these characters which we discussed in Section
4.3. In this section, we’ll be looking at the other interpretation of these
character codes: as characters, like any other, that have an appearance (an
appearance shown in Figures 4-1 and 4-2).

What determines whether the same character code is interpreted as an
ASCII control command or as one of these visible characters? Basically it all
depends on how the code is used. In most circumstances these codes are treated

52

4.4 A CAST OF ODD CHARACTERS

as ASCII control characters. But if we manage—by one means or another—to
get them to appear on our PC’s display screen, then they take on their other
interpretation, which is as part of the PC’s very special character set.

If you look at the pictures of the first 32 characters (in Figures 4-1 and
4-2) you’ll see that they form a fascinating hodge-podge of graphic charac-
ters that can be used for a variety of purposes, none of them really essen-
tial. Since the use of these character codes is relatively restricted (they are
usually interpreted as control characters, and so won’t be shown as we see
them in Figure 4-1), IBM decided to put the most important special charac-
ters into the extended ASCII area, and use this section of characters for
some of the more amusing and dispensable characters.

Nevertheless, you will find some worthwhile and useful characters
here, such as the card-suit group (codes 3-6), the paragraph and section
marks (codes 20 and 21), the arrow group (16-31) and the ‘‘have a nice
day’’ group (1 and 2). There are real uses for these characters, but they are
mostly frivolous. It’s nice that something as serious as the IBM Personal
Computer family has a frivolous element to it.

When we move on to the extended ASCII characters, codes 128-255,
we find more serious special characters. They are organized into three main
groups: the foreign characters, the drawing characters, and the scientific
characters.

The foreign characters use codes 128 through 175, and they include
essentially everything that is needed to accommodate all of the major Euro-
pean languages other than English. (ASCII, as the American Standard Code, is
oriented to the needs of the English language and American punctuation
symbols.)

There are three main subparts to this foreign character group. One part,
using codes 128-154 and 160-167, provides the special alphabetic characters
(with diacritical marks) that are used in various European languages. We
mentioned earlier that the regular ASCII character set contains most (but not
all) of the diacritical marks needed for European languages. They can only be
used, as on a printer, when you can backspace and overstrike them onto letters
of the alphabet. That doesn’t work on the PC’s display screen. These Euro-
pean characters solve that problem in an attractive way.

The second part of the European set provides currency symbols: the
cent sign (code 155), the pound sign (156), the Japanese Yen (157), the
Spanish peseta (158), and the franc (159). (The dollar sign (36) is part of
the regular ASCII set.)

The third part of the European set provides some special punctuation:
Spanish inverted question marks and exclamation point (codes 168 and
173) and French-style quotation marks (codes 174 and 175). These French

53

INSIDE THE IBM PC

quotes are worth noting, for they can be used for many graphic purposes as
well as for their intended use.

Buried among the European characters are four symbols that have
general use: the % and % symbols (codes 171 and 172) and two angle marks
(169 and 170). Look them up in case you might have any use for them.

The next major section of the extended ASCII characters are the draw-
ing or graphics characters. These are characters that are designed to make it
possible for our programs to produce drawings just using the PC’s character
set. There are three subgroups of drawing characters.

The most interesting and most widely-used part of the drawing characters
are what I call the box-drawing characters. These characters allow us to draw
precise rectangular outlines—boxes—on the computer’s display screen. These
box-drawing characters are sophisticated enough to allow us to draw vertical
and horizontal dividing lines within an outline, and they allow us to draw with
either single or double lines. There are actually four sets of characters for box
drawing: a set for double lines, another for single lines, and then two mixed
sets, for double-horizontal single-vertical lines, and vice versa. Figure 4-3
illustrates all four sets and shows the character codes that are used as well. If
you want to see the boxes in action on the screen of your computer, the
program called BOXES, listed in Appendix A, reproduces Figure 4-3.

Practically every important and impressive program for the PC makes
heavy use of these box-drawing characters, because they look so good on
the computer’s display screen. That’s why I’ve taken the trouble to produce
Figure 4-3 and the program that draws it, to make it as easy as possible to
look up the codes for these box-drawing characters and use them in your
own work.

The next group of drawing characters is used to provide shaded areas
of varying degrees of ‘‘solidness.’” Code 176 is % dense, filling the entire
character space (so that two next to each other blend together); code 177 is
¥ dense; code 178 is % dense; and code 219 is completely solid. Together
with the blank character, they provide a range of four or five ‘‘shades of
grey’’ that can be used either to fill an area on the screen or to produce
bar-charts of distinctly different appearance.

The final group of drawing characters consists of codes 220-223. Each
of them is half of the all-solid character (219) that we just mentioned. One
is the top half, another the bottom, the right, and the left. They can be used
to draw solid, filled-in shapes that are twice as fine-grained as could be
drawn with the all-solid character alone. For example, they can be used to
make bar graphs that are detailed to half a character length instead of full
character size.

54

All Double Line:

Double-Vertical:

All Double Line:

fF = i
201 205 203 205 187
Il | Il

186 186 186
L = i = d

r - m
204 205 206 205 185

l I I
186 186 186
t = & = 4
200 205 202 205 188

Double-Vertical:

) - w L]
214 196 210 196 183

186 186 186
t - & - |
199 196 215 196 182
Il [l
186 186 186
i - i - i

211 196 208 196 189

Figure 4-3. The box-drawing characters.

4.4 A CAST OF ODD CHARACTERS

All Single Line:

Double-Horizontal:

All Single Line:
r - T

218 196 194

I

179 179
Eo- ot
195 196 197
179 179

L - 1
192 196 193

Double-Horizontal:

F = 7
213 205 209

179 179

= %
198 205 216

I
179 179
k = 4

212 205 207

—_———————

196

196

196

lgl
179
180
179

217

134
179
181
179

190

55

INSIDE THE IBM PC

There are incredibly many amazing drawings that can be produced on
the screen of the PC using just the PC’s standard characters—including all
the drawing characters that I’ve mentioned and also using some of the
regular characters as well (for example, using the lowercase o for the
wheels of a train). With some imagination you can do wonders this way.

The final part of the PC’s extended ASCII special character set con-
sists of the scientific character group, in codes 224-254. These include
Greek letters commonly used in math and science, the infinity knot (code
236), various special mathematical symbols, including two (244 and 245)
which, when stacked together, form a large integral sign. There is even a
square and square-root symbol (253 and 251). While these symbols don’t
cover everything that might be needed for mathematics, science, and engi-
neering, they do take care of some of the greatest needs.

Some Things to Try

1. Experiment to find out how your computer’s screen and printer
respond to the 32 ASCII control characters. Write a program in
BASIC, or use any other handy means, to send these characters
one-by-one to the computer’s screen and printer. (Hint: if you
precede and follow each control character by an X, you can get a
clearer idea of what the response is to each control character.)

2. Do your computer’s printer and display screen respond differently
to the same control characters? Try to explain why.

3. Look at the BASIC programs called ALL-CHAR and REF-CHAR
in Appendix A that generate Figures 4-1 and 4-2 on your com-
puter’s screen. Find how they write the characters onto the screen.
Why don’t they use the ordinary PRINT command?

4. If a program sorts data treating upper- and lowercase letters alike
(which is often what we want) it will either treat both as uppercase
or both as lowercase. Does it matter which way it’s done? What
effect does that have on punctuation?

5. The design of the PC’s drawing characters was limited by the
number of character codes available. Suppose there were another
50 or more codes available. What sort of additional drawing capa-
bilities might have been added? Try to produce your own exten-
sions to the PC’s set of drawing characters.

56

5

Hardware:
The Parts of the PCs

t’s time to start looking at the guts of the PC family, the hardware

parts that make up our computers. We’ll be looking at the PC’s

hardware from three angles: first we’ll go through a basic break-

down of how the PC is organized into mechanical and electrical
modules, each a major component of our PC. Next, we’ll look at some of
those components to see how they present us with options to assemble
different kinds of PCs. Finally, on a more technical level, we’ll look at the
specific circuit chips that make the PC work.

5.1 The Breakdown

When we look at our PCs, we see three physical parts. First, there is
the main box, called the system unit, that holds most of the computer. In
front of it is the keyboard that we type on. And finally, there’s the display
screen, usually perched on top of the system unit. That’s what the PC looks
like from the outside. But when we dig inside the PC, we see that it’s built
around a modular design, that breaks the computer down into electronic
components. You can see a logical diagram of these components in Figure
5-1.

The dotted line in Figure 5-1 represents the case that encloses the PC’s
system unit, and you’ll see that just about everything is inside it. For
portable members of the PC family, such as the Compaq and the Portable
PC, the system unit also embraces the display screen; that only changes a
detail of how the computer is physically built, but it doesn’t change any-
thing fundamental in the design.

To learn the basics of the design of the PC and how the parts fit
together, we’re going to talk our way through Figure 5-1. To help make
things more concrete, we’ll be describing where each of the components
that we talk about is physically located, which is the same for most of the

57

INSIDE THE IBM PC

main models of the PC family. While the physical layout may vary (partic-
ularly for some of the more remote relatives of the family), the logical
organization, and the function of each of the components that we talk about
is the same for every member of the PC family. You can also match the
parts we’ll be discussing with the actual PC shown in Figure 5-2. Better
yet, if you take the cover off a PC’s system unit, you can follow along by
matching what we discuss with your computer’s own parts.

At the right rear of the system unit is the power supply. The power
supply uses alternating current (AC) and converts it into the direct current
(DC) voltages that the computer’s parts need. The power unit supplies four
different DC voltages: + 12 volts, -12 volts, +5, and -5 volts. Besides
converting the electricity from high-voltage alternating current to
low-voltage direct current, the power supply also grooms the power,
smoothing out unevenness in the electricity. The capacity of the power
supply sets a limit on how many options can be installed in the computer.
The original PC model supplied about 65 watts of power, not really a
generous amount. Later models have more, for example, the XT provides
about 130 watts, and the AT about 200 watts of power.

Printer
Memory
r > 1 Modem
= £
' 2(g|8| other |8|x I Video
I [€|l5]|8| options |2 & |)
EE = > | Disk
| TTT T T T TTT
| Option Slots |
| Power |
System
| Board |
Disks
| |
Keyboard

Figure 5-1. Components of the PC.

58

5.1 THE BREAKDOWN

The first and primary part of a PC is the system board. This is a large
printed circuit board that holds most of the main electronic parts, the key
silicon chips that make the PC go. These include the computer’s micropro-
cessor and also the supporting chips that the microprocessor needs to help it
perform its tasks, such as the ‘‘clock’’ chip that acts as a metronome setting
the pace of work for the whole computer. Also on the system board is the
computer’s basic complement of working memory and the special read-only
memory chips that hold the computer’s complement of built-in programs.
The system board is also sometimes called the mother board—you’ll find
both terms used.

The system board is the largest single electronic component of the
whole computer and by far the largest of all the printed circuit boards in the
machine. It fills practically the whole bottom of the system unit box. The
space above the system board is where all the other components inside the
system unit are placed.

If you pick up a PC system unit, you’ll discover that it’s heaviest at the
right rear corner, where the power supply is. That’s because the power
supply includes a heavy transformer, which is used to lower the voltage
level. In the PCjr, the transformer part of the power supply is in a separate

Figure 5-2. Inside the system unit.

59

INSIDE THE IBM PC

external case; this reduces the weight of the jr’s system unit and ensures
that there’s only low voltage inside it.

Besides supplying converted power to the rest of the computer’s com-
ponents, the power supply also provides an external power socket that we
can plug a display screen into, and it contains a fan that provides a cooling
air flow for all the parts inside the system unit.

At the right front of the system unit are the disk drives, nestled next to
the power supply. Different members of the PC family feature different
sizes and types of disk storage drives, as we’ll see in Section 5.2 where we
discuss various options in the PC. Part of the reason why the disk drives are
placed here, in the right front corner, is to provide a short, easy connection
to the power supply. The disk drives are the only mechanical part inside the
system unit. They use more power than most of the electronic parts so they
have their own direct connections to the power supply. All of the other
components inside the system unit get their power indirectly from the
power supply, passed through the system board.

The power supply and the disk drives take up the righthand side of the
computer. The lefthand side, over the system board, is set aside for a
number of optional parts known as option boards. These plug into a row of
sockets at the left rear of the system board. The sockets are called option
slots, or bus connectors, and they represent one of the most important
things about the PC, its open design.

The designers of the PC had to allow a way to connect various optional
parts such as printers, telephone modems, and so forth. They could have
made special-purpose connections for each option, but if they had, they
would have reduced the flexibility of the PC and restricted the variety of
things that we can add to our PCs. That would have made the PC something
of a closed system, with only predefined possibilities. Instead, the connec-
tions inside the PC—like many aspects of the PC’s overall design—are
‘‘open,’’ meaning that their use isn’t defined and limited in advance. What
makes this possible is an engineering concept known as a bus, and it’s
important enough to discuss here.

The various silicon chips and other parts of the computer have to be
connected to one another so that they can pass signals back and forth, or
“‘talk’’ to each other. If the connections are made with individual wires, going
from part to part as needed, then only those parts that have been wired to each
other can communicate. There is another way to make these connections, that
allows any part—particularly new parts that are added to the computer—to talk
to any other part. This is done by setting up a common communication chan-
nel, a set of wires that act as a common carrier for signals passing from any
part to any other. It’s called a bus since all the signals ride on it.

60

5.1 THE BREAKDOWN

The sockets at the back of the PC’s system board are connected to all
the lines of the PC’s bus, so that anything we plug into these option slots
can talk to every part of the PC that uses the bus, including the memory and
the microprocessor. These option slots, or bus connectors, give us a way to
plug in optional, additional equipment freely. This allows us to plug in
practically any combination of equipment we want, plugging them in wher-
ever we want. (You need to know that, for obscure technical reasons, some
option boards work best in particular slots; in theory, all slots are equally
good connections to the bus.) For some technical information on the bus,
see the sidebar What's in a Bus.

TECHNICAL BACKGROUND | |1 1 H H § I

What’s in a Bus

The bus used by the PC has a total of 62 separate lines, or wires, to
it. They are identified by the codes A1 through A31 and B1 through
B31; the numbering scheme corresponds to the physical layout of the
lines on the option boards: the A side is on the right, the B on left,
with the numbers running from back to front.

There is quite a variety of signals that are passed in all these lines.
Five of them are used to pass the four different power voltages, with
one voltage duplicated. Another three are used as ground lines to be
used along with the power lines.

Eight of the lines are used to pass the eight bits of data in a byte, so
that the PC bus can transfer data a byte at a time. Twenty of the
lines are used for addressing, to indicate what part of the computer is
being talked to. The addressing is used two ways: one is as a
memory address and the other is as an I/O port address (which we’ll
discuss in Chapter 6). Whichever mode is being used, the address is
signaled on these lines, while data passes on the eight data lines.

The remaining lines of the PC bus are used for a variety of control
purposes. One indicates whether the bus is busy or free for use.
Another set of lines handles interrupt requests, which are basically
hardware signals indicating that one part of the computer or another
needs attention. A pair of these interrupt lines, for example, are set
aside to indicate activity on the first and second serial ports, known
as COM1 and COM2.

The AT bus uses the standard PC bus and adds another 36 lines. The
physical and electrical layout of the AT bus is designed to be
compatible with the PC bus, so that the AT-class of machines can
use as many PC option boards as possible. The 36 new lines are
numbered C1 through C18 and D1 through D18, similar to the PC

61

INSIDE THE IBM PC

bus numbers. These extra lines provide more of what we’ve already
seen: eight more data lines (since the AT has a 16-bit data path, over
the PC’s 8-bit data path), eight more address lines to extend the
range of addressing, and five more interrupt request lines.

As you might imagine, there are many more technical details of the
buses than we’ve covered here, but we’ve seen the essential parts.

Among the various models of PC there are some differences in the
number and size of the slots and also the type of bus. There are actually
three different buses used in the PC family. The main, or PC, bus is the bus
used in the original PC, the XT, the Compaq, and most other models. The
AT bus is an extension of the PC bus; it contains exactly the same connec-
tion lines as the PC bus plus some additional ones that are needed for the
AT’s 286 microprocessor. As an extension, the AT bus is a ‘‘superset’’ of
the PC bus, and it can accommodate most option boards that were designed
for the PC bus.

The third bus is peculiar to the PCjr. It’s equivalent to the PC bus,
with the addition of some jr-specific features such as a sound channel. The
physical shape of the jr bus is different, and so is its location: the jr bus
connection is out the right side of the system unit, instead of inside as it is
for other PC models.

Option boards for the PC plug into the option bus connector slots and
extend forward over the system board. The amount of space available
inside the system unit determines how many slots there can be and how
long each one is. The original PC had five slots, all the standard full-length
(about 13 inches, 33 cm). The XT model increased the number of slots to
eight, partly by squeezing them more closely together, and partly by tuck-
ing another slot next to the power supply. Because the disk drive sticks out
in the way of this slot, only half-length short option cards can be fitted into
this slot space. Some other models, such as the Portable PC, also have
some slots that are too short to accommodate a full-length option card.

The next thing we come to in our logical diagram of the PC are the
option boards, which we’ll cover in Section 5.2.

Before we look at the variety of options that can be installed in our
computers, I want to say one more thing about our diagram in Figure 5-1 to
help you have a concrete sense of how a PC is constructed. The diagram in
Figure 5-1 is a logical schematic that portrays in a block diagram the main
parts of a PC; it isn’t a true picture of what a PC is physically like. But I did
draw this diagram so that it’s not too much different from the actual layout

62

5.2 OPTIONS AND ADAPTERS

of a PC. If you compare the diagram in Figure 5-1 with Figure 5-2, you’ll
easily see the correspondence between the logical parts of a PC and the
actual physical form of a PC.

5.2 Options and Adapters

The option and adapter boards that can be plugged into the option slots
in the PC allow us to create a wide variety of differently configured PCs.
They give us great flexibility in creating just the kind of PC that we need.
In this section we’ll cover both the various option boards that we can use in
the PC and also other optional equipment that goes along with them, such
as different types of disk drives and display screens.

When we’re talking about the option boards that are plugged into the
expansion slots, it sounds as though we’re only talking about extra features
that we might or might not install in our PCs. That creates a false impres-
sion. Actually there are two standard option boards that normally are
plugged into every PC: a disk drive adapter and a display screen adapter.
Except under usual circumstances every PC has both of those. The disk
drive adapter and the display screen adapter are key parts of a PC, and
you’ll find them both inside your PC.

Let’s consider them separately, starting with the display adapter. The
display adapter provides all the control circuitry necessary to convert the
computer’s commands to ‘‘show this’’ as a visible picture on the display
screen. In essence the display adapter acts as a translator, converting com-
puter-signals into video-signals.

The display adapter has two key components to it: one is a special
silicon chip called a video controller, which has the special command skills
needed to regulate a display screen. The other component is memory. As
we’ll see in more detail in later chapters, the information that appears on
our display screens needs to be recorded in memory that’s set aside just for
that purpose. Although this memory operates like the computer’s main
working memory, the amount (and addressing) of the memory depends on
the type of display adapter, so the display memory is made an integral part
of the adapter.

There are many kinds of display adapters that can be used with the PC
family. We’ll summarize the five main ones, and then we’ll leave more
detail for later chapters that are devoted to video information.

The two dominant video adapters are the two that were introduced
with the original PC: the monochrome adapter and the color-graphics
adapter (CGA). The monochrome adapter is the most popular, even though

63

INSIDE THE IBM PC

it has the most limited capabilities. It can only show text characters (the full
PC character set we covered in Chapter 4) and only in one color (although it
provides some variety in how those characters are shown: it can display
bright or dim characters, underlined, or in reverse image). The mono-
chrome adapter has been the most popular because it creates much more
legible characters on the screen than the color-graphics adapter. There is
only one choice of display screen for the monochrome adapter, the mono-
chrome display that was specially designed for use with the monochrome
adapter.

The color graphics adapter is the second of the original two display
adapters. It is designed to show both text characters and pictures (graphics)
drawn from a series of fine dots. The color graphics adapter is able to show
as many as 16 colors and it has several display modes (which we’ll cover in
later chapters) that provide a variety of combinations of color and screen
resolution (which is how finely or crudely the picture is drawn). Although
the CGA has a wider variety of skills than the monochrome adapter, it can’t
show ordinary text characters as clearly as the monochrome. The CGA can
work with quite a few different display screens, including ordinary TV sets.
Usually it’s connected to a special-purpose color computer display known
as an RGB monitor.

The portable versions of the PC have built-in display screens, so we
don’t have a choice of display adapters or screens for them. The IBM
Portable PC comes with the color graphics adapter, and a single-color
graphics screen. The Compaq comes with a similar single-color graphics
screen, but its display adapter can simulate both the CGA and the mono-
chrome adapter, giving it most of the best of both worlds.

After the original two video adapters, others were developed that pro-
vided better features, particularly higher resolution. The most popular one,
by far, is the Hercules Graphics Adapter, made by Hercules Computer
Technologies; it’s popularly called ‘‘the Herc card.”” The Herc card con-
nects only to a monochrome display screen, and it provides both the
high-quality monochrome text image, and also a very high-resolution
one-color graphics mode. The result is similar to what the Compaq pro-
vides, but with better quality graphics.

The other two display adapters that we need to mention are two
advanced ones from IBM. The first is called the Enhanced Graphics
Adapter (EGA for short). This is a do-anything board, which can be con-
nected to a monochrome display, an RGB color display, or a special
Enhanced Color Display (ECD). The EGA can act as either a monochrome
adapter, or simulate the color graphics adapter, or it can perform its own
special magic, which includes monochrome graphics (similar to the Herc

64

5.2 OPTIONS AND ADAPTERS

card) and 64-color high-resolution text and graphics when it’s used with the
ECD. The other special display adapter is the high quality and very high
priced Professional Graphics Adapter, which connects to an equally pricey
Professional Graphics Display; this combination is intended for spe-
cial-purpose graphics work that needs very high resolution and hundreds of
colors.

That’s the situation with the PC family’s display adapters, which are
the most complicated part of the options. The next standard part, which is
also complex, is the disk drive adapter.

Disk drive adapters provide the same kind of service for disk drives
that display adapters do for the display screen—they provide a control
service, translating between the worlds of the disk drives and the rest of the
computer. Like the display adapters, the complex circuitry in the disk
adapter is based around one special chip, a special-purpose disk controller
chip. Unlike the display adapters, the disk adapter does not have or need
any special memory built into it.

There are two main types of disk drives—floppy disks and hard
disks—and there are three kinds of drive adapters for them: adapters that
handle one type or the other, and adapters that handle both. Unlike the
display adapters, there’s not much of interest to discuss about the disk
adapters—but there are interesting things to know about the varieties of
disk drives.

There are many, many kinds of disk drives. The best way to consider
them is to divide them into simple categories. First, there are diskette drives
that use the most common and standard 5%-inch flexible (‘‘floppy’’) disk-
ettes. (There are other sizes of floppies, larger and smaller, but they are
rarely used with our PC family.) These are the standard diskette drives that
nearly every member of the PC family includes. Even for these common
drives there are two varieties: the now-obsolete single-sided drives (which
only record on one side of a diskette) and double-sided drives. Next, there
are high-capacity diskette drives, introduced with the AT, which can work
with standard diskettes or special high-capacity (hi-cap) diskettes that hold
over three times as much data. The final category of diskettes are 3%-inch
micro diskettes; these are smaller and have more capacity than regular
diskettes, and they come in a rigid (non-floppy) case, that protects them
better.

The storage capacity of diskettes ranges from a low of 160K for sin-
gle-sided diskettes to 1,200K, for high-capacity diskettes.

The next major type of disk is a hard disk, called a fixed disk by IBM.
Hard disks have rigid, nonflexible magnetic platters, and they are able to
store much more data and work much faster than a diskette. Unlike floppy

65

INSIDE THE IBM PC

diskettes, which can be taken in and out of their diskette drives, hard disks
are permanently installed, which is why IBM calls them ‘‘fixed’’ disks.
Hard disks have a capacity that ranges from a low of 5 or 10 megabytes up
to hundreds of megabytes. The most common sizes are 10, 20, and 32
megabytes. The XT features a 10-meg disk, and the AT a 20-meg disk.

There is also a hybrid type of disk that you ought to know about,
called a disk cartridge. This is a disk that can be removed like a floppy
diskette, but it has most of the speed and capacity of a hard disk.

All these kinds of disks are so important to understanding and using
our computers that we’ll be devoting several chapters to them, digging into
all their fascinating details.

The display and disk adapters that we’ve covered so far are only the
beginning of the options that can be attached to our PCs. Now we’ll start
looking at the other main kinds of option boards.

One important kind is memory boards. While the computer’s system
board holds the computer’s basic complement of memory, it doesn’t hold
all the memory that the computer can use. The amount of memory that can
be placed on the system board varies from model to model—it might be as
little as 64K or as much as 512K. Additional memory is added on with
memory expansion boards. Most PCs will have a memory expansion board
in them.

The next type of option boards are a pair called parallel and serial
ports. A parallel port is designed specifically to work with a printer. A
serial port is normally used to connect to either a telephone line (through a
modem) or to a printer. Most computer printers are set up either to be
connected to a serial port or to a parallel port. The parallel port is special-
ized for controlling a printer, but a serial port is more generalized and it can
be used for a variety of purposes (though printers and telephones are the
most common things to connect to it).

The options we’ve seen so far are the most common and the most
important types of option boards. But there are many others that can be
used as well. Among them are light pens, game adapters (which work with
joystick controls for video games), mice (which are small hand controls
used to provide a precise way of pointing on the display screen), and
modems. Modems deserve a special mention.

For our computers to work with most devices (disks, printers, display
screens), only one kind of translating circuit is needed. To connect a com-
puter to a telephone, we need two; one is a serial port (which we’ve already
mentioned) and the other is a modem. The job of a modem is to translate
computer signals into telephone signals. Our computers can use an external
modem connected to a serial port adapter card, or they can have an internal

66

5.3 KEY CHIPS

modem. An internal modem—such as the popular Hayes 1200B modem—
combines a serial port and a modem translator into a single option board
that can be plugged right into one of the computer’s option slots.

The final kind of option board we need to mention is a kind that’s
suggested by the internal modem (which really combines a serial port and a
modem), and that’s a multi-function board. It’s quite efficient to combine
several option features into a single board; that’s quite efficient—it uses one
of the option slots, and typically it’s much cheaper than separate sin-
gle-purpose boards. There are many kinds of multi-function boards. Some
combine a display adapter with a single parallel port; others provide several
ports, serial and parallel. The most popular kind, though, are what I call
kitchen-sink boards: they provide memory, serial ports, parallel ports, per-
manent clocks, game adapters, and perhaps even a comb and a shoe-shine
rag.

This quick overview of the options that can be installed in a PC’s bus
connector slots should give you some idea of the range of possibilities that a
PC can provide with the right equipment installed. In later chapters we’ll
cover the many features of the PC so we’ll get a better understanding of
how each of these optional parts works, and what they can do for us.
Before we continue, we’ll finish this discussion of the PC’s hardware parts
with some technical discussion of the chips that are the key working parts
of the system board (and some of the option boards).

TECHNICAL BACKGROUND | 1 1 H B I I

5.3 Key Chips

If you’re interested in the details of electronic circuit design, or if
you’re just hungry for more of the fascinating details about the inner work-
ings of the PC, you’ll want to know about some of the key chips used in the
design of the PC family.

One of the first things that you need to know is that there are very few
custom chips in the PC: that was one of the biggest surprises that electron-
ics experts and microcomputer buffs discovered when IBM first unveiled
the original PC. Essentially, the entire design of the PC was accomplished
using industry-standard circuit chips. Not just the microprocessor *‘brain’’
in the PC, but the entire PC was made from readily-available chips that had
been used in other computer designs. That was quite a radical change for an
IBM product. IBM usually goes its own way in the internal design of its
computers. But the PC was a very different product for IBM, a product that

67

INSIDE THE IBM PC

ended up changing many things about the way IBM did business. A full
discussion of that is a story for another time, but one aspect of it is a key
part of our story here: all the parts that we discuss here are microcomputer
parts that are familiar to circuit designers everywhere.

We’ll concentrate on the two central models of the PC family, the
original PC, the father of the PC wing of the family, and the original AT,
the first of the AT-series. We’ll begin with the main chips on the system
boards of these two machines, which are outlined in Figures 5-3 and 5-4.

The primary chip is the microprocessor itself, which is an Intel 8088 in
the PC (and the XT, the Portable PC, the Compaq and Compaq-Plus, and
nearly all others in the PC branch of the family), and an Intel 80286 in the
AT (and all the other members of the AT-branch). Other microprocessors
are used in other family members: the 8086, the 80188, and the 80186.

Nestled next to the microprocessor is a socket space for an 87 chip, the
numerical coprocessor, or Numeric Data Processor (NDP), with its special
abilities to perform very fast and extra-accurate floating-point calculations.
Relatively few PCs have the numeric coprocessor installed, but almost all
members of the family have a socket to accommodate them.

The first pair of chips we’re interested in has to do with the internal
timing operations of the computer. One of them is called the clock genera-
tor, and it’s primarily used to create the metronome beat that drives the
basic operating cycle of the computer. In a PC the ID number of this chip is
the 8284; in an AT it’s the 88284. In either case, this chip provides the
timing signal used by the rest of the computer to set the fundamental work-
ing pace. The clock generator chip uses a quartz crystal, like those in
‘“‘quartz’’ watches, as the accurate basis for its timing. Our clock generator
subdivides the crystal’s ultra-fast beat into the fast beat needed by the
computer, and puts it out in a form that other parts of the circuitry can use.

Closely related to the clock generator is the programmable timer chip,
identified by the number 8253. The programmable timer is able to produce
other timing signals that occur every so many clock cycles. The rate can be
changed, which is what makes this chip ‘‘programmable.’’ If the com-
puter’s main clock runs at six million beats a second (which is the AT’s
actual clock rate), and we want something else to happen at six thousand
times a second, we can program the timer chip with a count of 1000. This
means that every thousand clock cycles, the programmable timer will put
out a signal that will turn out to be six million divided by a thousand, or six
thousand times a second. This facility of the timer chip can be used to
produce regular timing signals for many purposes, including generating
sounds on the speaker, as we’ll see in a later chapter.

68

5.3 KEY CHIPS

L
T
O
[]

UL
0 O

0 ooooo ol
1 DUUDDUUU‘:DDDDDDU
0 00000000:000000o0
0 O00ooooDioouboob
0 JoooOooD:oepoood

Figure 5-3. The PC system board.

We’ve mentioned how information signals flow among parts of the PC
through a bus, and we looked at what the main bus channels are. To act as a
traffic cop on the bus, to regulate the flow of information, our computers
have a bus controller chip. On a PC this chip is known as the 8288; on an
AT it’s a 82288. The bus controller’s job is to make sure the operation of
the bus goes smoothly.

As we’ll learn in more detail later in the book, some parts of the
computer—particularly the disk drives—can exchange data directly with
the computer’s memory, without the data having to pass through the micro-
processor. This helps keep the microprocessor free to get more work done.
This process is called Direct Memory Access, or DMA. There is a special
chip to facilitate this, called the DMA controller; its chip number is 8237.

Similarly, interrupts—which are a key feature of the PCs that we’ll
be discussing in Chapter 6—are supervised by a special circuit chip, the
8259. In computers, as in real life, interruptions come in varying
degrees of importance, and one of the tasks of the 8259 interrupt con-

69

INSIDE THE IBM PC

|

{0
i | |

T
N
=

=

0000
=

=

A
E_.[0000

 —

—
— .3
o S S—

o e Y g s B) B =
=B =)
() —

—
O e
| e I o R S— —
s o N s S s ()
—
| I —]
=

 — —
(el g = [

—
1

([

gonag
10000
1000000
nonnnmong

Y s

o s Y s S i |

/=)

(—] =]
i —

=

e — — —
E@

=

Figure 5-4. The AT system board.

troller is to keep them in priority order, and to hold any pending
interrupts.

Another key chip is the Programmable Peripheral Interface, or PPI,
the 8255 chip. The PPI supervises the operation of some of the computer’s
simpler peripheral devices, such as the PC’s cassette tape port. Most com-
puter peripheral devices, however, are much too complex to be regulated
with a simple, common circuit.

Among them are the diskette drives. A key chip to facilitate the com-
puter’s working with diskette drives is the PD765 Floppy Disk Controller,
commonly called the FDC. For the display screens, there is a commonly
used chip called the 6845 CRT (cathode ray tube) controller. Both the
standard monochrome display adapter and the original color graphics

70

SOME THINGS TO TRY

adapter (CGA) contain a 6845 as their key component. Later, more
advanced display adapters usually have more custom components.

There are, of course, a great many other important chips used in the
PC family, on the system boards, on the option boards, and also inside the
peripheral parts (such as disk drives) themselves. But the chips we’ve
briefly discussed are the most important ones, and the ones that you are
most likely to read about if you dig into any of the technical publications
for the PC family.

Some Things to Try

1.

Why is the PC divided into three main parts,—the system unit,
the keyboard, and the display screen? Some computers have the
keyboard rigidly attached to the system unit. What are the advan-
tages and disadvantages of building a computer this way? Some
computers— including the portable members of our family, such
as the Compaq and the Portable PC—have the display screen
integral with the system unit. What are the advantages and disad-
vantages of building a computer this way?

The main family members have bus connectors for options located
inside the computer’s case. The PCjr has it coming out the right
side, so that options are plugged in externally. For more than one
option on a jr, they are plugged into each other, serially. How
does that make things different for the jr? What are the advantages
and disadvantages of the two ways of connecting options?

Several of the key chips mentioned in Section 5.3 are referred to
as ‘‘programmable.”” What does this mean? What makes any-
thing—one of these circuit chips, your TV set, or anything else—
‘‘programmable?’’ What might be the benefits of having some
parts of the PC’s circuits programmable? Are there any
disadvantages?

71

6

Brains:
Our Microprocessors

ince the microprocessor is the key working part of a personal

computer, if we want to understand our PCs, we need to under-

stand the capabilities of the microprocessors that power them. As

we saw in Chapter 1, the PC computer family is based on the
Intel 8086 microprocessor family, and most members of the PC family
specifically use the 8088 chip—so that’s the microprocessor that we’ll be
talking the most about.

What we’ll learn about the 8088, though, is pretty much universal to
the whole 8086 family of microprocessors. In Section 6.5 we’ll look into
the special powers of the 286 microprocessor, which powers the AT branch
of the PC family.

If you’re deeply interested in the inner workings of your computer, or
if you expect to be working at all with the PC’s intimate assembly language
instruction set, you already realize that you need to know the details of the
PC’s microprocessor that we’ll be discussing here. If not, you might be
wondering if it’s worthwhile learning about such technical information.
Frankly, for the day-to-day PC user who’ll never even glance at any assem-
bly language program code, there’s no real need to learn what we’ll be
covering here. This chapter is for those who have an intellectual hunger to
comprehend what’s going on inside their PCs. The benefit from this chap-
ter—besides the pure satisfaction of it—is that you’ll have a better grasp of
what the PC’s powers are, including the important matter of understanding
the limitations on that power.

6.1 What the Microprocessor Can Do

The best place for us to start is to take a look at what our microproces-
sor can do, its fundamental instruction set.

73

INSIDE THE IBM PC

When we ask our computers to do anything, no matter what it is, it’s
a complex task from the computer’s viewpoint. What the computer actu-
ally does is perform a series of steps built out of the computer’s own
instruction set. These basic instructions are called machine language or
assembly language. (When it’s in the form that programmers write it, it’s
called assembly language, and when it’s in the form that the computer
works with it’s called machine language; either way, we’re talking about
the same thing.) One of the best ways to grasp the power of a computer is
to see what its basic machine language instructions can do (and how
quickly they can do them).

If we tried to look at them in depth, we’d get bogged down in lots of
tedious details, the details that assembly language programmers have to
work with. That isn’t what we’re after here; what we want to do is get a
good working idea of what the computer’s skills are. We’ll start with sim-
ple arithmetic since arithmetic forms the basis for a great deal of what the
computer does for us.

Our PC’s microprocessors can perform the four basic operations of
arithmetic: add, subtract, multiply, and divide. Addition and subtraction
are the simplest operations, and by far the most common, particularly
since they are used for many purposes besides the obvious ones (as we’ll
see shortly). Since our microprocessors are what’s called 16-bit proces-
sors, we know that they can do their adding and subtracting on 16-bit
numbers; but they can also perform arithmetic on individual 8-bit bytes.
You might wonder why our computers can do both 8-bit and 16-bit opera-
tions. Since 16-bit operations are inherently more powerful, why bother
with 8-bit numbers?

There are at least three good reasons for using 8-bit arithmetic instead
of 16-bit. One is that if we know we’ll be working with numbers that aren’t
any bigger than can be accommodated in an 8-bit byte, why use twice as
much storage as is really needed? When we’re working with lots and lots of
numbers that could be stored in 8-bit bytes, the added efficiency of only
using single bytes can be very worthwhile. Another reason for using 8-bit
arithmetic appears when we want to work on individual bytes.

Here’s an example. Sometimes we need to convert alphabetic charac-
ter data to all uppercase; this is something that’s needed more often than
you might imagine inside the program we use. You’ll recall from our dis-
cussion of the PC’s character set in Chapter 4 that the lowercase letters are
each 32 places above the uppercase letters in the ASCII coding scheme. A
program can convert a lowercase letter into uppercase simply by subtracting
32 from the byte that holds the lowercase letter—and that’s done with an

74

6.1 WHAT THE MICROPROCESSOR CAN DO

8-bit subtraction command. You can demonstrate this for yourself, by try-
ing this simple command in BASIC:

PRINT ''a', ASC ('"a'), ASC (''a') - 32, CHR$(ASC ('"a') - 32)

Finally, there’s a third good reason why our computers can do 8-bit
arithmetic in addition to 16-bit arithmetic: it can be easily used as the
building blocks of more powerful operations. For example, suppose we
want to add and subtract numbers that are larger than 16 bits can handle.
Say we need to work with numbers that are as large as 24 bits, or three
bytes. We can see how the computer can do this by looking at how we
ourselves add numbers together, say by adding 123 to 456. When we add
numbers like that, we do it digit by digit, starting on the righthand side: so
we add 3 to 6, getting 9, and then move left to the next place. If any pair of
digits gives us a sum over 10, we carry 1 to the next place. Our computers
can do the same thing using 8-bit arithmetic. With 8-bit addition and sub-
traction operations, our microprocessors can work with numbers of any
size, byte-by-byte. Carries from one byte position to the next are handled
by a special feature (which we’ll hear of from time to time) called a carry
flag. (For more on flags, see the sidebar The PC’s Flags in Section 6.3.)

When we discussed data formats in Chapter 3, we mentioned that our
8- and 16-bit numbers can be treated as signed or unsigned; the signed
formats allow for negative numbers, and the unsigned formats allow for
bigger numbers. Our microprocessors have variations on the basic addition
and subtraction operations that allow our programs to choose between 8-
and 16-bit size, signed or unsigned values, and using or ignoring carries
from previous operations. All of these operations concern the computer’s
basic binary number system. There are also some auxiliary instructions that
make it practical for the computer to work with decimal numbers.

While our microprocessors handle just about every possible variation
on addition and subtraction, they take a slightly less complicated approach
to multiplication and division. We can multiply 8- or 16-bit (byte or word)
numbers, and treat them as signed or unsigned. For division, we always
divide a 32-bit (or double-word) dividend by an 8- or 16-bit dividend,
signed or unsigned.

That’s the basic arithmetic that our computers can do. If we need
anything richer—such as larger numbers or floating-point format—then the
arithmetic is usually handled by special-purpose subroutines that build a
larger operation out of simple arithmetic building-blocks. The math
coprocessors, the 87s, can also be used for some sorts of special arithmetic,
as we’ll see in Section 6.2.

75

INSIDE THE IBM PC

Snooping at Code

If you want to learn more about the power and features of the PC’s
instruction set, there are several ways you can do it without having to
go through the often difficult and tedious details of learning assembly
language programming. It will require some cleverness on your part
in deciphering some of the cryptic codes used in assembly language,
but the effort can be richly rewarded in the satisfaction of knowing
some of the most intimate details of how the PC works.

The trick is to get your hands on some assembly language programs
that you can read and inspect to see just how things are done directly
with the PC’s instruction set. The best of all is to see some assembly
language programming complete with the programmer’s comments
that explain a great deal about what is going on.

As it happens, we have available a fully annotated listing of the
intimate ROM-BIOS programs that are built into the PCs. You’ll find
these listings in the Technical Reference manuals that IBM publishes
for each model in the PC family.

If you can’t get your hands on IBM’s Technical Reference manuals,
there is another way to see how some skilled programs were written:
that’s by decoding them (from their unintelligible machine language
into the slightly more readable assembly language) using an
‘‘unassembler.’’ One crude but usable unassembler is available to us
as a part of DOS. It’s included in the DEBUG program.

You can use DEBUG to ‘‘unassemble’’ any programs that you have
access to, including the PC’s built-in ROM programs. You’ll find an
example of how to do this later in this chapter in the sidebar Looking
at an Interrupt Handler.

Our computer’s microprocessors can do more than arithmetic, though
arithmetic forms a great deal of the important core of the computer’s opera-
tions. If all the computer could do was arithmetic (and other straightforward
manipulation of data, such as just moving it around) then our computers
would be nothing more than glorified adding machines. What makes our
computers much more powerful than simple calculators is a variety of
instructions known as computer logic.

The computer’s logic operations allow it to adjust what’s being done to
the situation at hand. There are three main kinds of logic operations that our
computer has in its repertoire: tests, conditional branches, and repeats. As
an example, I'll let our computer play the role of a parking lot attendant.

If a parking lot charges, say, $1 an hour with a $5 maximum, the
parking lot attendant has to calculate our hourly charge and then check to
see if it’s over the maximum. The attendant multiplies $1 times the number

76

6.1 WHAT THE MICROPROCESSOR CAN DO

of hours we were parked and then compares the amount to $5. In computer
logic, that comparison is the zest, and the result of the test is noted in some
special-purpose flags, like the carry flag that we’ve already mentioned.
Generally the test is some form of arithmetic (such as comparing two num-
bers, which is the equivalent of subtracting one from the other to see which
is bigger or if they are equal), and the flags that are used have an arithme-
tic-style meaning: the zero flag means the result of an arithmetic operation
was zero, or that a comparison of two numbers found them equal. Simi-
larly, the sign flag means the result was negative. These flags, which are
the result of any general arithmetic operation, or any test comparison opera-
tion, set the stage for the second part of computer logic: conditional
branches.

Conditional branches let the computer adjust its operation to the situa-
tion. A ‘‘branch’’ means a change in the sequence of steps the computer is
carrying out. A conditional branch skips from one set of commands to
another based on a ‘‘condition,’’ such as how the flags are set. Our parking
lot attendant computer, after comparing our hourly parking charge to the $5
maximum, charges us only $5 if the hourly charge was higher.

Conditional branches are used in computer programs in two quite dif-
ferent ways; the instruction, the conditional branch, can be the same, but
the use it’s put to is quite different. One use, which we’ve already seen, is
simply to select between two courses of operation, such as charging the
hourly rate or the maximum limit. The other way to use a conditional
branch instruction is to control looping, or the repetition of a series of
instructions. Our parking lot attendant computer, for example, will repeat-
edly perform the operation of parking a car, as long there are parking
spaces available and customers waiting to leave their cars. The parking
attendant will “‘loop’’ through, or repeat, the process of parking a car, as
long as the test and conditional branch instructions show that there are cars
to park and places to put them.

A regular conditional branch instruction can be used for either pur-
pose—selecting between two courses, or controlling a loop—in a computer
program, but because loops are so important to computer work, there are
also special-purpose instructions that are custom made for the needs of
looping: these are the repeat instructions. Some of them are designed to
repeat a series of instructions, and some repeat just a single instruction, a
tightly-coupled operation that can be executed with amazing speed and
efficiency.

What we’ve seen so far of the instructions that our computer’s micro-
processors can perform is really just a short sampler of their full repertoire
of commands—but it is a summary of the most important things that the

71

INSIDE THE IBM PC

computer can do, and it should give you some feeling for the basic building
blocks that our programs are constructed out of. We should also get some
sense of just how quickly our computers can carry out these instructions.

Here’s a sampler of the speed it takes our computers to perform some
basic instructions. For a standard PC, using the 8088 microprocessor, to
add two numbers together can be done about one million times in a second;
to multiply two numbers can be done about 40,000 times a second; a
conditional branch can be done about a half-million times a second. On the
average, a standard PC can perform perhaps a quarter-million instructions
each second. For the much faster AT, using the 286 microprocessor, adding
two numbers can be done two million times a second, or roughly twice as
fast as in a PC; multiplying can be done about 300,000 times a second, or
over seven times faster than a PC; a conditional branch can be done about
600,000 times a second. On the average, an AT knocks down perhaps one
and a half million instructions a second, about five or six times the power
of a standard PC.

Whether we’re looking at a PC or an AT, that’s an impressive amount
of computing that can be dispatched in a second. However, we need to be
aware that even the simplest thing that we ask our computers to do involves
hundreds and thousands of individual detailed instructions to be performed.
Since the computer can perform millions of instructions in seconds, our
work should get done pretty quickly.

6.2 Math Auxiliary: the 87s

The PC family’s microprocessors are designed in a way that lets their
computing power be augmented with other processors, in two key ways.
One—which we haven’t yet seen in the PC family—allows several of the
microprocessors (say two or more 8088s) to be tied together and work on
the computing in cooperation. The other adds specialized ‘‘coprocessors’’
or auxiliary processors to perform work that the main microprocessor can’t
do well. There are actually two different types of coprocessors available for
use with our PC’s microprocessors. One type is specialized to take on much
of the burden of I/O processing, and it isn’t used in the PC family. The
other type is specialized to perform extra-fast, extra high-precision float-
ing-point arithmetic. These are the ‘“87°’ chips—the 8087 for the regular
PC branch of the PC family and the 80287 for the AT branch of the fam-
ily—the Numeric Data Processor (NDP) or math coprocessor chips.

The 87 chips allow the main microprocessor to off-load appropriate
number-crunching onto the 87’s specialty circuits. But it can only happen,

78

6.2 MATH AUXILIARY: THE 87s

as we noted in Chapter 3, when there is an 87 installed in the PC, when
we’re using software that knows how to take advantage of the 87, and when
there is suitable work for the 87 to do.

Nearly all members of the PC family are designed to accommodate an
87, but not many PCs have them installed. Usually they’re installed only
when there is a particular need for them: when there’s a combination of
heavy computational work to be done, and computer software that can take
advantage of the 87.

On the subject of programs that know how to use the 87, it’s worth
knowing that there are two general categories of programs that use the 87:
one is programs that require the 87 in order to be used, such as IBM’s
version of the APL programming language. Generally programs that
require the 87 are oriented to engineering and scientific work. The other is
programs that can take advantage of the 87 if one’s installed. Many spread-
sheet programs, such as 1-2-3 and Framework, are like this. Because more
and more compilers for programming languages contain the ability to detect
and use an 87—without any special effort needed on the part of the
programmer—we’re seeing an increase in the number of programs that
benefit from an 87.

You should not expect, though, that installing an 87 in your computer
will automatically accelerate the speed of the programs that you use. First,
many programs simply have no use for an 87—for example, word process-
ing programs. Second, even programs that we think could use the 87 heav-
ily, don’t. For example, Framework knows how to use an 87, but doesn’t
use it for routine spreadsheet calculations, rather only for exotic things like
exponentiation.

What can an 87 math coprocessor, or Numeric Data Processor, do for
us? Basically it can add both speed and accuracy to our calculations. The
speed comes from the fact that the 87s produce their results roughly 50 to a
100 times faster than software subroutines can build the same calculation
out of the regular microprocessor’s conventional arithmetic commands.
(That spectacular speed improvement is for the pure calculation itself.
When you combine it with a program’s routine operations, and some over-
head that comes with using the 87, the advantage drops down to something
in the five to twenty times range—less, but still very impressive.)

The added accuracy comes from the fact that the 87s do all their
calculations with the 10-byte format that we briefly mentioned in Chapter
3. The main microprocessor can present data to the 87 in a variety of
formats that we’ve mentioned—long and short integer, three sizes of float-
ing point, and even a decimal format. The 87s actually do all their work in
the longest 10-byte floating-point format (called, in computer jargon,

79

INSIDE THE IBM PC

temporary real), which means that any calculations done with the 87s are
performed in the highest possible precision. Often that won’t matter in the
least, but in involved lengthy calculations, with demanding requirements
for high precision, the 87 can add a great deal of accuracy to the results.

The 87s have one additional and curious benefit besides those we’ve
mentioned. They offer some special features that go beyond the ordinary
bounds of floating-point arithmetic in two ways. One is that the 87 has
seven special constant values built into it, values such as pi that are com-
monly used in scientific calculations. Those built-in values are a conven-
ience for programmers, and they provide a way to make sure that a
standard, highly-accurate value is used to represent these seven mathemati-
cal quantities. The other special feature of the 87s is that besides the stan-
dard four arithmetic operations (add, subtract, multiply, and divide) the 87s
have five other so-called transcendental operations, which are essential for
performing trigonometric and logarithmic calculations. For scientific and
engineering calculations, these special instructions reduce the burden of
programming, and ensure that these calculations are performed in a stan-
dard way.

The 87s are called coprocessors, which means that they work as an
auxiliary to the main microprocessor. It’s interesting to know how this is
done. The 87s act as a subsidiary of the microprocessor, and they only
spring into action when the microprocessor generates a special signal for
them. A special instruction, called ESCAPE, is used for the main micropro-
cessor to pass a command to the 87 coprocessor. (By the way, don’t con-
fuse this special ESCAPE command with the escape character, decimal
code 27, that we discussed in Chapter 4 as part of the PC’s character set.)
The main microprocessor’s ESCAPE instruction includes in it the instruc-
tion code for whichever 87 instruction is to be performed. When the 87
receives its instruction, it begins performing independently of the main
microprocessor (which is then free either to wait for the result from the 87
or to go on performing other tasks.) The sequence of steps involves a little
dance of cooperation between the two chips, which is shown here in outline
form:

» the microprocessor sets the 87 into action with an ESCAPE
instruction

= the 87 swings into action leaving the main microprocessor free

= the microprocessor proceeds with other work (say preparing data
for the next 87 instruction) if it has anything useful to do; other-
wise, it proceeds to the next step

80

6.2 MATH AUXILIARY: THE 87s

= when the microprocessor is ready for the results from the 87, it
performs an FWAIT instruction, which waits for the completion of
the 87’s instruction (in case it’s not yet done)

= after the FWAIT, the microprocessor can safely use the results of
the 87’s calculation

This sequence seems cumbersome, but it’s easier than it looks. The
only thing special about writing assembly language programs like this is
that ESCAPE instructions are used instead of regular arithmetic instruc-
tions, and FWAIT instructions are added before using the results of the
calculations. Of course only assembly language programmers have to
bother with these details, anyway. For those of us who use programs that
take advantage of the 87, all the fuss and bother is taken care of for us—we
just get to enjoy the benefits the 87s provide.

TECHNICAL BACKGROUND | I 1 B H § I

The 87’s Constants and Special Ops

As we mentioned, the 87s have built into them something more than
just high-powered floating-point arithmetic: they also have a set of
special constant values and transcendental operations that are
especially useful for mathematics and engineering use. Here is what
they are.

There are seven special constants. Two are quite ordinary: 0 and 1;
they save us the trouble (and space) of storing these values in our
program’s data. One is familiar to everybody: pi, the ratio of the
diameter to the circumference of a circle. The other four provide the
basic values needed to work with logarithms, either in base 10 or the
‘‘natural’’ base mathematicians call e: log, 10 (the logarithm to the
base 2 of 10); log, e; log,, 2; and log, 2.

The 87’s special transcendental operations are needed to calculate
functions that can’t be built from ordinary, four-function arithmetic.
Transcendental functions are usually calculated by approximate
formulas, but these five built-in functions provide the basis for
performing many different transcendental functions, without having
to grind through an approximation formula (the standard
approximations are built into the 87s). These are the five functions:

1. partial tangent
2. partial arctangent

81

INSIDE THE IBM PC

3. 2* — 1 (2 raised to a power, minus one)
4. Y *log, X
5. Y*log, X+ 1)

These five functions may seem obscure to most readers—even those
with vivid memories of mathematics classes—but we can rest assured
that they do indeed provide the core of what is needed to calculate
the most common transcendental functions.

6.3 Tools at Hand: Memory and Ports,
Registers and Stacks

So far, we’ve talked about the kinds of operations our microprocessors
can perform, by themselves and with the help of the 87 numeric coproces-
sors. Now it’s time for us to take a look at the tools that the microprocessor
has at its disposal to help it carry out these instructions and get useful work
done. What we’ll be looking at are how the microprocessor uses memory
and ports, registers and stacks.

The computer’s microprocessor has only three ways of talking to the
world of circuitry outside of itself. One of the three is the special communi-
cation that it has with the 87 coprocessors through the ESCAPE command
discussed in Section 6.2. The other two are much more ordinary, and they
have a key role in the core of the computer’s operation; these are the
computer’s memory, and the use of ports.

In Chapter 2 we saw that memory acts as the computer’s desktop, its
playing field, and workplace. The memory is the place where the micropro-
cessor finds its program instructions, and where the microprocessor also
finds its data. Both data and instructions are stored in memory, and the
microprocessor picks them up from there. The memory is internal to the
computer, and it’s essential function is to provide a work space for the
microprocessor. Since memory is so important, we’ll take a deeper look at
it in Chapter 7.

If memory is essential for the microprocessor’s internal use, there
has to be a way for the microprocessor to communicate with the world
outside of it and its memory, and that is what ports are for. A port is
something like a telephone line that the computer can call up on. Any part
of the computer’s circuitry that the microprocessor needs to talk to is
given a port number, and the microprocessor uses that number like a
telephone number to call up the particular part. For example, one port

82

6.3 TOOLS AT HAND: MEMORY AND PORTS, REGISTERS AND STACKS

number is used to talk to the keyboard; another is used for the program-
mable timer mentioned in Section 5.3. Controlling the disk drives and
transferring data back and forth is also done through ports. The display
screen is also controlled by using ports, but the data that appears on the
display screen happens to be handled through memory, and not ports, as
we’ll see in Chapter 11.

The microprocessor has 65,536 port ‘‘telephone’’ numbers available
for it to use. Not all of them are connected. The designers of any micro-
computer, like our PC family, decide which port numbers to use for various
purposes, and the circuit elements of the computer are wired up to respond
to those port numbers. The computer’s bus (which we covered in Chapter
5) is used something like a telephone party line, used in common by every
part of the computer that is assigned a port number. When the microproces-
sor needs to talk to one circuit part or another, it signals the port number on
the bus, and the appropriate part responds.

The microprocessor has two special assembly language commands that
are used to communicate with ports: the OUT command sends data to a port
number, and the IN command requests data from a port number. Usually
when we talk about assembly language instructions, such as these IN and
OUT commands, there is nothing we can do to experiment with them
unless we work directly with assembly language; but in the case of these
two instructions, BASIC gives us two commands, called INP (not IN, but
INP) and OUT, which do exactly what the assembly language instructions
do. We can use them to experiment with our computer’s ports, although it’s
very tricky to do. To give you a quick example, here is a short program that
turns the PC’s sound on and off, simply by using the ports (we’ll learn
more about how this works in a later chapter):

10 SOUND 500,1

20 X = (INP (97) \ 4) * 4

30 PRINT "Press any key to stop this infernal noise!"
40 OUT 97, X + 3 ' turn sound on

50 FOR I = 1 TO 250 : NEXT I ' kill time

60 OUT 97, X ' turn sound off

70 FOR I = 1 TO 250 : NEXT I ' kill time

80 IF INKEY$ = "" THEN GOTO 40

Give this program a try, and you’ll have some firsthand experience in
toying with the PC’s ports!

Unless we’re doing some very special and unusual kinds of program-
ming, we’ll never have any reason to do anything directly with ports. Ports
are almost exclusively reserved for use by the computer’s most intimate

83

INSIDE THE IBM PC

controlling programs, the BIOS. Our main interest in ports is to understand
that they are the mechanism the microprocessor uses to talk with other parts
of the computer’s circuitry.

Here we’ll discuss registers and stacks, the tools available to our
computer’s microprocessor to carry out its work. We’ll start with the
registers.

Registers are basically a small special-purpose kind of memory that
the microprocessor has available for some particular uses. Registers are
similar to the computer’s main memory in one way: they are a set of places
where data can be stored while the microprocessor is working on it. But the
computer’s main memory is large; it’s located outside the microprocessor.
It can be used for just about anything, and it’s referred to through memory
addresses; the registers are different in each of these respects.

Flags

BX BH BL
CX CH CL
DX DH DL

SP
BP
Si
DI
PC

cs
DS
SS
ES

Figure 6-1. The PC’s registers.

The registers are a series of fourteen small 16-bit places where num-
bers can be stored. They are each an integral, internal part of the micropro-

84

6.3 TOOLS AT HAND: MEMORY AND PORTS, REGISTERS AND STACKS

cessor. In effect, each of them is a small scratchpad that the microprocessor
uses for calculations and record keeping. Some of them are dedicated to
one special use, while others have a broad, general use. We’ll take a quick
overview of them all, so that you’re familiar with them, and so you’ll know
what they are when you see them referred to. Their actual use, however,
really only matters to assembly language programmers.

The first group of registers is called the general-purpose registers, and
they are truly used as scratchpads for calculations. There are four of them,
known as AX, BX, CX, and DX. Each of them can be used by our pro-
grams as a temporary storage area and scratchpad for calculations. Each of
these registers is 16 bits in size. If we want to work with just half of any of
these registers, we can easily do so, because they are divided into high- and
low-order halves, called AH and AL, BH and BL, and so forth. A great
deal of the work that goes on inside our computers takes place in these
general-purpose registers.

The next group of four registers is used to assist the microprocessor in
finding its way through the computer’s memory. These are called the seg-
ment registers. Each one is used to help gain access to a section, or segment
of memory, 64K bytes big. The Code Segment, or CS register, indicates
where in memory a program is located. The Data Segment, or DS register,
locates data that a program is using; the Extra Segment, or ES register,
supplements the data segment. The Stack Segment, or SS register, locates
the computer’s stack, which we’ll discuss shortly. We’ll get a clearer idea
of the use of these registers in Chapter 7 when we take a closer look at
memory.

While the segment registers are used to gain general access to large
64K chunks of memory, the last group of registers is used to help find our
way to specific bytes in memory. They are used, in conjunction with a
segment register, to point to an exact place in memory. There are five of
these registers, each used for a particular purpose. The Instruction Pointer,
IP, also called the Program Counter, PC, tells the microprocessor just
where its place is in the program being executed. The Stack Pointer, SP,
and the Base Pointer, BP, are used to help keep track of work in progress
that’s stored on the stack (coming shortly). The Source Index, SI, and
Destination Index, DI, are used to help our programs move large amounts
of data from one place to another.

Finally there is one remaining register, called the Flag Register, that is
used to hold the condition flags that we talked about earlier. The various
flags tell our programs just what state the computer is in: the results of
arithmetic operations, whether interruptions are allowed, and similar status
conditions.

85

INSIDE THE IBM PC

TECHNICAL BACKGROUND | I 1 B B § I

The PC’s Flags

The PC’s microprocessors are largely controlled through a series of
1-bit flags, each of which signals or sets a particular state in the
computer. The flags operate independently of each other, but they
are, for convenience, gathered together into the Flag Register.
Individual flags can be tested and set with special-purpose
instructions, and the entire group of flags can be read out or set with
a pair of instructions that read or set the entire flag register.

Here is what the individual flags are used for: There are nine
standard flags in all. Six are used to indicate the results of arithmetic
and similar operations: the Zero Flag, ZF, indicates a zero result (or
equal comparison); the Sign Flag, SF, indicates a negative result; the
Carry Flag, CF, indicates a carry out to the next position; the
Auxiliary Carry Flag, AF, indicates a carry from the first four bits
(which is needed for simulating decimal operations); the Overflow
Flag, OF, indicates a too-large result; and finally, the Parity Flag,
PF, indicates the odd or even parity of the result.

The three other flags are used for control purposes. The Direction
Flag, DF, controls which way repeated operations (such as a
byte-by-byte data move) go, right to left or left to right. The
Interrupt Flag, IF, controls whether or not interrupts are allowed or
temporarily suspended. The Trap Flag, TF, causes the computer to
generate a special ‘‘trap’’ interrupt after executing a single
instruction. This makes it possible to single-step through a program,
tracing the results of each individual instruction.

In addition to these nine flags, the advanced 286 microprocessor used
in the AT branch of the PC family adds two more special flags. One,
called NT, is used for nested tasks, and the other, a two-bit flag
called IOPL, controls the I/O privilege level.

You can see and tinker with the flags, and all the other registers, by
using the R command of DOS’s DEBUG program. For example, if
you activate DEBUG, then press R and (enter), DEBUG displays the
current register contents and the setting of all the flags.

There is one remaining tool at the command of the microprocessor
which allows it to perform the complicated juggling act needed for the
computer to do all the things that we want it to do. As the computer is
working, it gets buried in an increasingly complicated stack of work, and it
needs a way to keep track of where it is and what it’s doing. To switch from

86

6.4 INTERRUPTS: THE DRIVING FORCE

one part of the computer’s work to another, the computer needs a way to
put work on hold, not lose sight of it. The stack serves as a computerized
holding area that records all the information that’s current about what the
computer has been doing. When the computer passes into a subroutine, or
temporarily interrupts one task to look after another, the stack is used to
take note of ‘‘where was I and what was I doing’’ so that the computer can
return to it with no difficulty. As the computer switches to something new,
information about it is placed on top of the stack, indicating what’s current.
Later, when the computer returns to prior work, the other information is
removed from the stack, and the prior work now reappears as the first thing
on the stack.

We’ve looked at what our microprocessors can do—the general power
and features of their instruction set—and some of the tools that they have to
help them do it—the memory and the stacks and so forth—but we have
barely mentioned a key driving force to make our computers work: inter-
rupts. That’s what we’ll look at next.

6.4 Interrupts: The Driving Force

One of the key things that makes a computer different from any other
kind of machine that mankind has built, is that computers have the ability to
respond to an unpredictable variety of work that comes to them. The key to
this ability is a feature known as interrupts.

The interrupt feature allows the computer to suspend whatever it is
doing, and switch to something else, based on something that causes the
interruption—such as our pressing a key on the computer’s keyboard.

The ability to be interrupted solves what would otherwise be a very
difficult problem in getting the computer to work effectively for us. On the
one hand, we’d like the computer to be busy doing whatever work we’ve
given it; on the other hand, we’d like it to instantly respond to any request
for its attention, such as our pressing keys on the keyboard. If the computer
could only slog along doing just what it’s been told to do in advance, it
couldn’t respond promptly to our keystrokes unless it was constantly check-
ing the keyboard for activity. Interrupts, however, make it possible for the
microprocessor to respond to keystrokes—or anything else that needs atten-
tion—even though it’s busy working on something else.

The computer’s microprocessor has built into it the ability to be inter-
rupted, combined with a convenient way of putting the work that’s been
interrupted on hold while the interrupt is being processed. The micropro-
cessor’s stack, which we looked at in Section 6.3, is used for this: when an

87

INSIDE THE IBM PC

interruption occurs, a record of what the microprocessor was doing at the
time is stored on the stack, so that when the interruption is finished work
can resume exactly where it left off. This is one of several uses the stack is
put to, and it’s a very key one. Without the stack as a place to put work on
hold, the whole idea of interrupts couldn’t work.

Every part of the computer which might need to request the micropro-
cessor’s attention is given its own special interrupt number to use. The
keyboard has its own interrupt, so that every time we press a key on the
keyboard (or, interestingly enough, release a key we’ve pressed), the
microprocessor finds out about it, thanks to the keyboard interrupt. The
PC’s internal clock also has its own interrupt to let the computer’s
time-keeping program know each time the clock has ticked—which is about
18 times each second. That sounds like a lot of interruptions, and we’d be
inclined to think that being interrupted 18 times a second would harass the
computer to death. However, the microprocessor can perform tens of
thousands of instructions between each clock tick, the clock interrupts don’t
take up much of the microprocessor’s time. Our computer’s disk drives and
printers have their own dedicated interrupt numbers, too. The disks use
theirs to signal that they have finished some work the program asked to be
done; the printers use theirs to signal when they are out of paper.

It’s an interesting and curious fact about the history of computers that
interrupts were not part of the original concept of a computer. In fact
computers had been used for decades before the interrupt feature came into
widespread use. Today it’s hard to imagine a computer doing much of
anything useful without the interrupts that make it possible for the computer
to respond to demands for its attention.

Although interrupts are used to make the microprocessor respond to
outside events—such as the printer running out of paper—that isn’t the only
thing that they are used for. The concept of an interrupt has turned out to be
so useful that it has been adapted to serve a variety of purposes inside the
computer. There are essentially three different kinds of interrupts that are
used in our PC computers. The first is the kind we’ve already discussed: an
interrupt that comes from another part of the computer’s circuitry reporting
something that needs attention. This is called a hardware interrupt. But
there are two other kinds of interrupts relating to software programming.

Sometimes, while the computer is running one of our programs, some-
thing goes wrong with either the program itself or with the program’s data.
It’s as if you were just reading along on this sentence then suddenly you
found yourself reading glepty murph bofa—some jibberish that didn’t make
any sense. That can happen to the computer too, although it’s not supposed
to. The microprocessor might run into some instructions that don’t make

88

6.4 INTERRUPTS: THE DRIVING FORCE

any sense, or some data that drives it wild (such as trying to divide a
number by zero). When this happens, the microprocessor generates what I
call an exception interrupt.

The last category of interrupt, unlike the others, doesn’t occur unex-
pectedly. The whole idea of interrupts is so powerful, that they have been
put to use as a way of letting programs signal that they want some service to
be performed by another part of the computer’s programs. This type is
called a software interrupt. We’ve mentioned before that our PCs come
equipped with built-in service programs called the ROM-BIOS. Our com-
puter’s application programs need a way to request the services that the
BIOS provides, and software interrupts are the means that are used. Soft-
ware interrupts function in exactly the same way as the other kinds of
interrupts. The only thing that’s different about them is what causes the
interrupt. In this case, instead of happening unexpectedly, software inter-
rupts are intentionally generated by our programs. There is a special assem-
bly language instruction, called INT, that is used by our programs to
request an interrupt. (To learn more about the surprisingly wide variety of
uses for interrupts, see the sidebar Another Look at Types of Interrupts.)

Another Look at Types of Interrupts

There is a wider variety of types and uses for interrupts than you
might imagine. In the text I outline three categories of interrupt:
hardware, exception, and software. But there is another way of
looking at interrupts that cuts closer to the way they are used in the
PC family. By this analysis, there are six different kinds of
interrupts.

First, there are the Intel hardware interrupts. These are the interrupts
that are defined into the microprocessor by its designer, Intel. These
interrupts include the divide-by-zero interrupt we mentioned before, a
power-failure interrupt, and others. These interrupts are universal to
any computer using the Intel 8088 microprocessor, no matter how
unlike the PC family the computer might be.

Next are the IBM-defined PC hardware interrupts. These are
interrupts that report hardware events (e.g., ‘‘printer out of paper’’ or
‘‘disk action completed’’) to the microprocessor. The PC hardware
interrupts are essentially universal to the PC family.

Then there are the PC software interrupts. These are also defined by
IBM and universal to the whole PC family. They are used to activate
parts of the PC’s built-in ROM-BIOS software, for example, to
display a message on the computer’s screen.

89

INSIDE THE IBM PC

Then there are DOS software interrupts. Unlike the previous three
types, these interrupts aren’t built into the computer, they are added
on by software: in this case by the DOS operating system. Since

we normally use the same operating system all the time, these
interrupts are, in reality, there all the time, even though they aren’t
fundamental to the computer’s operation. These interrupts are defined
and handled by routines internal to DOS (or any other operating
system that we might be using.)

Next are the application software interrupts, which are established
temporarily by the program we run (including BASIC, which uses
quite a few of its own special interrupts). These interrupts are defined
(and handled) by the application program that we use.

The sixth and final category is an odd one, because it doesn’t truly
involve interrupts at all. These are the so-called table interrupts. As
we’ll see in Chapter 7, part of the interrupt mechanism involves a
““vector table’” which holds the memory addresses of the interrupt
handlers. There are some addresses in this table, however, that have
nothing to do with interrupts. Instead, the address table is used as a
convenient place to store some important addresses which actually
have nothing to do with interrupts. For each of these, there’s a
corresponding interrupt number, but one that can never be used,
since there’s no interrupt handling routine for it.

Just how does an interrupt work? Let’s take a look, in outline form, to
see what the interrupt mechanism does. Each distinct interrupt is identified
by an interrupt number, which identifies the type of interrupt. For example,
one interrupt number is used for the disk drives (all the drives share the
same interrupt). The clock, the keyboard, and the printers each have their
own. For the BIOS services, they are grouped by category; for example,
there are over a dozen different BIOS services for different operations on
the display screen, but they all share one interrupt number.

For each different interrupt number that’s been established for the
computer there is a special program, called an interrupt handler, that per-
forms whatever work the interrupt requires. A special table is kept at the
very beginning of the computer’s memory that records the location of each
interrupt handler. When an interrupt occurs, the interrupt number is used to
look up the proper interrupt-handling program. Before the interrupt handler
begins work, however, the microprocessor’s interrupt-processing mechan-
ism saves a record (on the stack) of what work was in progress. After that is
done, control of the microprocessor switches over to the interrupt-handling
routine.

The interrupt handler begins its operation temporarily protected from
further interruptions, in case it has to perform any critical or delicate opera-

90

6.4 INTERRUPTS: THE DRIVING FORCE

tions that must not be disrupted. Usually this involves changing the segment
registers that control memory access, and saving on the stack any further
status information that’s needed besides what is automatically saved when
the interrupt begins. Once that’s done, the interrupt handler can safely
reactivate further interrupts (of other types) and do whatever work the inter-
rupt calls for. When the work is done, the interrupt-handling routine
restores the status of the machine to what it was before the interrupt
occurred, and finally the computer carries on with the work it was doing. If
you’d like to have a look at part of an interrupt handler, see the sidebar
Looking at an Interrupt Handler.

TECHNICAL BACKGROUND | 1 I H B N I

Looking at an Interrupt Handler

To give you an idea of what some of the program code in an
interrupt handler looks like, we’ll show you some of it here. This
fragment is ‘‘unassembled’’ from the ROM-BIOS of an AT model.
The particular code we’ll show you is taken from the beginning of
the routine that handles requests for video (or display screen)
services.

We begin by activating the DEBUG program, like this:
DEBUG

Then we tell DEBUG to ‘‘unassemble’” some program code, which
translates the computer’s machine language into the slightly more
readable assembly language format. I happen to know where to find
the routine I want to show you, so I tell DEBUG to unassemble it at
the hex address where I know it is:

U F000: 3605

In response, DEBUG gives us an unassembled listing, which looks
like this (I’ talk our way through it in a moment):

F000: 3605 FB STI

F000: 3606 FC CLD

F000: 3607 06 PUSH ES
F000: 3608 1E PUSH DS
F000: 3609 52 PUSH DX
F000:360A 51 PUSH CX
F000:360B 53 PUSH BX
F000:360C 56 PUSH SI
F000:360D 57 PUSH DI
F000: 360E 55 PUSH BP

91

INSIDE THE IBM PC

92

F000: 360F 50 PUSH AX
F000:3610 8AC4 MOV AL, AH
F000: 3612 32E4 XOR AH, AH
F000: 3614 D1EO SHL AX, 1
F000:3616 8BFO MoV SI, AX
F000: 3618 3D2800 CMP AX, 0028

The very first column (F000:3605, etc.) is a set of reference
addresses, which we can ignore. The next column of information
(FB FC 06, etc.) is the actual machine language code, in hex.
Following this is what we’re interested in: the assembly language
equivalent of the program code we’ve unassembled. I want to give
you a short running narrative on this, so that you get an idea of what
assembly language code, particularly the code inside an interrupt
handler, is like.

It begins with the instruction STI, which reactivates interrupts. When
an interrupt occurs, further interrupts are suspended in case the
handler needs to do anything critical. In this case, there’s nothing
important to do, so the handling of other interrupts is turned on first.

The next instruction, CLD, sets the direction flag (which we
discussed in The PC’s Flags sidebar) to its normal, forward state.
This makes sure that any data movement the program performs goes
forward, not backward. This isn’t a particularly important operation
to us, but it’s interesting to see that the programmer took the time to
make sure the direction flag was set forward before anything else was
done.

Following that is something much more interesting to us: a series of
nine PUSH instructions. The PUSH instruction saves data on the
computer’s stack. You’ll see that each of these nine PUSH
instructions names a register (ES, DS, etc) that is being saved. These
register values are being saved on the stack, so that this interrupt
handler can be sure they are safeguarded. When the interrupt handler
is done, it restores these values from the stack to the registers, so
that no matter how the registers have been used in the interim, they
are returned to their former state.

Following the register-saving PUSH operations, we find four data
manipulating instructions (MOV, XOR, SHL, MOV) which do one
simple thing: they grab a number and prepare it for comparison.
Although it’s not easy to tell just by looking at these instructions,
what is going on here is fairly simple: there are a variety of display
screen services which this interrupt handler can provide, and they are
identified by a request code number. Before proceeding, the
program gets its hands on that code number and puts it into the form
that this program wants it in. That’s what these four instructions do.

6.4 INTERRUPTS: THE DRIVING FORCE

Having done that, the interrupt handler needs to make sure that the
service code requested is a proper one, and that’s what our last
instruction does. Using the CMP (compare) instruction it compares
the number with the value 28, which is the highest number
corresponding to a proper service request. After that, the program
goes on to branch on the basis of that test, either performing the
service requested, or rejecting the invalid service number.

This isn’t an in-depth look at assembly language code, but it should
give you a sampling of what assembly language looks like, and how
to go about decoding some. You can use the same techniques shown
here to inspect other parts of your computer’s ROM-BIOS or other
programs.

Interrupt handlers, for the most part, appear in the computer’s built-in
ROM-BIOS programs or as a part of the operating system, like DOS. But
they aren’t restricted to just those systems programs. Our applications pro-
grams—word processors, spreadsheets, and the like—can also have their
own interrupt-handling routines, if they have a need for them. Any program
can create an interrupt handler, and use it either to replace a standard
interrupt handler (so that its interrupts are handled in some special way) or
to create a new kind of interrupt.

In the heading of this section, I described interrupts as the driving
force of the PC. This is actually a very accurate characterization. Modern
computers like our PCs, which are designed to use interrupts, are called, in
the terminology of circuit designers, ‘‘interrupt driven.’”” That’s because
interrupts are used as the mechanism that connects the computer to the
world around it (including us). Interrupts drive the computer, because, one
way or another, all the work that comes to the computer comes to it in the
form of interrupts. More importantly, the whole internal organization of the
computer is designed around interrupts as the controlling factor that deter-
mines just where the microprocessor will turn its attention. Since the flow
of interrupts directs the computer’s attention to where it’s needed, it’s quite
accurate to think of them as the driving force behind the whole machine.

Now that we’ve seen interrupts, we’ve looked at all the basics that
concern our PC’s microprocessors. We’ve covered the key things that are
common to every member of the Intel 8086 microprocessor family, which
our PC computer family is based on. But, as we’ve been mentioning, the
AT branch of the PC family uses the Intel 286 microprocessor, the most
advanced member of the 8086 family, and the 286 has some special fea-
tures that don’t come with the standard PC’s 8088 microprocessor. To

93

INSIDE THE IBM PC

finish up our discussion of the PC family’s microprocessors, we’ll see
what’s special about the 286 ‘super chip.”’

6.5 Special Features of the 286

The Intel 286 microprocessor chip, which powers all the members of
the AT branch of the PC family—including the IBM AT and the Compaq
Deskpro-286, among others—has two personalities, and that is the key to
its special power. One personality makes it act like the 8088 microproces-
sor that powers a standard PC; the other personality allows the 286 to take
on extra powers and features that set it completely apart from anything else.
These two personalities are known as the real mode and the protected
mode.

In its “‘real’”’ mode, the 286 acts very much like the 8088 micropro-
cessor that’s inside a standard PC. (To be more precise, the 286 acts like
an 8086, since it works with a 16-bit external memory bus, rather than an
8-bit bus, which is the difference between the PC’s 8088 and the Compaq
Deskpro’s 8086. That’s a minor point; the key thing about the 286’s real
mode is that it has the same features and carries out programs in the same
way as the 8088 inside a standard PC.) In real mode, the 286’s special
features and special powers are in disguise, so that a computer with a 286
running in real mode can be fully compatible with a normal PC.

Don’t think that the 286 in real mode is nothing to be interested in.
The 286 in real mode is inherently much more powerful than a 8088 simply
because it can execute programs much faster. The 286 is faster for a combi-
nation of two reasons: First, its internal design is more streamlined, so that
it performs its instructions in fewer steps, fewer clock cycles. For example,
a basic multiply operation takes about 120 clock cycles on a 8088, but only
about 20 cycles for a 286, a very dramatic difference. The 286 is internally
much more efficient, so it gets its work done faster. The other reason for
the increased speed is simply that the 286 can run with a faster clock cycle.
A standard PC uses a 4.77 Mhz clock—in plain English this means that the
clock that drives the microprocessor like a metronome clicks 4.77 million
times each second. A 286, on the other hand, can run faster. In the case of
the IBM AT model, the clock speed is 6 Mhz, a 25 percent faster clock
speed than the PC’s; in the case of the Compaq Deskpro-286, the clock can
run at 8§ Mhz, 67 percent faster than the PC. When we combine the 286’s
greater efficiency in using clock cycles with a faster clock, we get a much
faster overall speed. In my own experience, using a performance testing

94

6.5 SPECIAL FEATURES OF THE 286

program that is a part of my Norton Utilities program set, a 286-based
member of the PC family is roughly 5 to 8 times faster than a standard PC.

So we know that the 286 microprocessor working in real mode is
nothing to sneer at. But it also doesn’t offer anything (other than speed) that
the standard PC’s 8088 offers. For extra features, we have to switch into
protected mode.

In protected mode, the 286 adds a series of features that allow it to
safely and reliably expand the number of programs the computer can be
working on at one time. This is accomplished through four main facilities:
protection (which gives protected mode its name), extended memory, vir-
tual memory, and multi-tasking.

Protection allows the operating system (such as DOS) to erect barriers
to prevent a program from interfering with the operation of other programs
or of the operating system itself. In a standard PC, or with a 286 running in
real mode, a rogue program can mess up the workings of the operating
system or any other program that’s using the computer, or it can even lock
up the computer entirely, halting its operation. The 286’s protected mode
makes it possible for the operating system to prevent any program from
“‘crashing’’ the computer or even tampering with any part of memory that
doesn’t properly belong to it. When we use our computers for just one
program at a time, it doesn’t matter a great deal if a program runs wild and
locks up the machine. But if we want to have several things going on in the
computer at one time, it becomes much more important to protect the
computer’s operation from rogue programs. The protection feature makes
that possible.

The standard PC—as we’ll see in more detail in Chapter 7—can only
work with a million bytes of memory (and about 40 percent of that is set
aside for special uses, and not available for general use). A million bytes
may sound like a lot (and it is), but with computers, people always need
more. The 286’s protected mode provides more memory, in two ways.
First, with extended memory, the 286 allows up to sixteen million bytes of
working memory to be installed in the computer. Second, with virtual
memory, the 286 can simulate—or appear to have—even more memory
than is actually present. Virtual memory allows the computer to give each
program as much as one billion bytes (one gigabyte, in computer jargon) to
work with. That’s a lot of memory.

Finally, with hardware-supported multi-tasking, the 286 can swiftly
and reliably switch among several programs that are running at the same
time. Multi-tasking is involved when a computer is working on more than
one program (task) at a time. In actual fact, in each instant the computer is
only carrying out the instructions of one program at a time, but with

95

INSIDE THE IBM PC

multi-tasking all the programs are kept in progress, much the same way that
a juggler can keep many balls in the air at one time. Any computer can
attempt to do multi-tasking, but it can’t be done well without some special
hardware features (such as memory protection). The protected mode of the
286 provides a variety of features that make it practical for the computer to
do multi-tasking work.

While these special features of the 286 are very important, and repre-
sent a real breakthrough in what our PC computers can do, they aren’t quite
as beneficial as they might seem to be. Basically that’s because the use of
protected mode requires that programs work in a fairly cooperative way.
Because the features of protected mode were not present in the standard
PC, most of the popular programs for the PC family were designed and
written without any regard for the ground rules that protected mode
requires. Many of the most important PC programs assume that they have
the exclusive use of the computer, and so they do things that can’t be done
when several programs share the computer (as they do with multi-tasking).
In addition, the main operating system for the PC, DOS, was not designed
with the 286’s protected mode in mind.

What all of this means is that the popular programs and operating
systems for the PC aren’t really compatible with the 286’s protected mode,
and in many cases it won’t be easy to adapt them to work in a protected
environment. As long as the important majority of programs for the PC
family aren’t compatible with the protected mode, there will be a serious
obstacle to the widespread use of the protected mode’s advantages.

Some Things to Try

1. We’ve discussed how our PC’s microprocessors can do both 8-
and 16-bit arithmetic. Is it really necessary to have both? What
might be the benefit and cost of only having one or the other?
What would be the benefit and cost of adding 24-bit or 32-bit
arithmetic?

2. We’ve seen, in the PC’s arithmetic and in its logic looping
instructions, some duplication: a variety of instructions that could
be simplified into fewer instructions. What might be the advan-
tages and disadvantages—both for the computer’s designers and
programmers—of making a computer with lots of instructions
(that provide many different ways of doing roughly the same
thing) or with very few instructions (which allow for just one way
of doing things)?

96

SOME THINGS TO TRY

Few PCs have the 87 numeric coprocessor installed, and few pro-
grams can take advantage of the 87. Why do you think that came
about? What might have made the 87 more popular?

Using BASIC’s INP and OUT commands, write a program to
blindly explore the PC’s ports. Do you find anything interesting?
In the Looking at an Interrupt Handler sidebar, we show how to
use the DEBUG U (unassemble) command. Try using it on the
PC’s built-in BASIC language, which is located at memory
address F600:0. (Note: this works on IBM models of the PC fam-
ily, but not on compatibles.)

97

7

The Memory Workbench

ow it’s time for us to get to know our computer’s memory. In
this chapter we’ll quickly look at what memory is and how
data is stored in it. Then we’ll look into the complex but
fascinating details of how our programs gain access to the
memory. We’ll see how the PC’s designers subdivided the memory into
different uses, and then we’ll take a look at two different kinds of additions
to the PC’s memory. Sounds like a lot—but it’s all intriguing.

7.1 Memory Overview

We already know, from earlier parts of this book, most of the underly-
ing ideas about our PC computer’s memory, so we really don’t need to
introduce you to the fundamentals of computer memory. But, to help make
sure that we’re on the right track, let’s pause briefly to summarize the key
things that we know about computer memory. Then we’ll be ready to dive
into the really interesting details of the memory’s ins and outs.

The computer’s memory is a scratchpad where working information—
which includes both program instructions and data—is kept while it is being
worked on. For the most part what’s in the computer’s memory is tempo-
rary working information, nothing permanent (for the exception, see the
discussion of read-only memory later in the chapter).

Our computer’s memory is organized into units of bytes, each made up
of eight bits. With eight On-Off, Yes-No bits in a byte, each byte can take
on 256 distinct values. No matter what kind of information we are storing
in the memory, it is coded in some particular pattern of bits, which are
interpreted in whatever way is appropriate to the kind of data. The same bit
pattern can be seen as a number, or a letter of the alphabet, or as a particu-
lar machine language instruction, depending upon how we interpret it. The
same memory bytes are used to record program instruction codes, numeric
data, or alphabetic data.

99

INSIDE THE IBM PC

While the computer’s memory is divided into bytes as its basic unit,
the bytes can be combined in any way that is needed to create larger aggre-
gates of information. One of the most important is called a word, which is
two bytes taken together to form a single 16-bit number. (For an interesting
side-light on that, see the sidebar How Words are Stored.) When we inter-
pret a series of bytes together as alphabetic text, it’s called a character
string. There are endless ways to combine bytes into meaningful data, but
these are some of the most important.

In order to be able to work with the computer’s memory, each byte of
the memory has an address, a number that uniquely identifies it. Most of
what we’ll be concerned with in this chapter is really just one aspect or
another of the memory’s addressing. The memory addresses are numbered
one by one, beginning with zero as the first address. The same numbers that
are used as computer data can also be used to specify memory addresses, so
that the computer can use its ability to do arithmetic to find its way through
its own memory. This integration of arithmetic, data, and memory address-
ing gives the computer an astonishingly compact and flexible power to
perform work for our benefit.

That’s the essence of the computer’s memory. Now, let’s uncover the
amazing workings of our PC family’s memory.

How Words are Stored

If you plan to do any exploring of the computer’s memory, or you’re
going to be working with assembly language, or if, like me, you just
want to know everything about your computer, you need to know
about what’s whimsically called back-words storage.

When we write down either numbers or names, we write it with
what’s called the most significant part first. That’s the part that
matters the most when we arrange names or numbers in order. In
the number ‘“1776’’, the ‘‘1’’ is the most significant, or high-order
part; in the name ‘‘California,’’ the *‘C’’ is the most significant
letter.

In our PC computers, it doesn’t go exactly that way. For character
string data, which is the format we’d use to store names like
“‘California’’—the most significant letter is stored first, in the
left-most byte (the byte with the lowest address), just the way we
write names. However, numbers are stored the other way around. For
numbers that take up more than one byte (such as a 16-bit, 2-byte
word number), the least significant byte is stored first. In effect, the
number we know as 1776 is stored in the computer as ‘‘6771.”’

100

7.1 MEMORY OVERVIEW

(Please don’t take that example too literally for reasons we’ll see in a
moment.)

This way of storing numbers has been called ‘‘back-words,”’ to
indicate that a word (a 16-bit, 2-byte integer) has its bytes stored
backwards from what we might expect. This doesn’t just apply to
2-byte words; it also applies to longer integer formats, such as 32-bit,
4-byte ‘‘long’’ integers. And it also applies inside the complex
bit-coding that’s used to represent floating-point numbers.

While our PCs can work with any numerical format, the one that
they use the most is the word format that occupies two bytes. That’s
because 16-bit words are used in every aspect of the PC’s memory
addressing (as we’ll see in more detail in Section 7.2) and because
16-bit words are the largest numbers that the PC’s instruction set
handles.

To explain the idea of back-words storage, I gave the example of the
(decimal) number 1776 written back-words as 6771. But that doesn’t
exactly tell us what’s going on. Back-words storage concerns binary
integers stored in reverse order byte-by-byte. When we see binary
integers written down, we see them in hex notation, which uses two
hex digits for each byte. For example, our decimal number 1776 in
hex is 06F0, when we write it front-wards. To write the same hex
number back-words, we don’t reverse the order of the individual hex
digits, we reverse the bytes (which are represented by pairs of
digits). Hex 06F0 back-words is FO06 with the two hex pairs (06 and
FO) reversed.

Knowing about this back-words storage is more that just a matter of
simple intellectual curiosity. Anytime you may be working with
computer data represented in hexadecimal, you have to be alert to
whether you’re seeing numbers represented front-wards (the way we
write them) or back-words (the way they are actually stored).
Generally speaking, whenever data is formatted for our consumption,
it will be in front-wards order; but whenever it’s being shown as
stored in the machine, it will be back-words. We have to be careful
that we don’t get confused about which way we’re seeing it.

Here’s an example of how we’d be shown a number in both forms. If
we work with some assembly language, using either DEBUG or the
Assembler, and we have an instruction to move the hex value 1234
into the AX register, we’d see something like this:

B8 3412 MOV AX, 1234H
On the right-hand side we see the number in human-oriented form,

frontwards (1234); on the left-hand side, we see the number as it’s
actually stored, back-words.

101

INSIDE THE IBM PC

7.2 Getting Into Memory

There’s a messy little problem inside the PC’s microprocessors, a prob-
lem that makes it complicated for our programs to find their way around the
computer’s memory. The problem centers around 16-bit arithmetic.

As we’ve seen, our PC’s microprocessor works best with 16-bit num-
bers that can range no larger than 65536, or 64K. Since the computer uses
numeric addresses to find its way through the memory, that suggests that
the memory can’t be bigger than 64K bytes. Experience has shown that
64K bytes is laughably too little memory for serious computer applications;
as we know, many of our PCs are equipped with ten times that amount,
640K. So how can we work our way into a bigger memory and still use
16-bit numbers to access it?

The solution that Intel designed into the 8086 microprocessor family
involves what are called segmented addresses. Segmented addresses are
built with two 16-bit words, combined in a way that allows them to address
1,048,576 (or roughly a million) bytes of memory. To see how it’s done,
we have to look at two things: the arithmetic that’s involved in combining
the two words of a segmented address, and the way these segmented
addresses are handled inside the microprocessor.

The arithmetic involves what we can call ‘‘shifted addition,”’” which
allows us to create a 20-bit binary number (which goes up to 1,048,578)
from two 16-bit numbers. Suppose we have two 16-bit words, which, in
hexadecimal, have the values ABCD and 1234. Remember that each hex
digit represents four bits, so four hex digits (ABCD or 1234) represent 16
bits altogether. We take one of these two numbers, say ABCD, and put a 0
on its end, like this: ABCDO. In effect this shifts the number over one hex
place (or four binary places), or we can say that it has multiplied the value
of the number by sixteen. The number is now five hex digits (or 20 bits)
long, which brings it up to the million range that we’re after. But, unfortu-
nately, it can’t serve as a complete 20-bit memory address, because it has a
0 at its end: it can only represent addresses that end in O, which are only
every sixteenth byte.

To complete the segmented addressing scheme, we take the other 16-bit
number (1234 in our example) and add it to the shifted number, like this:

ABCDO
+ 1234
ACFO04

When we combine these two 16-bit numbers like that, we end up with

102

7.2 GETTING INTO MEMORY

a 20-bit number that can take on any value from O through 1,048,577. And
that’s the arithmetic scheme that underlies the PC’s ability to work with a
million bytes of memory, using 16-bit numbers.

The two parts of this addressing scheme are called the segment part
and the offset part. In our example, ABCD is the segment value, and 1234
is the offset value. The segment part specifies a memory address that is a
multiple of 16, an address that has a hex O in its last place. These memory
addresses that are a multiple of 16 are called paragraph boundaries, or
segment paragraphs.

The offset part of a segmented address specifies some exact byte loca-
tion following the segment paragraph location. Since the 16-bit offset word
can range from O through 65,535 (or 64K), the offset part of the segmented
address allows us to work with 64K bytes of memory, all based on the same
segment address.

There is a standard way of writing down these segmented addresses,
which you will encounter often when you’re dealing with technical material
about the PC. It’s done like this: ABCD:1234. The segment part appears
first, then a colon, and then the offset part. If you do anything with assem-
bly language, or use the DEBUG program, you’ll see plenty of segmented
addresses written this way. If you look at the DEBUG listing that appears in
the sidebar The Interrupt Vector Table later in this chapter, you’ll find them
in the right-hand column.

Almost always when we talk about addresses inside our computer’s
memory, we’ll refer to them in their segmented form. But occasionally
we’ll need to see them in their final form, with the two parts of the seg-
mented address combined; whenever we need to do that, I'll be careful to
call them absolute addresses so that there is no confusion about what they
represent. In our example of combining ABCD and 1234, ACF04 is the
resulting absolute address.

That’s the arithmetic behind our computer’s segmented addressing
scheme. Now, how does it work inside the computer?

The segment part of segmented addresses is handled entirely by a set
of four special segment registers, which we mentioned in Chapter 6. Each
of the four is dedicated to locating the segment paragraph for a particular
purpose. The CS code segment register indicates where the program code
is. The DS data segment register locates the program’s main data. The ES
extra segment register supplements the DS data segment, so that data can
be shifted between two widely separated parts of memory. And the SS
stack segment register provides a base address for the computer’s stack.

Most of the time these segment registers are left unchanged, while our
programs waltz around within the base that’s set by the segment paragraph.

103

INSIDE THE IBM PC

Detailed addressing is done by working with the offset part of the address.
While the segment part of an address can only be used when it’s loaded into
one of the four segment registers, there is much greater flexibility in how
offsets can be used. Our programs can get their address offsets from a variety
of registers (such as the general-purpose registers AX, BX, etc, or the index-
ing registers SI and DI). Offsets can also be embedded in the program’s
actual machine language instructions; or offsets can be calculated by combin-
ing the contents of registers and the machine language instructions. There is
a great deal of flexibility in the way offsets can be handled.

The way that our PC’s microprocessor uses segmented addresses has
plenty of practical implications for the way our programs work. For an
important sidelight on that, see the sidebar Banging into 64K Limits.

Fortunately, the tedious details of working with segmented addresses
are kept out of our way as much as possible. For the most part only if we’re
doing assembly language programming will we have to bother ourselves
with the tricky problems of segmented addressing. However, if we want to
explore the idea of segmented addressing, BASIC gives us a way to do it.
The DEF SEG statement in BASIC gives us a way of specifying the seg-
ment part of a segmented address, and the number that’s used with the
PEEK and POKE statements provides an offset part that’s combined with
the DEF SEG’s segment part. So, if you want to try your hand at tinkering
with segmented addresses, you can do it with these features of BASIC. For
some examples of how it’s done, see some of the program listings in
Appendix A, particularly the ALL-CHAR program.

Banging into 64K Limits

Now and again you’ll encounter what are called 64K limits. For
example, when we use BASIC, we’re limited to a maximum of 64K
of combined program and data memory. Some other programs that
we use mention that they can handle no more than 64K of data at
one time. Some programming languages can’t build programs with
more than 64K of program code.

We know, of course, where the 64K number comes from: it’s the
maximum amount of memory that can be addressed with one
unchanging segment register value. The question is, why are we
restricted to one fixed segment pointer, and why do we encounter
such different types of 64K limitations?

The answer lies in something called the memory model, and it’s all

based on the degree of sophistication that a program has in
manipulating the segment registers.

104

7.3 THE PC’S MEMORY ORGANIZATION

When a program is running in the computer, it has to find its way to
both parts of the program and to its data. In simplified terms, each
program uses the CS code segment register to locate parts of the
program, and uses the DS data segment register to locate the data.
While the program is running, these registers can be treated as fixed
or changeable, independently. If either of them is fixed (that is, not
being changed by the program while it’s running), then that
component (program code, or data) can’t be any bigger than the 64K
that a single segment value can address. But if either can be
dynamically changed during the program’s operation, then there is no
such limit on the size of that component. If both are fixed, we have
the small memory model—which limits a program to 64K of code
and another 64K of data; with both changeable, we have the large
model, without the limits. In between we have two more models,
with one segment fixed and the other changeable.

The advantage of changing the segment registers (no 64K limits) is
obvious; the price isn’t so obvious, but it’s quite real. When a
program undertakes to manipulate the segment registers, it takes on
both an extra work load (which slows down the operation) and an
extra degree of memory management (which can complicate the
program’s logic). There is a clear tradeoff to be made between speed,
size, and simplicity on the one hand, and power on the other.

As it turns out, the design of our microprocessor’s instruction set
makes it relatively easy and efficient to change the CS register that
controls the program code, and relatively clumsy to control the data’s
DS register. So we find a fair number of programs that themselves
are bigger than 64K, but still work with only 64K of data at a time.

Fortunately for us all, both the art of programming the PC and the
PC’s programming languages are becoming increasingly
sophisticated, so less and less often do we hit the 64K limit.

And what about BASIC? Why does it have a single limit of 64K for
program and data, combined? BASIC is a special case. When we use
BASIC, the actual program that’s running in the computer is the
BASIC interpreter. To the BASIC interpreter, our BASIC
‘‘program’’ and its data are accessed with one 64K data segment.
That’s why BASIC has a quite distinct kind of size limit.

7.3 The PC’s Memory Organization

One of the most useful things we can learn about the inner workings of

our PCs is how the memory is organized and used. Knowing this helps us
understand how the PC works, comprehend what many of the practical
limits are on the kinds of work the PC can undertake, know how the display
screens work, and also learn the basis for the often-mentioned but lit-

105

INSIDE THE IBM PC

tle-understood 640K memory limit in the PC. All of that, and more, will
become clear when we take a look at the basic organization of the PC’s
memory space.

We know, from seeing how the PC addresses memory through its
segment registers, that there is a fundamental limit on the range of memory
addresses that the PC can work with: a million different addresses, each
representing a distinct byte of memory. That means that the PC has an
address space of a million bytes.

A computer’s address space is its potential for using memory, which
isn’t the same thing as the memory that the computer actually has. How-
ever, the basic address space provides a framework for the organization of
the computer’s workings. When the designers of a computer figure out how
it’s going to be laid out, the scheme for the address space is a very impor-
tant part of it. So let’s see how the PC’s designers laid out the use of the
PC’s address space.

The easiest way to see it is to start by dividing the entire 1 megabyte
address space into 16 blocks of 64K eath. We can identify each of these
blocks of memory by the high-order hex digit that all addresses in that
block share. So, the first 64K of memory we can call the O block, since all
addresses in that block are like this Oxxxx (in five-digit absolute address
notation) or like this Oxxx:xxxx (in segmented address notation). Likewise,
the second block is the 1-block, since all addresses in that 64K begin with
1. In the 1 meg address space, there are 16 blocks of 64K, which we’ll call
the O-block through the F-block.

It’s very important to note, when we’re talking about these blocks, that
there is not a barrier of any kind between the blocks. Memory addresses
and data flow in smooth succession through all of memory, and across the
artificial boundaries that separate these blocks. We refer to them as distinct
blocks partly for convenience, but mostly because the overall scheme for

the use of the PC’s one megabyte of memory is organized in terms of these
blocks.

Low-Memory Goodies

The very lowest part of our computer’s memory is set aside for some
important uses that are fundamental to the operation of the computer.
There are three main divisions to this special use of low memory.

The first is the interrupt vector tables, which define where
interrupt-handling routines are located. The first 1024 bytes of
memory is set aside for the interrupt vector tables, with room for 256
distinct interrupts—quite a few more than are routinely used. This

106

7.3 THE PC’S MEMORY ORGANIZATION

occupies absolute memory addresses O to hex 400. (You can learn
more about this area in The Interrupt Vector Table sidebar later in
this chapter.)

The second area is used as a workplace for the ROM-BIOS routines.
Since the ROM-BIOS supervises the fundamental operation of the
computer and its parts, it needs some memory area for its own
record-keeping. This is the ROM-BIOS data area, one of the most
fascinating parts of the computer’s memory. Among the many things
stored in the ROM-BIOS data area is a buffer that holds keystrokes
we’ve typed before our programs are ready to receive them, a note of
how much memory the computer has, a record of the main
equipment installed in the computer, and also an indicator of the
display screen mode, which we’ll cover in a later chapter (if you take
a close look at the ALL-CHAR program in Appendix A, you’ll find
the program inspecting and using the display mode).

An area of 256 bytes is set aside for the ROM-BIOS data area in
absolute memory addresses hex 400 to 500. There are amazing things
to find inside this area. If you want to learn more about them, there
are three places you can look: one is in the ROM-BIOS listing that’s
a part of IBM’s Technical Reference manual for the PCs; another,
where you’ll find a detailed discussion of virtually every byte, is my
Programmer’s Guide to the PC Family; the third is Brett Salter’s
Pecks 'n’ Pokes.

The third part of the special low memory area is the DOS and BASIC
work area, which extends for 256 bytes from absolute address hex
500 to 600. This region is shared by both DOS and BASIC as a
work area, similar to the ROM-BIOS work area that precedes it.
You’ll find some facts about the contents of this area in the same
three sources I mentioned before, but the information that’s available
is not as complete as it is for the ROM-BIOS.

This low memory area is just loaded with goodies for the interested
explorer. Anyone who wants to know a lot about the inner workings
of the PC can get a graduate education in PC tinkering simply by
digging deeply into this part of memory.

The key working area of memory is the part that’s used for our pro-

grams and their data: that’s the area made up of the first ten blocks, the 0-
through 9-blocks. This area is often called the user memory area, to distin-
guish it from the rest of the address space, which is, one way or another, at
the service of the computer system itself. When we talk about the amount
of memory that our PC computers have, what we’re really talking about is
the amount of user memory that’s installed in this area. In theory it could be
as little as just 16K (a quarter of the first 64K block) or as much as 640K
with all ten blocks of memory installed. Whatever amount of memory is

107

INSIDE THE IBM PC

installed in our computers forms one contiguous chunk, from the 0-block to
wherever the end of the memory is.

There are actually several different kinds of memory (as we’ll learn
more about later), and the kind that’s installed here is regular read/write
Random Access Memory, which is often called simply RAM. Two things
characterize RAM memory: first, as read/write memory it can have the data
in it inspected (read) and changed (written); second, it is volatile, which
means that the data in it is preserved only as long as the computer is
running.

0-block 1st 64K Ordinary user memory to 64K
1-block 2nd 64K Ordinary user memory to 128K
2-block 3rd 64K Ordinary user memory to 192K
3-block 4th 64K Ordinary user memory to 256K
4-block 5th 64K Ordinary user memory to 320K
5-block 6th 64K Ordinary user memory to 384K
6-block 7th 64K Ordinary user memory to 448K
7-block 8th 64K Ordinary user memory to 512K
8-block 9th 64K Ordinary user memory to 576K
9-block 10th 64K Ordinary user memory to 640K
A-block 11th 64K Extended video memory
B-block 12th 64K Standard video memory

C-block 13th 64K ROM expansion (XT, EGA, 3270 PC)
D-block 14th 64K other use (PCjr cartridges)
E-block 15th 64K other use (PCjr cartridges)
F-block 16th 64K System ROM-BIOS and ROM-BASIC

Figure 7-1. The PC’s memory blocks.

This memory is dedicated to holding our programs and data while the
computer is working with them. The amount of RAM memory installed
here in many ways determines the size and scope of the problems that our
computers can undertake.

The basic design of the PC family sets aside only ten of the total
sixteen blocks in the address space for this main working memory area.
That’s just over 60 percent of the total. Today, that 640K area seems much
too small for the problems we want to hand our PCs, but at the time that the
PC was being designed it seemed like a very generous amount. At that
time, typical personal computers were limited to perhaps 64 or 128K total
memory, and the PC’s 640K seemed enormous then. (This is a mistake that
has occurred over and over again in the history of computing: underesti-
mating the need for growth and expansion in the computer.)

108

7.3 THE PC’S MEMORY ORGANIZATION

It is possible to expand the 640K user memory area slightly by
encroaching on some of the system area that follows, but that isn’t really
wise because the memory blocks that come after the 640K user area are
reserved for some special uses, which we’ll see shortly, that should not be
sabotaged.

Not every single bit of the user memory area is actually available for
our programs to use. The very first part of it, beginning at memory address
0, is set aside for some essential record-keeping that the computer has to
have. You find a discussion of that in the Low-Memory Goodies sidebar,
and some deeper technical information about one part of it in The Interrupt
Vector Table sidebar. But, except for that small (and interesting) part, this
entire 640K section of memory is set aside for use by our programs—and,
as such, there’s really not much to say about it. On the other hand, the rest
of the memory blocks have some very fascinating details for us to discuss.

TECHNICAL BACKGROUND | 1 1 H H H I

The Interrupt Vector Table

When we introduced interrupts in Chapter 6, I explained that the
interrupt mechanism causes the current program to be put on hold,
while an interrupt-handling program is activated. The microprocessor
needs a simple and straightforward way to find where the interrupt
handler is, and that’s accomplished using the interrupt vector table.
It’s a very simple table of the addresses of the interrupt-handling
routines stored beginning with the ‘‘vector’’ for interrupt number 0 at
memory location 0. Each vector address is four bytes long; the vector
for any interrupt number x is simply found at memory location x
times 4.

The *‘vectors’” are simply the complete memory address, in
segmented form, of the routine to be activated when the interrupt
occurs. A segmented address is made up of a pair of 2-byte words,
so we can see why the vectors are four bytes each.

You can inspect the interrupt vector table in your computer very
easily by using DEBUG. Use the D-display command to show the
beginning of memory like this: D 0:0. DEBUG will show you the
first 128 bytes, or 32 vectors, which look something like this:

0000: 0000 E8 4E 9A 01 00 00 00 00-C3 E2 00 FO 00 00 00 00
0000: 0010 FO 01 70 00 54 FF 00 F0-05 18 00 FO 05 18 00 FO
0000: 0020 2C 08 51 17 DO 0A 51 17-AD 08 54 08 E8 05 01 2F
0000: 0030 FA 05 01 2F 05 18 00 F0-57 EF 00 FO FO 01 70 00
0000:0040 90 13 C7 13 4D F8 00 F0-41 F8 00 FO 3E 0A 51 17

109

INSIDE THE IBM PC

0000: 0050 5C 00 B7 25 59 F8 00 FO-E2 0A 51 17 9C 00 B7 25
0000:0060 00 00 00 F6 8E 00 DE 09-6E FE 00 FO F2 00 7B 09
0000:0070 27 08 51 17 A4 FO0 00 F0-22 05 00 00 00 00 00 FO

The vectors are stored back-words, the offset followed by the
segment. For example, the first four bytes that DEBUG shows
above (E8 4E 9A 01) can be translated into the segmented address
019A:4EES.

Generally we’ll find three kinds of addresses in the vector table.
They’ll be ones that point to the ROM-BIOS, which we can identify
by a hex F leading the segment number. They’ll be ones that point
into main memory, like our example of 019A:4EE8. These may be
pointing to routines in DOS, or in a resident program (e.g., Sidekick
or Prokey), or they may point into DEBUG itself (because DEBUG
needs to have temporary control of the interrupt). Finally, the
vectors may be all 0, because that interrupt number is not currently
being handled. You’ll notice that the second interrupt vector (for
interrupt number 1) in our display above is like that.

If you want to, you can chase down any of the interrupt-handling
routines by first decoding their interrupt vectors (as we showed
above), and then feeding that segmented address to DEBUG’s
U-unassemble command in order to inspect the program code inside
the interrupt handler.

Immediately following the user memory area is a 128K area, consist-
ing of the A- and B-blocks, that is set aside for use by the display screens.
The data that appears on the screens of our computers has to be stored
somewhere, and the best place to store it turns out to be in our computer’s
own memory address space. The reason why that’s such a good idea is that
it makes it possible for our programs to very quickly and easily manipulate
the display screen data. So, to make that possible, the 128K area of the A-
and B-blocks is set aside for the display screen’s own data. (In Chapters
11-14 we’ll take an in-depth look at the how the display screens work, and
how they use this memory. Until then, it’s enough for us to know that what
appears on our screens is recorded in this part of memory.)

In the original PC design, only part of the B-block was actually used
for the display screens; the A-block was reserved but not used. This is why
it has been possible for some PCs to have an additional 64K of user mem-
ory installed, encroaching on the A-block. This has never been a wise thing
to do, though, because it broke an important design convention of the PC
family. The first official use of the A-block came with the appearance of

110

7.3 THE PC’S MEMORY ORGANIZATION

the IBM Enhanced Graphics Adapter, which needed more working display
memory than the previous display adapters.

The memory that is installed for use by the display screens operates
just like the conventional RAM user memory. Normally, it has one extra
feature which helps speed the operation of our computer: there are two
circuit doorways into it, so that both our programs (using the microproces-
sor) and the display screen can simultaneously wosk with it, without inter-
fering with each other.

After the display memory area comes three blocks, C through E,
which are set aside for some special uses. They are rather nebulously called
the ‘“‘ROM extension area.”’ There is no hard-and-fast assignment for this
memory area. Instead, it is used for a variety of purposes that have arisen in
the evolving history of the PC family. One use, which gives this section its
name, is as a growth area for the very last section of memory, the
ROM-BIOS which occupies the final F-block. When new equipment is
added to the PC family and it requires built-in software support, the addi-
tional ROM-BIOS programs are added here. That, for example, is how the
XT model’s hard disk was accommodated, using a small part of the
C-block.

Another use for the ROM extension area, which we have only seen in
the PCjr, is as a home for removable software cartridges. Software car-
tridges have programs recorded on them, and when they are plugged into
the computer they have to appear somewhere in memory. In the PCjr the D-
and E-blocks are used for this purpose.

A third use for the ROM extension area, one which was not designed
by IBM, is to support ‘‘extended memory,’”’ which we’ll discuss shortly in
Section 7.4.

The final part of the PC family’s memory address space is the F-block,
which is used to hold the computer’s built-in ROM-BIOS programs. The
memory used here (and in the PCjr’s software cartridges) is a special kind
known as Read-Only-Memory, or ROM. ROM memory is permanently
recorded, so that it can’t be written to or changed by our programs, and it
isn’t volatile so turning off the computer does not disturb it. As you can
see, ROM is very different than the RAM we discussed earlier, although
their names are all too easy to confuse.

The ROM-BIOS holds a key set of programs that provide very essen-
tial support for the whole operation of the computer. There are three main
parts to the ROM-BIOS programs. The first part is used only when the
computer is turned on: these are test and initialization programs that make
sure our computer is in good working order. The delay between when we
turn on the computer and when it starts working for us is mostly taken up

111

INSIDE THE IBM PC

by the operation of these test and initialization programs, which are some-
times called the POST, Power-On Self-Test.

The second and most interesting part of the ROM-BIOS are the rou-
tines that are properly called the Basic Input/Output Services, or BIOS.
These programs provide the detailed and intimate control of the various
parts of the computer, particularly the I/O peripherals, such as the disk
drives, which require careful supervision (including exhaustive checking
for errors). The ROM-BIOS, to help support the whole operation of the
computer, provides a very long list of services that are available for use
both by the computer’s operating system (DOS) and by our application
programs. We’ll have much to say about this part of the ROM-BIOS
throughout the rest of the book.

The third part of the ROM-BIOS, which applies only to the members
of the PC family made by IBM, is the built-in ROM-BASIC (also called
Cassette BASIC). This is the core of the BASIC programming language,
and it can be used either by itself, or it can serve (invisibly to us) as part of
the disk-oriented BASIC that comes with DOS.

All of the ROM-BIOS routines are contained very compactly within
the 64K F-block of memory. The amount of this block that is used varies
from model to model in the PC family, since some of them require more
program support than others. For example, the PCjr probably has the most
programming packed into this area, because the jr uses inexpensive soft-
ware to perform tasks that other models handle with more costly hardware.
Generally the more complex the model, the more software gets crammed
into the ROM-BIOS; so the advanced AT has quite a bit more than the
original PC.

If we care to, we can explore and experiment with any and all of these
sections of memory. For example, I happen to know that the ROM-BASIC
program is located at the segmented memory address F600:0000 in all the
IBM models of the PC family. Knowing this, we can use the DEBUG
program to display some of the program code, and see the messages that are
hidden inside of BASIC. To do this, we can just fire up DEBUG, and give
it the command D F600:0000. That will show us the first part of BASIC’s
code; if we give DEBUG the command D (without typing anything else),
DEBUG will show us successive chunks of BASIC until it starts to reveal
BASIC’s hidden messages.

In fact, if we want to, we can write a short BASIC program that will
hunt through all of the ROM-BIOS looking for messages. In Appendix A
you’ll find the listing for a short program called MSG-HUNT that hunts
through the whole F-block, looking for a string of five letters or punctua-
tion characters in a row; when it finds them, it displays them, and goes on

112

7.3 THE PC’S MEMORY ORGANIZATION

hunting. If you’d like to learn more about what’s inside your computer’s
ROM-BIOS, try MSG-HUNT.

There’s one final and quite interesting thing to know about the
ROM-BIOS. IBM places an identifying date at the end of the BIOS. We
can inspect that date if we want to. It’s interesting to see because it tells us
essentially when the ROM-BIOS for our machine was finished. It can also
be used to identify the revisions to the ROM-BIOS that IBM makes on rare
occasions. This simple BASIC program will root out the date stamp, and
show it to us, if it is there:

10 ' Display ROM-BIOS date

20 DEF SEG = &HFFFF

30 DATE. $ = ""

40 FOR I = 5 TO 12

50 DATE.$ = DATE.$ + CHR$ (PEEK (I))

60 NEXT

70 IF PEEK (7) <> ASC("/") THEN DATE.$ = "missing"
80 PRINT "The ROM-BIOS date is ";DATE. $

While all of the IBM-made members of the PC family have this date
stamp, most of the non-IBM family members do not, including the Compaq
models. However, you’ll find that some makers of PC-compatible com-
puters have been nice enough to include the date stamp in their machines.
Panasonic’s Senior Partner is one such computer.

In addition to the date stamp, IBM has created a loosely defined model
ID code, which can be used by programs that need to know when they are
running on some of the more different models of the family. This simple
BASIC program displays the ID byte:

10 ' Display machine id byte

20 DEF SEG = &HFFFF

30 ID = PEEK (14)

40 PRINT "The id byte is"; ID; "hex '";HEXS$ (ID)

The original PC model had an ID byte of hex FF. The FE code is
sometimes called the XT code, but it can be found on a variety of models,
including the XT and the Portable PC. The distinct PCjr has an ID byte of
FD; the PCjr is sufficiently different from the other models that some
programs identify the jr’s ID byte, and adjust their operation to be more
ideal for the jr. Likewise, the AT model is identified by a byte code of
FC.

Since each model of computer has its own subtle but distinct character-
istics, it can be beneficial for programs to make appropriate adjustments in
the way they operate based on the machine ID. From this point of view, it’s

113

INSIDE THE IBM PC

unfortunate that the most important of the non-IBM members of the family
cannot be easily identified by either a model ID byte or by the ROM-BIOS
date. But, that’s the way things go.

7.4 Into Extended Memory

While the regular members of the PC family are limited to addressing
only one megabyte of memory by the fundamental design of the 8088
microprocessor that they are based on, the AT branch of the family, which
uses the 286 microprocessor, can work with much more memory.

As we mentioned in our discussion of the 286 at the end of Chapter 6,
286-based computers can have up to 16 megabytes of actual memory in
them. Interestingly enough, that is exactly the same memory limit applied
for many years to IBM’s huge multimillion-dollar mainframe computers.
It’s amazing to think that IBM’s mighty mainframes had no more capacity
than our little microprocessors.

In addition to the ability to accommodate large amounts of real work-
ing memory, the AT’s 286 can also provide vast amounts of virtual mem-
ory, a clever simulation of more memory than is actually present. (See the
How Virtual Memory Works sidebar.) The AT’s virtual memory can pro-
vide up to one gigabyte (1024 megabytes) of virtual memory for each and
every program that’s running in the computer.

Bear in mind that the address space designed into a microprocessor,
like the 286, is one thing, and a specific computer’s ability to use that
address space is another thing. While the 286 allows for 16 megs of mem-
ory, the IBM AT model has an official limit of 3 megs of actual memory.

To take full advantage of either the AT’s extended memory or virtual
memory requires an operating system environment (and accompanying pro-
grams) that is designed for those features. Since the original PC and the
PC’s mainstream operating system DOS were not developed with extended
and virtual memory in mind, the potential of these features will remain
largely untapped, until we see a new generation of operating system and
application software built with the AT in mind.

However, it is still possible for a program to make some use of the AT
extended memory. The standard way to do that is for a program to use
some of the services provided by the computer’s built-in ROM-BIOS pro-
grams. One of these services transfers blocks of data, in whatever size we
need, between the special extended memory and the conventional memory.
It’s also possible for a program to switch the 286 microprocessor from real
mode (in which it acts like a regular 8088) into its protected mode. How-

114

7.4 INTO EXTENDED MEMORY

ever, a'program has to be more sophisticated to successfully manipulate
protected mode. If all a program wants to do is to benefit from the extended
memory, it can just use the memory transfer service that the BIOS pro-
vides, and avoid all the complications of protected mode.

We have an example readily at hand of a program that uses the BIOS’s
transfer service to use an AT’s extended memory: the virtual disk utility
called VDISK, which has been a part of DOS since version 3.0. When
VDISK is activated with the extended memory, it uses the BIOS transfer
service to move data into and out of extended memory without VDISK
needing to work in protected mode or directly manipulate the extended
memory area. If you want to see how VDISK accesses and manages the

REAL MEMORY

Holding active

parts of virtual

Program memory
uses

virtual

memory

L
A

VIRTUAL
MEMORY

DISK
Storing parts
of virtual
memory

Figure 7-2. Virtual memory.

115

INSIDE THE IBM PC

extended memory, you can find out by looking at the assembler listing of
the program, which comes with the DOS diskettes.

How Virtual Memory Works

Virtual memory is a sleight-of-hand operation that involves some
carefully orchestrated cooperation between the microprocessor, a
virtual memory support program, and the computer’s disk. It
essentially works like this.

When a program is being set up to run in the computer, the operating
system creates a ‘‘virtual memory space,”’ which is a model of the
amount of memory and the memory addresses that the program has at
its disposal. Then, a portion of the computer’s ‘‘real’’ or actual,
physical memory is given over to the sleight-of-hand operation that is
the core of the virtual memory concept. Using a feature that’s an
integral part of the 286 microprocessor, the operating system’s virtual
memory support program tells the 286 to make the real memory
that’s being assigned to the program appear to be at some other
address, the virtual address that the program will be using. A
‘‘memory mapping’’ feature in the 286 makes the real memory
appear to have a different working memory address than its true, real
address.

So far what we’ve described is just a shuffling act, a trick that makes
some real memory addresses appear to be, and work as, some other
virtual addresses. The most important part of virtual memory comes
in the next step, when our programs try to use more virtual memory
than there is real memory.

A program starts out with some of its (large) virtual memory space
mapped into a part of the computer’s (smaller) real memory. As long
as the program is only working with that part of its virtual memory,
all goes well. The program is actually using different locations in
memory than it thinks it is, but that doesn’t matter. What happens
when the program tries to use some of the large virtual memory that
hasn’t been assigned a part of the smaller real memory? When that
occurs, the microprocessor’s mapping table discovers that the
program is trying to use an address that doesn’t currently exist; the
microprocessor generates what is called a page fault.

When there is a page fault—indicating that a program is trying to use
a virtual address that isn’t actively mapped into real memory—a
special virtual memory support program swings into action. It
temporarily places the program on hold while it deals with this crisis.
The support program chooses some part of the virtual memory that is
currently in real memory, and saves its contents temporarily onto the
disk; that’s called swapping out. That part of the real memory is
recycled to act as the newly-needed part of the virtual memory.

116

7.5 MEMORY BANKS AND EXPANDED MEMORY

When the swapped-out part of memory is needed again, it’s
swapped-in, copied back from disk.

As you can see, the computer’s disk is used as a warehouse to store
the parts of virtual memory that aren’t in current use.

Depending upon how things go, the virtual memory operation can
either run very smoothly, or it can involve so much swapping in and
out of memory that too much time is spent waiting to swap between
memory and disk. When this happens, it’s called thrashing; when a
virtual memory system starts thrashing, very little work gets done.

The practical operation of a virtual memory system can involve a
very sensitive balancing act known as system tuning. Our
microcomputers can benefit from a moderate and careful use of
virtual memory, but they are too small and too slow to get into the
heavy use of this powerful concept..

7.5 Memory Banks and Expanded Memory

While the future of the PC family’s evolution belongs to the 286
microprocessor-based AT branch of the family, the past and present are
dominated by the literally millions of 8088-based PCs. The ATs may have
access to vast amounts of extended memory, but a PC is limited to only
addressing one million bytes of storage, and only using 640K of that for
working programs and data. When PCs get into heavy-duty use, that’s just
too little memory.

Fortunately there is a solution to the problem of the PC’s memory
limitation, based on an idea called bank-switched memory.

Bank-switching allows the computer to actually have more memory
than it has room for in the microprocessor’s 1-meg memory address space.
The memory is physically in the computer, but it’s not firmly assigned any
place in the microprocessor’s address space. Instead, the memory is in a
kind of limbo, without an address, inaccessible to our programs until it is
switched on.

The circuit boards for this special kind of bank-switched memory
allow the addressing of the memory to be turned on and off at will, and
moved around at will. For example, a bank-switched memory board might
contain eight ‘‘banks’’ of memory, each of them 64K (for a total of 512K).
All of these 64K blocks share a single 64K address block in the computer’s
memory. At any instant, only one of eight banks can be active, with its data
accessible, while the others will be on hold.

The benefit of bank-switching is that it allows more memory to be
attached to the computer, memory that is instantly accessible. All that it

117

INSIDE THE IBM PC

takes to switch a bank into place is to send a command to the memory
circuit board, telling it to change the addressing of the banks. The switch
takes place as quickly as an instruction can execute—with no delay at all.

There are complications, though, in using bank-switched memory.
Unlike the computer’s conventional memory, bank-switched memory
requires active management, to make sure that the right pieces are available .
at the right times. The need for that management—and a standard way of
performing it—held back the use of bank-switching until the software giant
Lotus and the microprocessor chip wizards at Intel teamed up to define a
standard way of working with bank-switched memory. Officially this
bank-switched approach is called the Lotus/Intel/Microsoft Expanded
Memory Specification, but many people refer to it by the name of Intel’s
own memory board design for the specification, ‘‘Above Board.”’

(To avoid problems, let me pause to note that the variety of
bank-switched memory we’re talking about here is called expanded mem-
ory, while the AT’s special memory that goes beyond 1 megabyte is called
extended memory. The two terms expanded and extended are easy to con-
fuse, so be careful.)

Here’s how the expanded memory works. It operates in three parts:
one piece of hardware (the bank-switched memory board), and two pieces
of software (the expanded memory manager—known as the EMM—and the
application program that uses the memory). The bank-switched memory
board—which could be Intel’s Above Board or any similar memory
board—provides anywhere from 64K up to 8 megabytes of memory, subdi-
vided into small 16K pages that can be individually readdressed through
bank-switching.

The EMM memory manager program is activated when the computer is
first started up, and it lays the groundwork for the expanded memory’s
operation. A key part of its task is to find an unused area in the PC’s memory
space, which it can use to map the bank-switched memory into. It requires a
full 64K work area, called a page frame, but it’s flexible about where the
page frame is located. As we can readily see from looking at the PC’s
general memory allocation (see Figure 7-1), the D and E blocks of memory
are obviously good candidates; however, the EMM can place the page frame
in the C block as well. The exact location doesn’t matter, as long as it
doesn’t interfere with any other use of the memory address space. Also, the
64K page frame doesn’t have to be placed on a memory block boundary. For
example, it can begin at the segment address C400 and extend up through the
rest of the C block and into the first 16K of the D block.

Once the EMM has established where its 64K page frame will be
located, it divides the frame into four 16K windows. After that, it’s ready for

118

7.5 MEMORY BANKS AND EXPANDED MEMORY

action, ready to supply any application program that knows how to use it
with the service of swapping memory data in and out of the 16K windows.

To use the expanded memory, an application program tells the EMM
that it needs to use one or more of the four available windows. The applica-
tion can ask the EMM supervisor to assign memory pages to it, and then to
make those pages accessible by bank-switching them into the window area.
As the application program needs to work with different 16K pages of data,
it asks the EMM to switch different pages into place. Figure 7-3 illustrates
how this works.

EXPANDED
MEMORY

MAIN
MEMORY

— —
0 640K Windows

Figure 7-3. Expanded memory.

While this scheme is very powerful and also very fast, it does have
some obvious limitations. One is that it can only be used for a program’s
data, and not for the program code itself. DOS still has to find sufficient
room in the conventional memory area to hold large programs, but once
those programs are running in conventional memory, they can take advan-
tage of expanded memory to work with more data than can be accommo-
dated in the conventional memory. Another obvious drawback to expanded
memory is that to use it a program must know how to work together with
the expanded memory manager, EMM, and it must know how to conve-
niently work with its data fragmented into 16K pages. Within these limita-
tions, though, the expanded memory scheme can greatly enhance our
computer’s ability to work with large amounts of data.

This expanded memory scheme can be added to any regular member of
the PC family, including the AT wing of the family. While the ATs can have

119

INSIDE THE IBM PC

their own extended memory that goes beyond the PC’s 1-meg limit, they can
also use expanded memory within the regular 1-meg address space.

Some Things To Try

1.

120

Explain why the segmented addresses 1234:0005, 1230:0045,
1200:0345, and 1000:2345 all refer to the same memory location.
Which of these refers to a different location than the other two:
A321:789A, A657:453A, and A296:824A? Is there an ideal way
to divide up the two halves of a segmented address?

Using the DEBUG program’s U-unassemble instruction, unas-
semble some of your computer’s ROM-BIOS (for example, like
this: U F000:A000 L 100); then pick out the examples of
back-words storage that appear.

How could you write a program in BASIC that will find out how
much memory is installed in the computer by experimental
means? Can this operation disrupt the computer? Write such a
program and see what happens. (Incidentally, you’ll find a very
fast version of such a test in the ‘‘System Information’’ program
that is a part of my Norton Utilities program set.)

What do you think are the advantages and limitations of the
Above Board approach to bank-switched memory? What does a
program have to do to take advantage of it? What might the
problems be for a program to work with windows of data that are
16K bytes each?

If you try using the MSG-HUNT program, which searches
through the ROM-BIOS looking for messages, you’ll find that it
gives some false alarms; for example, one ‘‘message’’ that it
detects on my computer is ‘‘t’(.u”’—nothing very fascinating or
meaningful. That’s because the program accepts as candidate
message characters anything from a blank to a lowercase z. That
allows us to capture punctuation inside of a message, but it also
finds spurious messages, like the one above, that are mostly punc-
tuation characters. What sort of test can we add to the program to
filter out this nonsense? Try adding such a filter to MSG-HUNT;
experiment with making your rules for an acceptable message
tighter or looser, and see what the result is.

8

Disks:
The Basic Story

ere we’re going to begin a three-chapter odyssey exploring
our computer’s disks. Only one other aspect of our computers
(the display screen) is as richly varied and has as many fasci-
nating aspects as the disks.

Since everything we use on our computers—all our programs and all
our data—makes its home on our disks, understanding the disk storage in
our computers has a great deal of practical importance to us besides just
being so downright interesting.

It’s worth knowing, at this point, how we’ll be dividing up the subject
of disks into these three chapters. Here we’ll get the basics down so that we
have a clear idea of just what a disk is. Since we use our disks under the
supervision of DOS, the Disk Operating System, in Chapter 9, we’ll look at
our disks from the DOS perspective, seeing how DOS views them. In
Chapter 10, we’ll wrap up our discussion by inspecting some of the deeper
details of disks.

We begin now with the basics of disk storage.

8.1 Basic Disk Ideas

The disk storage that our computers use is based on two things: a
recording technology and a quick-access design scheme.

The technology is magnetic recording, the same method that’s used in
all the various forms of magnetic tape that we know about—from music
cassettes to video cassette recorders (VCRs). The basis of magnetic record-
ing lies in the fact that iron, and some other materials, can be magnetized.
You probably remember from childhood science lessons in school how an
iron bar becomes magnetized if we direct a magnetic field over it. The
magnetic field is, in a crude sense, recorded on the iron. All of our sophis-
ticated magnetic recording is nothing more than a refinement of that simple
science lesson.

121

INSIDE THE IBM PC

Magnetic recording was first and most widely used to record sound,
which is an analog form of information. Only later was magnetic recording
adapted for the digital recording that our computers require. That’s ironic,
because magnetic recording is essentially binary (magnetized or not), or
digital in nature.

Digital magnetic recording is done on a surface of magnetically sensi-
tive material, usually a form of iron oxide that gives magnetic media their
characteristic rust-brown color. The magnetic coating is quite thin—in fact,
the thinner it is, the better it works. It’s coated onto some supporting
material, usually flexible mylar plastic for recording tape and diskettes, or
rigid aluminum platters for so-called hard disks.

Disk Turns
4_——\

Head Moves
In and Out

Figure 8-1. Disk direct access.

Whether we’re talking about tapes or disks, the way the information is
recorded onto the magnetic surface is the same. The surface is treated as an
array of dot positions, each of which is treated as a bit that will be set to the
magnetic equivalent of 0 or 1. Since the location of these dot positions isn’t
precisely determined, the recording scheme involves some ‘‘ready-set-go’’
markings that help the recorder to find and match up with the recording
positions. The need for these synchronizing marks is part of the reason why
our disks have to be ‘‘formatted’’ before we can use them.

That’s the essence of the recording technology that I said was one of
the two things that formed the basis for our computer’s disk storage. The
other is the quick-access design scheme of a disk.

122

8.1 BASIC DISK IDEAS

A magnetic tape is essentially linear because information has to be
recorded on it front to back; there’s no quick and easy way to skip to the
middle of a tape, short of just running through the length of it. A rotating
disk, however, is another matter.

There are two things about a disk that make it possible to get to any
part of the surface quickly. The first is the disk’s rotation. In a very short
time the disk spins around so that any part of its circumference passes by
without much delay. It’s quicker than you might think. A diskette spins at
300 RPM, which means it takes at most one-fifth of a second for any
desired part to swing into place; for a hard disk it’s about 3600 RPM, or
one-sixtieth of a second per rotation.

The other part of finding our way on the surface of a disk is the
movement of the magnetic recording head, which corresponds to the tone
arm of a phonograph player, across the disk from outside to inside. For a
diskette it takes an average of about one-sixth of a second to move to any
desired location; for a hard disk, around 1/25th of a second.

When we combine the two factors—moving the read/write magnetic
recording head across the disk surface, and rotating the disk into position
under the head—we see that we can get to any part of the disk very quickly.
That’s why computer disks are called random access storage, because we
can get to (access) any part of the recorded data directly, randomly, without
having to pass through the whole set of information sequentially, as we
would with a tape recording.

If you want to roughly understand how computer data is stored on a
disk, the analogy of a phonograph record and player gives you an approxi-
mate idea of what it’s like. But there are some important differences that
make the analogy only a crude one.

On a phonograph record, the sound is recorded in one continuous
spiral groove. That makes it, like a tape, actually a linear medium,
although we can easily skip from one part of the record to another. Our
magnetic disks, on the other hand, are actually recorded in a series of
concentric circles, unconnected to each other.

In computer terminology, each of the concentric circles of a disk is
called a track. The disk surface is divided into these distinct track/circles,
starting from the outer edge of the disk, where the first track is located, to
the innermost track. The number of tracks varies with the type of disk.
Conventional diskettes, of the type that’s called double-density, have 40
tracks; quad-density diskettes, including the AT’s high-capacity diskettes
and other quad-density types, have 80 tracks. Hard disks typically have
around 300 to 600 tracks. The tracks, however many there are, are identi-
fied by number, starting with track zero as the outermost track.

123

INSIDE THE IBM PC

You might expect that the tracks spread across most of the width of the
recording surface, but they don’t; they cover a surprisingly small area. For
both double- and quad-density diskettes, the space between the first and last
track is just over three-quarters of an inch (or almost exactly 2 CM). In
technical terms, a double-density diskette is recorded with 48 tracks per
inch, and quad-density is recorded at 96 tracks per inch. (In the technical
literature, tracks per inch is often abbreviated TPI; if you run into that term,
you’ll now know what it is.)

Just as the width of a disk surface is divided into distinct tracks, so the
circumference of a track is divided into parts, called sectors. The type of
the disk and its format determine how many sectors there are in a circular
track: usually it’s eight or nine for regular diskettes, 15 for high-capacity
diskettes, and 17 for the hard disks that are normally used with the PC
family.

Sectors are all a fixed size on any given disk. Our PCs can handle a
variety of sector sizes, from ones as small as 128 bytes to as large as 1024
bytes; however, 512-byte sectors have become a fixed standard size that is
all-but-never deviated from.

All of the reading and writing of data that our computers perform with
disks is done in terms of complete sectors. As we’ll see later, our data can

Tracks

Sectors

Figure 8-2. The tracks and sectors of a disk.

124

8.1 BASIC DISK IDEAS

be any size and it’s made to fit snugly into the fixed storage size of sectors.
But the actual disk I/O that the computer performs is only done in full,
complete sectors.

The sectors in a track, like the tracks on the side of a disk, are identi-
fied by numbers that are assigned to them, starting not with zero, but with
one (sector number zero on each track is reserved for identification pur-
poses, rather than for storing our data).

Side 0

Side 1

Side 2

Side 3

Figure 8-3. The sides of a disk.

There is one final dimension to a disk which we haven’t mentioned so
far: the number of sides. A diskette might be recorded on both of its sides
or only on one (more about that in Section 8.2). While a diskette, like
anything that’s flat, has only two sides, hard disk systems often contain
more than one disk platter inside them, so they can have more than two
sides. The sides of a disk, as you’d expect by now, are identified by
number; as it is with tracks, the sides are numbered starting with zero for
the first side.

When we combine all these dimensions, we arrive at the size, or
storage capacity, of a disk. Multiplying the number of sides by the number
of tracks per side by the number of sectors per track gives us the total
number of sectors per disk. Multiply that by the number of bytes per sec-
tor—which is normally 512 bytes, or YK—gives us the raw capacity of the
disk. Naturally some of that total capacity is taken up, when we use the
disk, with overhead of one kind or another, as we’ll see in Chapter 9. But
the number that we can calculate this way is essentially the storage capacity

125

INSIDE THE IBM PC

of the disk; it should be the same, or close to the capacity that’s reported to
us by the DOS utility program CHKDSK (check-disk).

If you’re interested in learning more about the dimensions of your
disks, and if you have my Norton Utilities programs, you can use the
program called NU to show the full dimensions of any disk you have. Go to
menu 2.2, called Display Disk Technical Information, and you’ll be shown
the four dimensions of your disk’s storage (together with some DOS-related
information that we’ll learn about in Chapter 9).

There’s one more thing we should cover in this section on basic disk
ideas: that’s what disks look like physically, how they are packaged and
protected. But that varies with different types of disks, so we’ll defer it just
briefly until after we describe the main varieties of disks.

8.2 Varieties of Disks

At times it seems that there are more varieties of disks that can be
used with our PC family than we can shake a finger at. It certainly isn’t
practical for us to undertake an exhaustive discussion of all the types of
disks that there are, but we can see the principle types, outline the more
exotic varieties, and look more deeply at the most important kinds. That’s
what we’ll do here. In this discussion we need to keep clearly in mind
that there are varying degrees of difference between the types; some dif-
ferences are quite fundamental and others are important but not major
differences. Finally, some are purely minor variations. We’ll see the dis-
tinctions as we go along.

(Keep in mind that disk storage technology moves forward rather rap-
idly, and advances in disks come all the time. Between the time I wrote this
and you read it, it’s likely that the PC family will have gained some new
disk formats. It’s certain that more will appear in the future.)

The place to begin our discussion is where the PC family began, with
the most common type of disk, the 5%-inch floppy diskette. You’ll see a
picture of one in Figure 8-4.

There are a lot of variations on this diskette, but before we get into
them, we will look at the common characteristics of this type of diskette.
The circular diskette itself is made of very soft flexible material, mylar
plastic with a magnetically sensitive iron-oxide coating. The coating is the
same on both sides, even for ‘‘single-sided’’ diskettes that are intended to
be recorded on only one side. The second side of a single-sided diskette
may not have its second side finished, polished, and tested, but it still has
the same coating. Incidentally, not many people know it, but the first side

126

8.2 VARIETIES OF DISKS

of a diskette, the active side on a single-sided diskette, is on the bottom of
the diskette, opposite the diskette label, not the top.

The diskette has two holes in it. One is the hub where the disk drive
grabs it. This hub may have a reinforcing hub ring on it, to help make sure
that the diskette is properly centered. The other hole is just outside the hub.
It provides a reference point that defines the beginning of a track.

Surrounding and holding the circular diskette is the diskette jacket,
which is usually black. On the inside surface of the jacket, almost com-
pletely out of sight, is a white felt liner. The liner is specially designed to
help the diskette slide smoothly around, and wipe it clean at the same time.
A large oval slot provides the opening where the diskette drive’s read/write
head reaches in to touch the diskette. The two small cuts to either side of
the read/write slot are called stress relief notches; they help make sure that
the jacket doesn’t warp. Near the hub opening is an index hole, which
allows the diskette drive to see the diskette’s own index hole. And, finally,
on one side there is a write-protect notch. If this notch is covered over, you
cannot write onto the diskette.

There are some possible variations that you might encounter in the
holes and notches that appear on a disk jacket. You’ll see some disks that
don’t have a write-protect notch, which means that they are always pro-
tected against being written over. These diskettes are used for the original
copies of programs that we buy, such as the diskette that DOS comes on.
You may also see some diskettes that have two write-protect notches and
two index holes; these are ‘‘flippies,”’ diskettes that are reversible (turn it
over and use the other side) diskettes.

That’s the physical layout of a 5%-inch diskette. Now let’s look at the
surprising variety of distinctly different diskette types that all look as if they
are the same. We begin with single- versus double-sided.

In the early days of the PC family diskettes were recorded on only one
of the two sides of the disk, which saved a small part of the cost of the disk
drive (at the expense of halving the potential storage capacity of the disk-
ettes). Today it’s almost unheard-of for a computer to have single sided
drives in them, yet it’s common for programs to come to us on single-sided
diskettes. Let’s pause to talk about the why and wherefore of that, because
it’s important if you’re not going to trip your feet over the matter.

A diskette drive that’s single-sided can only read or write diskettes in
single-sided format; on the other hand, a double-sided drive can read and
write either way, single or double. A diskette that’s manufactured as dou-
ble-sided can be used either way. A diskette that’s manufactured as sin-
gle-sided is only supposed to be used that way, because the second side
isn’t necessarily usable. However, a single-sided diskette can often be

127

INSIDE THE IBM PC

}cket

Write-
Protect
Notch

Read-Write
Opening

Figure 8-4. A 5¥%-inch floppy diskette (top view).

formatted and used as a double-sided diskette with no problems at all—and
that fact ends up making a lot of people confused about the matter.

OK. Suppose we have diskettes and drives that are both made to be
double sided. What determines whether we’re actually using them as single
or double? That turns out to be a question of software. When a diskette is
being formatted, the FORMAT program marks the diskette as to how it
should be used. After that, any time the diskette is used, the marking is
checked to see how the diskette should be used.

We can understand this better through an analogy. A completely new
blank diskette is like a blank piece of paper. Let’s imagine that we can not
write on the paper until it has been ruled with guidelines. When we format

128

8.2 VARIETIES OF DISKS

. a diskette, we’re recording on it something very much like ruled guidelines,
which provide a framework for what will later be written on the diskette. In
addition, formatting a diskette has a second element to it that’s something
like writing a note at the top of the page that says whether or not it’s OK to
turn the page over and use the other side. At the beginning of a diskette the
FORMAT program records how the diskette can be used, single- or
double-sided.

Unlike a piece of paper, a diskette can be formatted over and over
again. Each time a diskette is reformatted, any previous information is
erased and overwritten, and the type of formatting can be changed as well.

With that background established, we’re ready to learn more about the
variety of formats that a conventional 5%-inch diskette can take on. There
are quite a few variations. First, a diskette can be single- or double-sided.
Next, it can be formatted with either eight or nine sectors squeezed into a
track. Just considering those two parameters, we have four different possi-
ble formats. The single-sided 8-sector format was the original PC format,
and it was all that the first version of DOS, version 1.0, could use. Because
the single-sided 8-sector format was the earliest format, it has the dubious
honor of being the lowest common denominator, the one format that is
universally usable on all PC models and all versions of DOS. That’s why
we see a great deal of software delivered in this format, even though it’s a
long-obsolete format. The next release of DOS, version 1.10, added the
double-sided 8-sector format. Next came DOS 2.0, where it was decided
that putting only eight sectors on a diskette track was overly conservative,
and that nine per track could be safely and reliably used. So, with DOS 2.0
the single- and double-sided 9 sector formats were introduced.

While those four are the standard S%-inch diskette formats, there are
actually more. Although IBM has used only double-density (40 track) stan-
dard diskette drives, some folks have installed in PCs quad-density drives
(which have 80 tracks). There are also a variety of (nonstandard)
quad-density formats as well.

For extra variety, there is the high-capacity format, which was intro-
duced with the AT model. High-capacity diskettes have a special magnetic
coating on them that allows a track to hold an amazing 15 sectors, rather
than just 8 or 9. In addition, the hi-cap drives are quad-density, which
means that they can put 80 tracks on a diskette side. Thankfully there is
only one hi-cap format, so far, avoiding all this single-sided, double-sided,
etc. nonsense.

It isn’t quite accurate, however, to consider the hi-cap format as just
an additional fifth addition to the standard four formats for S%-inch disk-
ettes, because hi-cap diskettes have to have a special magnetic coating on

129

INSIDE THE IBM PC

them. The four standard S5%-inch formats can be thought of as minor varia-
tions in the use of the same kind of diskette, while the hi-cap format
requires a special (and much more expensive) diskette, even though it looks
identical to the other garden-variety diskettes.

That finishes our discussion of the varieties of 5%-inch floppy diskette,
but before we pass on to other kinds of disks, I should briefly mention that
there are other sizes of diskettes, even though they are rarely used within
the PC family. There is an 8-inch diameter format that has mostly been
used with an older generation of personal and word-processing computers.
Also, there is a little-known 3%-inch size of floppy diskette which looks just
like a miniature version of the S%-inch diskette.

The next basic kind of disks that we need to consider are the 3%-inch
microdiskettes; one is diagrammed in Figure 8-5.

Microdiskettes are much smaller than floppy diskettes, and they are
enclosed in a rigid protective case. Thanks to the smaller size and hard
case, they are much easier and safer to mail and carry around (they fit
nicely into a pocket). Inside, a micro diskette is the same familiar soft,
flexible plastic, with a metal hub piece. Outside, the jacket is rigid, and it
protects the disk from outside damage: the hub opening is nearly covered
by a hub piece, and the read-write opening is sealed by a spring-loaded
sliding metal protector. There’s one further difference in the case:
write-protection is signaled by a sliding plastic tab, rather than by a notch
cut.

Standard microdiskettes are recorded in quad-density format, so that
they have exactly twice the storage capacity of conventional diskettes.
Their small size, protected case, and larger storage capacity have made
them the disk of choice for newly-designed computers (such as Apple’s
Macintosh and numerous Japanese machines). However, the weight of tra-
dition, the problems of incompatibility, and the PC users’ huge collective
investment in conventional 5%-inch floppy diskettes have together retarded
the use of this improved diskette format within the PC family.

That finishes our tour through the land of diskettes; hard disks are the
next variety of disk for us to consider.

Hard disks get their name from the fact that the magnetically-coated
disks themselves are rigid platters, made of an aluminum alloy. Because
of many factors, including the much faster speed of rotation and the
higher recording density, hard disks need to be in an atmosphere that’s
carefully protected against dust and other contamination. So hard disks
are sealed inside the disk drive, and not removable like a diskette. It’s
because of this that IBM uses the term fixed disk for what everyone else
calls a hard disk.

130

8.2 VARIETIES OF DISKS

Write
Protection Jacket

¥ N

/

Sliding
Cover

Figure 8-5. A 3%-inch microdiskette (bottom view).

There are many varieties of hard disks, differing in the number of
platters and active recording sides, number of cylinders, number of sectors
per track, speed, and other characteristics. We generally lump them all
together into the collective category of hard disk. Two varieties are best
known in the PC family.

The first is the 10-megabyte disk, which is used by the XT model, the
Compagq Plus, and many other similar PC family members. The XT’s disk
has four sides, 305 cylinders (as track locations are called on hard disks),
and 17 sectors per track. The second best-known variety of hard disk is the
one introduced with the first AT models. This disk has four sides, 615
cylinders, 17 sectors per track, and a capacity of 20 megabytes. These two,

131

INSIDE THE IBM PC

however, are only typical of the many varieties of hard disk that can be
used in the PC family. The AT model alone has a built-in capability to
accommodate no fewer than 14 different hard disks, and others can be
easily added.

There is one final basic variety of disk storage that we need to know
about, cartridge disks. These are a hybrid type, combining the characteris-
tics of hard disks (particularly the large storage capacity) and removable
diskettes. There are quite a few varieties of cartridge disks, but probably
the best known is the one called the ‘‘Bernoulli box,”’ made by IOMega
Corporation. Typically, cartridge disks have a capacity of five or ten
megabytes, and they operate at a speed that is similar to a conventional
sealed hard disk. But, like diskettes, cartridge disks can be removed, which
makes it possible for data to be exchanged, shipped through the mail, or
simply locked up for security.

That finishes our basic tour of disks and disk formats. It gives us the
foundation of information that we’ll need to understand the next stage in
our journey through disks, where we explore how DOS views disks.

Some Things to Try

1. It’s a mystery to me why the original PC ever had single-sided
diskette drives, instead of double-sided. I wouldn’t expect you to
know why either, but see how many reasonable theories you can
come up with. The exercise may help you understand a great deal
about the realities that underlie personal computing.

2. In one of the IBM Technical Reference manuals, it states that for
a regular diskette drive, which has 40 tracks, moving the
read/write head takes five milliseconds per track. The average
move, we’re told, takes 81 milliseconds; why? What does that tell
us?

3. There are hard disks that have the same capacity as each other, but
they are ‘‘shaped’’ differently. For example, among the disk types
that the AT can automatically accommodate, there is one with
four sides and 614 cylinders and another with eight sides and 307
cylinders. The capacity of the two is identical. Is there any practi-
cal difference between them?

132

9

Disks:
The DOS Perspective

n this the second of our three chapters on disks, we’ll take a look at
our computers’ disks from the DOS perspective, as DOS lays them
out and uses them. Our disks, by themselves, are a kind of raw,
unsurveyed land. It’s only when an operating system, such as DOS,
creates a map of how they are to be used that disks take on a useful form.
Each operating system—and the PC family has several, in theory—has its
own plan for how the unbroken land of a disk should be turned into produc-
tive fields. Since DOS is the only operating system that most PC users
encounter, DOS’s way of organizing a disk is the only one that we’ll cover.
First we’ll look at the basics of how DOS uses a disk, followed by the
technical specifics that underlie a DOS disk. Then we’ll explore key ele-
ments of what DOS data files look like, so that we have a better under-
standing of the working contents of our disks. Particularly, we’ll focus on
the most universal data format, ASCII text files.
This chapter will give us most of what we need to know about our
disks. What’s missing here, we’ll find in Chapter 10, the final installment
of this three-chapter series, which covers deeper details of our disks.

9.1 DOS Disk Overview

In Chapter 8, when we looked at the basics of our computer’s disks,
we saw how a disk is intrinsically a three- or four-dimensional object. The
three dimensions—of track or cylinder, the radial dimension; of side, the
vertical dimension; and sector within a track, the circular dimension—
locate the position of each sector on the disk. The size of each sector, how
much data can be stored inside it, is the fourth dimension. Multiplying the
first three dimensions gives us the total number of sectors on a disk, the
number of working pieces that DOS has at its disposal when it uses the
disk. Multiplying the number of sectors by the sector size gives us the data

133

INSIDE THE IBM PC

capacity of the disk, the number of bytes that DOS has to tuck data away
in.

The sectors on a disk are the fundamental units of disk activity. All
reading and writing on a disk is done with full sectors, and not any smaller
amount of data. An important part of understanding how DOS looks at a
disk is seeing how DOS handles sectors. A key part of this is that DOS
““flattens’’ a disk, by ignoring the inherently three-dimensional shape of a
disk. Of course DOS can’t completely ignore the three-dimensional shape
of a disk. To actually read and write disk sectors, DOS has to work with
sectors in terms of the dimensions that locate and identify each sector.
That, however, is just to accommodate the physical nature of the disk. For
its own purposes, DOS thinks of a disk as a one-dimensional object.

This means that DOS treats the sectors of a disk as just a sequential list
of sectors, from the first sector on a disk to the last. The diagram in Figure
9-1 draws a picture of how this is done. For its own purposes, DOS
numbers the sectors on a disk sequentially, starting at O (for the first sector
on the first side of the first cylinder of a disk), to 1 (for the second sector on

First —»

View —>» Last

Figure 9-1. A three-dimensional disk meets a one-dimensional DOS.

134

9.1 DOS DISK OVERVIEW

the first side, etc.) and on to the last sector in sequence (which is the last
sector of the last side of the last cylinder). Everything that DOS does in
working with and planning the use of disk sectors is done in terms of these
sequential sector numbers. Only at the last moment, when information is
actually read or written on the disk, does DOS translate between its internal
notation (the sequential numbers) and the disk’s own three-dimensional
notation.

This linear, sequential approach to a disk greatly simplifies DOS’s job
of organizing a disk. But it does have a price to it. One part of the price is
that DOS can’t take advantage of the fact that it takes quite a bit longer to
go from one sector to another when they are located on different cylinders
than between sectors in the same cylinder—that’s because, to switch cylin-
ders, the disk drive’s read/write heads have to move from place to place.
Basically DOS doesn’t know which sectors are on the same cylinder
because it ignores the disk’s division into cylinders. There is another price
too: the traditional way DOS handles disks sets a limit on how large a disk
we can use with our PC computers. For more on that, see the sidebar The
32-Megabyte Limit.

The 32-Megabyte Limit

The linear, sequential approach that DOS uses to organize disks led
to a limitation that wasn’t expected in the early days of DOS: a limit
of 32 megabytes in the size of disk that DOS could use.

This limitation comes about as the natural result of two simple
things: first, that the standard size of a disk sector for DOS is 512
bytes. Second, that DOS numbers diskette sectors sequentially, and
holds those numbers in the PC’s most natural data format, as a 16-bit
integer. There are only 64K (or 65,536) different 16-bit numbers; so,
using this scheme, DOS can only work with 64K distinct sectors. If
the sectors are 512 bytes big, that sets a limit of 32 megabytes (64K
times 512, roughly 32 million) as the largest disk that this scheme
can handle.

In the early days of DOS and the PC family, few imagined that
anyone would want a disk that big on a computer this small. But the
history of computing has one truism: however much you have, it’s
not enough.

There are ways around this limit: sectors can be made bigger (say
1024 bytes each), or DOS could use more bits to number the disk
sectors with. One way or another the ‘‘32-meg barrier’” will be
broken—yperhaps by the time you read this it will already be done,
since the PC family is continually growing and expanding. But the

135

INSIDE THE IBM PC

original design of DOS was created with this inherent limit on how
large a disk could be.

DOS takes a similar approach when it comes to storing our data on the
disk. As we’ve mentioned, all reading and writing of data on a disk is done
in terms of complete sectors. But when we work with data—or our pro-
grams, acting on our behalf, work with data—it may be read or written in
any amount. We can work with our disk data byte by individual byte, or we
can have DOS transfer huge amounts of it at one time. This points to one of
the main jobs that DOS performs in managing our disks: it acts as a transla-
tor between the way the disk works with data (which is a 512-byte sector at
a time) and the way we want to work with it (which can be any of a hundred
ways). DOS’s disk management routines handle the conversion between the
amounts of data that we want, and the amounts of data that the disk stores.
In effect DOS does it by running a warehouse operation. It packages and
unpackages our data, so that the data is bundled in appropriate-sized quanti-
ties—the size we want when we use it, and the size of sectors when it’s
transferred to the disk.

TECHNICAL BACKGROUND | 1 1 H H I N

Physical and Logical Formatting

The formatting of a disk actually has two parts to it—which I call
physical and logical formatting—and if we don’t want to be confused
about what’s going on with our disks, we need to be aware of the
distinction.

Physical formatting involves the creation of sectors on a disk,
complete with their address markings (which are used like name tags
to identify the sectors after the formatting is done) and with the data
portion of the sector (the part we and our programs know about)
established and filled in with some dummy data. A brand-new,
unused diskette normally comes to us without the physical
formatting done, while a new hard disk will already be physically
formatted.

Logical formatting is essentially the adoption of a disk to the
standards of our operating system. When a disk is formatted for
DOS, the DOS-style logical structure (discussed in Section 9.2) of
the disk is created. The logical formatting is the road map that DOS,
or any other operating system, uses to navigate through and make
sense out of a disk.

136

9.1 DOS DISK OVERVIEW

Program
Data

DOS Buffers

Disk
Sectors

Figure 9-2. DOS repackages data between disks and our programs.

In terms of physical and logical formatting, the FORMAT command
of DOS acts differently on diskettes and hard disks, which is why the
distinction between logical and physical formatting is important to
know about. Since the logical formatting is essential to DOS’s use of
a disk, naturally the FORMAT command always does that. What
differs between diskettes and hard disks is whether or not DOS is
free to perform the physical formatting.

For a diskette, the FORMAT command performs the physical
formatting as well as the logical. That’s because a diskette
completely ‘‘belongs’’ to the operating system that formats it, while
a hard disk may be partitioned into sections that can belong to
differing operating systems (we’ll see more about that in Chapter 10).
On a hard disk, the FORMAT command does not dare perform the

137

INSIDE THE IBM PC

physical formatting, even within a partition that DOS ‘‘owns,”’ since
that might well interfere with the rest of the disk.

While DOS doesn’t provide us with a program to physically format a
hard disk, you’ll find one on the IBM Advanced Diagnostics
diskette. There are some unusual circumstances in which we might
want to get a fresh, from-scratch start on a hard disk, and it’s good
to know how to get our hands on a program that will do the physical
formatting.

The DOS FORMAT program uses a special BIOS command (see
Chapter 18) to format diskettes track by track. The mechanism of
physical formatting requires that the formatting for all the sectors in
each track be laid down in one coordinated operation. This
track-by-track diskette formatting feature can be used as the basis of
a copy-protection scheme, as we’ll see more about in Chapter 10.

When FORMAT formats a diskette, it sets the sector data to a default
value, hex F6, in each byte. Since the FORMAT command
overwrites each byte of the diskette, all old data on the diskette is
completely obliterated. That eliminates any hope of recovering any
previous data after a diskette is formatted. However, FORMAT does
not overwrite the old data on a hard disk, so it is possible to recover
data from a reformatted hard disk.

Before DOS can use a disk, the disk has to be formatted, which means
marked off and organized the way DOS likes to work with its disks. We use
the DOS utility program FORMAT to do that. The FORMAT command does
whatever is necessary to put a disk into the state that DOS expects it to be in
(which varies, depending upon the type of disk—see the sidebar Physical
and Logical Formatting for more details). After that’s done, FORMAT lays
out the DOS structure on the disk, the structure that establishes how and
where files can be stored. We’ll see how that works in Section 9.2.

9.2 The Structure of a DOS Disk

In order to organize our disks, DOS divides them into two parts: a
small system area that DOS uses to keep track of key information about the
disk, and the data area, the bulk of the disk, where our file data is stored.
The system area uses up only a quite small portion of a disk: at most it’s
just two percent of the total space (that’s on the very smallest 160K diskette
format), and on a hard disk it’s quite a bit less—for example just 3/10 of
one percent on the AT model’s 20-megabyte hard disk.

138

9.2 THE STRUCTURE OF A DOS DISK

The system area that DOS uses is itself divided into three parts, called
the boot, the FAT, and the root directory. Let’s explore them one by one.

The boot, or boot record is the very first part of a DOS disk. It holds a
very short program—one that’s only a few hundred bytes long—that per-
forms the job of beginning the loading of DOS into the computer’s mem-
ory. The start-up procedure is called booting (because the computer is
‘‘pulling itself up by the bootstraps’’—loading the programs that are neces-
sary for the computer to carry on its work). When we have a DOS system
disk (one that’s been formatted with the /S system option) the disk contains
a full copy of DOS. The job of this boot record program is to begin the
process of starting DOS from a disk reading from disk to memory the first
part of the DOS programs. Interestingly enough, the boot record doesn’t
just appear on a system formatted disk. It’s on every disk, and it’s clever
enough to report the error if we try to boot up from a disk that isn’t system
formatted (doesn’t include a copy of DOS on it).

The boot portion of a disk is very small—only a single 512-byte sec-
tor, so it takes up practically none of the space in a disk. Incidentally, there
is some very interesting information that’s recorded on some disks’ boot
records. We’ll look into that in Chapter 10, when we dig into some of the
more technical information about our disks.

The next part of the system portion of a disk is called the File Alloca-
tion Table, or FAT for short. DOS needs a way to keep track of the big data
portion of a disk, to tell what’s in use and what’s available for new data
storage. The FAT is used to record the status of each part of the disk. In
order to manage the data space on a disk, DOS divides it up into logical
units called clusters. When a file is being recorded on the data portion of
our disks, disk space is assigned to the file in these clusters. How big a
cluster is varies from one disk format to another; it can be as small as an

First System Portion Data Portion Last
T ROOT
BOOT DIRECTORY
FATS

Figure 9-3. The parts of a DOS diskette.

139

INSIDE THE IBM PC

individual sector or much bigger. On the largely-obsolete single-sided disk-
ettes, each sector is its own cluster; on double-sided diskettes, clusters are
two sectors each, 1024 bytes. On the XT model’s 10-megabyte disk, the
cluster size is usually eight sectors, 4096 bytes. There’s an obvious pattern
here—the bigger the disk, the bigger the cluster size, generally; but it’s far
from a strict rule. On the AT model’s larger 20-megabyte disk the cluster
size is half that of the XT: four sectors, 2048 bytes.

Whatever the cluster size, DOS carves up the data portion of the disk
into these relatively small clusters and then uses them as the unit of space
that it allocates to the disk files. This allocation is managed by using the
File Allocation Table. The FAT is simply a table of numbers, with one
place in the table for each cluster on the disk. The number that’s recorded
in each cluster’s FAT entry indicates if the cluster is in use by a file or
available for new data. A zero in the cluster’s FAT entry means the cluster
is free. Any other number indicates it’s in use (and the number is used to
link together the different clusters that make up one file’s data; we’ll see
more of these technical details in Chapter 10).

The essence of the FAT is that it gives DOS a distinct and separate
place to keep track of the allocation of the disk’s data space. This isolates
the space and record-keeping function, which helps protect it from possible
damage. If you think about it, you’ll see why the FAT is the most critical
part of a disk, the part that most needs to be protected. In fact, the FAT is
so critical that DOS usually records two separate copies of the FAT on each
disk. Only the first copy is actually used, but the second copy is made to
help make it possible to perform emergency repairs on damaged disks.

The last part of the disk’s system area is the root directory. This is the
file directory that every disk has—it’s the basic, built-in directory for the
disk. (Disks can also have subdirectories added to them, but subdirectories
are an optional part of a disk that we can create as we need. The root
directory isn’t an optional part of the disk.)

The directory, of course, records the files that are stored on the disk.
For each file, there is a directory entry that records the file’s 8-character
filename, the 3-character extension to the filename, the size of the file, and
a date and time stamp that records when the file was last changed. All those
parts of a file’s directory entry are known to us, because they’re shown in
the DIR listing that we’re used to seeing. There are also two other pieces of
information that are recorded about a file in its directory entry. One is
called the starting cluster number—which indicates which cluster in the
disk’s data space holds the first portion of the file. The other item in the
directory entry is called the file attribute—it’s used to record a number of
things about the file. For example, subdirectories have a particular direc-

140

9.2 THE STRUCTURE OF A DOS DISK

tory attribute marking; DOS’s so-called system files have a special pair of
attributes called system and hidden. There are also two attributes that serve
us more directly: the read-only attribute protects our files from being
changed or deleted; the archive attribute is used to help keep track of which
files on our disk already have or need backup copies.

The root directory of each disk, like the other items in the system
portion of a disk, is a fixed size for each disk format. This size determines
how many entries there are for files in the root directory. Each directory
entry occupies 32 bytes, so 16 of them fit into a single sector. The smallest
diskette format, the single-sided 160K format, has four sectors set aside for
the root directory, so it has room for 64 files in the directory. A dou-
ble-sided diskette has seven directory sectors, making room for 112 files.
Hard disks have more: for example, the AT’s 20-meg disk has 32 sectors,
making room for 512 file directory entries.

I mentioned before that the FAT is used to chain together a record of
where a file’s data is stored. Here is how it works. As we saw, each file’s
directory entry includes a field which gives the cluster number where the
first part of the file’s data is stored. The FAT table has a number entry for
each cluster. If we look up the FAT entry for the first cluster in a file, it will
contain the number of the next cluster in the file—and the FAT entry for
that cluster will point to the next one. This way, the FAT entries are
chained together to provide DOS with a way of tracing through the entire
contents of a file. When the end of the file is reached, the FAT entry for the
last cluster doesn’t hold the number of another cluster. Instead, it contains a
special code number marking the end of the file’s space allocation chain.

3 4 6 7 END

Figure 9-4. A file’s space allocation in the FAT.
That finishes our survey of the system portion of a disk. What remains

is the majority of the disk, the data portion. But we already pretty much
know everything basic there is to know about this part of a disk. The data

141

INSIDE THE IBM PC

portion is used to record the actual data contents of the disk files. The data
space, as we’ve seen, is divided up into units called clusters (which are
made up of one or more sectors; on each disk the clusters are all the same
size, but between disk formats the cluster size will vary). Each file’s data is
recorded on one or more clusters (and the record of which clusters, in
which order, is kept in the disk’s File Allocation Table). It’s worth noting
that a file’s data can be scattered all over a disk in disjointed clusters. DOS
generally tries to keep a file’s data gathered together into contiguous
sequential clusters, but with varying activity in the disk’s space allocation
files can end up being stored scattered around different parts of the disk.

We’ve mentioned subdirectories, and at this point I should explain that
each subdirectory acts like a mixture of a data file and the disk’s root
directory. As far as how a subdirectory is recorded on the disk, it’s no
different than any other disk file: the subdirectory is stored in disk’s data
space, and a record of where the subdirectory is located is kept in the FAT,
exactly like any other file. But when it comes to using the contents of a
subdirectory, it acts like the disk’s root directory: it holds a record of files
and other subdirectories that are stored on the disk, and DOS works with
subdirectories just like it works with the main, root directory. There are two
major differences between subdirectories and root directories. One is that
there is only one root on each disk, but there can be numerous subdirecto-
ries. The other is that each root directory has a fixed size and capacity,
while subdirectories, like files, can grow to any size that the disk can
accommodate.

What we’ve seen so far gives us all the fundamental information that
we need to understand the basics of the structure of DOS disks. There is
more to know about them, of course; there are plenty of fascinating techni-
cal details left to explore. We’ll get into that in Chapter 10 when we dig
into deeper disk details.

9.3 Learning About File Formats

Each file that we have stored on our disk potentially has its own
unique data format—the structure of the data that’s recorded inside the file.
It would seem that there is little that we can say about the format of our disk
files; and in many ways that is true. However, there are a number of
important observations that we can make about files which will deepen our
understanding of what’s going on inside our disks.

First, we should note that the three-character extension part of a file-
name is intended to be used as an indication of the format and use of a file.

142

9.3 LEARNING ABOUT FILE FORMATS

Some of these filename extensions are standard and must be used to cor-
rectly identify the file type; most, though, don’t have a strict use, just a
conventional one.

The strictly enforced extensions mostly have to do with programs:
DOS requires that all programs be recorded in one of two special program
formats, and they must be identified by the standard extension names of
COM and EXE. Batch command files also must be named BAT. Most
other filename extensions are optional, but each application program sys-
tem is usually designed to work more easily with files that have extensions
that are standard for the system. For example, the BASIC interpreter
expects that BASIC program files will be named BAS. Other programming
languages also expect this: Pascal expects program source files to be named
PAS, and so forth. Likewise, programs like 1-2-3, Word, and so forth, all
have their conventional extension names.

The contents of data files can be very interesting to us, but we have to
make a special effort to look inside our files—using snooping tools like
DEBUG or NU, both described in Chapter 22—and often it’s hard to
decode, or otherwise make much sense of what we can see inside a data
file. However, by looking, we can sometimes find some very interesting
things.

There is one very good reason for taking a look at and learning about
the data formats created by the programs we use: if we ever need to do any
repair work on our disks, such as ‘‘unerasing’’ deleted files or other such
file recovery operations. If we learn what our data looks like in advance,
we have a better chance of recognizing it in an emergency.

As a general rule, the data files created by our programs have an
internal structure that is completely jumbled to the human eye. Certain parts
can be easily recognized if we take a look at them: character text data, such
as the names and addresses in a mailing list database, are easy to recognize.
But the parts of the data which hold numbers and formatting information
describing the layout of the data are usually recorded in a form that is
thoroughly cryptic, and can only be deciphered by the programs that work
with the data.

One special kind of file, though, has a pattern to it that we should be
able to recognize fairly well: these are data files made up of what are called
“‘fixed length records’’—a repeated pattern of data where content of the
data varies, but each element has the same length, so that we can notice a
repeated pattern, even when the actual data itself isn’t recognizable. This is
the kind of data that BASIC uses for its random files. Since the data records
in this kind of file are all the same length, BASIC can calculate its way to
the location of any randomly specified record number without having to

143

INSIDE THE IBM PC

search through the file from the beginning. Whenever we look at one of
these data files that is built from fixed-sized elements, we may be able to
recognize the pattern in it and decode some of the file’s data.

By exploring and digging through our files data, we can learn a great
deal about how our computers and programs work with disk data.

9.4 ASCII Text Files

There is one particular file format that every PC user needs to know
about, the ASCII text file format. ASCII text files—which are also called
ASCII files or text files for short—are the closest thing the PC family has to
a universal format for data files. While most programs have their own
special way of recording data, the ASCII text file is a common format that
can be used by any program, and is used by very many of them.

ASCII text files are designed to hold ordinary text data, like the words
that you are reading. ASCII text files are used by many simple text editing
programs (such as the EDLIN editor program that is a part of DOS), and
some word-processing programs also work directly with ASCII text files.
However, most programs, including word processors, the BASIC inter-
preter, spreadsheet programs, and many others, use the ASCII text file
format as an alternative to their own ‘‘native’’ data formats. These pro-
grams are prepared to work with ASCII text files simply because the ASCI
text file format is something of a last resort way of transferring data from
one program to another. Often, in fact, more than a last resort, it’s often the
only way to get data from here to there.

ASCII text file data is rather nude—it isn’t clothed in the rich format-
ting that most programs use for their data. But, when we need to pass data
from one place to another, it’s often the only reasonable way to get it done.

When I said that most programs have their own special data formats
that are different than ASCII text files, I was really referring to applications
programs such as databases, spreadsheets, and so forth. There are also
many programs which expect to work only with the simple and common
data format of ASCII text files. Programming language compilers and
assemblers expect to read their program source code from plain ASCII text
files. Some other programs too are intended to work primarily with ASCII
text files, such as IBM’s spelling checker WordProof. Among programs
that are, one way or another, writing tools, there is an informal division
between the simple ones which use ASCII text files (e.g., many text-editing
programs and spelling checkers) and the complex ones that use their own
custom data formats (e.g., most word-processing programs). Finally, there

144

9.4 ASCII TEXT FILES

is one further and very important use for ASCII text files which I need to
mention: batch command files, which allow DOS to carrv out a series of
commands together as a single unit; these batch files are kept in the text file
format.

The data in a text file is composed of two character types: ordinary
ASCII text characters—Iletters of the alphabet and so forth—which we
learned about in Section 4.2 and the ASCII control characters, covered in
Section 4.3. The regular text characters are the principle data in an ASCII
text file, while the ASCII control characters tell how the text is formatted:
they mark its division into lines and paragraphs and so forth.

There is no strict definition about how our programs and computers are
supposed to make use of ASCII text files. Instead, all the programs that
work with ASCII text files use the most basic elements of this file format,
and some programs go further and make use of some of the less-common
formatting control characters. Let’s start by describing the most common
elements.

= A pair of ASCII control characters are used to mark the end of each
line: the characters carriage-return and line-feed (known in ASCII
terminology as CR and LF; they are character codes 13 and 10, or
hex OD and OA). These two, together as a pair, are the standard
way to mark the end of a line of text.

» One ASCII control character is used to mark the end of the file of
text data. It’s the Control-Z character, code 26 or hex 1A. In most
tables of ASCII control characters this code is called SUB, but
since it’s used here to mean End-Of-File, it’s also called EOF.
Normally an ASCII text file has this End-of-File character to mark
the end of the text data.

= The tab character is used as a substitute for repeated spaces; its
character code 9, and the ASCII term for it is HT, short for hori-
zontal tab. Tab appears in many ASCII files, even though there is
no universal agreement about just where the tab stops are. Most
programs (but, unfortunately far from all) handle tabs on the
assumption that there is a tab stop every eight positions (at the 9th,
17th, etc., columns).

» The form-feed character is used to mark the end of one page and the
beginning of the next; the character code is 12, hex 0C, and the
ASCII name is FF. This control character is also called page eject.

An ASCII text file can contain any of the control characters that you

145

INSIDE THE IBM PC

saw in Section 4.2 (they’re summarized in Table 4-1, on page 49), but most
often the only ones used are the five I just described, and in many cases
even the last two—tab and form-feed—aren’t used, to keep the coding as
simple as possible.

There are several commonly used ways to indicate the division of text
data into paragraphs. The most common form marks the end of each line of
text with a carriage-return/line-feed pair. This is the form that compilers
expect to find their program source code in. When this form is used to mark
words, sentences, and paragraphs, it’s common to indicate the end of a
paragraph by a blank line (that is, two pairs of carriage-return/line-feeds in
a row, with no other data in between). Sometimes, though, we’ll see ASCII
text files in which each paragraph is treated as a single, very long line, with
a carriage-return/line-feed pair at the end of the paragraph, but nowhere
inside the paragraph. Some word-processing programs like to create ASCII
text files like this.

Because there are these different ways of laying out an ASCII text file,
there can often be conflicts between the way one program expects a text file
to be and the way another program expects it. We often find that different
programs are at odds with each other when we try to use ASCII text files as
a way of transferring data between them. For example, if we try to use
ASCII text files to pass something we’ve written from one word-processing
program to another, we may find that what one program considered to be
just lines that make up a paragraph the other program considers to be
separate paragraphs. This sort of nonsense can be very annoying to deal
with. Nevertheless, ASCII text files are the closest thing our computers
have to a universal language which every program can speak. That’s why
you may find yourself working with ASCII text files more often than you
expect to.

We usually think of ASCII text files as containing either words, like
the sentences and paragraphs you are reading here, or program source code,
like the programming examples that you have seen throughout this book.
But any form of data can be translated into an ASCII text format, one way
or another. So, we might find some text files that consist only of numbers,
written out in ASCII characters. This is the way that programs can use
ASCII text files to exchange data that isn’t made up of words. For example,
the Data Interchange File, or DIF, standard uses ASCII text files to trans-
fer data between spreadsheets and other programs that know how to inter-
pret ““DIF’’ data. These DIF files are simply ASCII text files whose text
describes, for example, the contents of a spreadsheet, all expressed in
ASCII text characters rather than the internal coded format that the spread-
sheet program uses for itself.

146

9.4 ASCII TEXT FILES

To get a more concrete idea of what an ASCII text file looks like, let’s
create an example. Suppose we had a text file with these two lines in it:

Columbus sailed the ocean blue
In fourteen hundred and ninety two.

To see what that looks like inside an ASCII text file, I'll write it out
again in a way that represents what would be in the text file’s data. To do
that, I’ll indicate the control code characters with (CR) for carriage return
and so forth. Here’s what our two-line rhyme looks like:

Columbus sailed the ocean blue(CR) (LF)
In fourteen hundred and ninety two. (CR) (LF) (EOF)

The more advanced tinkering you do with your computer, the more
likely it is that you will find yourself working with, or looking at, ASCII
text files. When you do, there is one anomaly that you may run into that
you should know about so that it doesn’t confuse you. It has to do with the
way ASCII text files are ended and the size of the file.

I mentioned earlier that the Control-Z end-of-file character, code 26, is
normally used to mark the end of a text file’s data. There are several
variations on just how that is done. The cleanest and strictest form has the
Control-Z end-of-file character stored right after the last line of text (the
way I show in our example above). The length of the file, as recorded in the
file’s disk directory, includes the end-of-file character in the size of the file.
Sometimes though, a file may appear to be big@er, judging from the size
recorded in the disk directory. This is because some programs work with
text files not byte by byte, but in chunks of, say, 128 bytes at a time. When
this kind of program creates a text file, the Control-Z end-of-file character
will show where the true end of the file is, but the file’s disk directory entry
will show a length that’s been rounded up to the next higher multiple of
128. In cases like that, the real length of the file is slightly smaller than
what we would expect it to be, based on the size in the directory. There is
another way that an ASCII text file might appear odd to us: it could be
recorded without a Control-Z end-of-file character marking the end. In this
case, the file size recorded in the directory indicates the true size of the file,
and there’s no end-of-file marker, on theory that none is needed, since the
size tells us where the end is. Any time we take a close look at the insides
of an ASCII text file, or any time we write a program to read them, we
need to be prepared for variations like this in the way the end of the file is
indicated.

147

INSIDE THE IBM PC

Some Things to Try

148

1.

If you have the NU program, use it to explore the dimensions of
your disks and see the size of the clusters which DOS creates on
your disks. You’ll find the cluster information displayed in NU’s
menu selection 2.2.

Why is the FAT the most critical part of a disk? What makes it
more important than the directory portion? There is a DOS file
recovery utility called RECOVER that can recreate a disk’s direc-
tory if the directory is damaged but the FAT is not. How do you
think this is this possible? Could there be a similar program that
will recreate a damaged FAT if the directory was intact?

To see how BASIC can record its program files in two forms, in
BASIC’s own coded format or in the ASCII text file format, enter
a short BASIC program (just a line or two of any BASIC pro-
gram) and then save it to disk in both formats, using these com-
mands: SAVE ‘“‘BASFORM” and SAVE “TEXTFORM®,A.
Then see the differences between the two files: compare their
sizes using the DIR command. See how their contents differ by
using the TYPE command to print them on your computer’s dis-
play screen. If you know how to snoop in files using DEBUG or
NU (see Chapter 23 to learn how if you don’t), inspect the con-
tents of the two files with either of these two snooping tools.

10

Disks:
Deeper Details

his is the last leg of our three-chapter journey though the PC

family’s disk storage. Here we’ll move into some of the deeper

and more technical details of how our computers use their disks.

We’ll be covering what’s special about hard disks and the way
that our computers work with them. Then we’ll see the details of how DOS
works with our disks, expanding on what we covered in Chapter 9. Finally,
we’ll close our treatment by looking at some special disk peculiarities,
including copy protection and nonstandard disk formats.

As you’ve seen so far, this book is divided, in an informal way, into
two parts, with the more technical information separately identified, so that
readers who want to focus on understanding the PC could easily pass over
the technical parts. Most of this chapter falls into that category, but there is
one part that I don’t want you to miss: that’s the discussion of hard disks
and particularly hard disk partitions. If you want to understand all the most
important practical things about the PC family, you need to be sure to know
what’s what with hard disks.

10.1 Hard Disk Features and Partitions

Hard disks present some special challenges to the designers of com-
puters that just don’t apply to diskettes. The most obvious thing that’s
different about a hard disk is that it has a storage capacity that’s much
bigger than a diskette. In nearly everything in life there comes a point when
a quantitative difference becomes a qualitative difference—when more isn’t
just more, it’s also different. That’s the case with our computer’s hard
disks: their storage capacity is so much more than a diskette’s that it also
has to be treated differently than a diskette. A hard disk’s greater capacity,
and also its much faster speed, is part of what’s special about a hard disk,

149

INSIDE THE IBM PC

but oddly enough it isn’t the most critical difference. What’s most different
about a hard disk is that it isn’t removable.

I’ve been using the term ‘‘hard disk’’ because that’s what nearly eve-
rybody likes to call them. But IBM’s own term for them is ‘‘fixed disk’’—a
name that emphasizes the key fact that, unlike a diskette, a (fixed) hard disk
is built into the machine and can’t be casually switched to change the data
that’s on-line to our computer.

(We should note here that there are some hard disk systems that have
removable disk cartridges, so that they aren’t fixed; they are as changeable
as a floppy diskette. One widely known brand of cartridge disk system is
the Bernoulli Box. This type of disk combines the size and speed of a
conventional hard disk with the removability of a diskette. Our discussion
of hard disks (or more properly fixed disks) here mostly does not apply to
these cartridge hard disk systems.)

The fact that a fixed hard disk is fixed presents a special problem:
we’re stuck with the disk in our computer, we can’t switch it for another
one in a different format or set it up to accommodate another operating
system. While most of us work exclusively within the framework that DOS
creates for our computers, DOS isn’t the only operating system around—
there are others for the PC family, including CP/M-86, the UCSD
p-System, Xenix, and PC-IX (a pair of operating systems derived from the
well-regarded UNIX system) and others.

The idea here is that there is no problem with a diskette being
“‘owned’’ by an operating system like our DOS—owned in the sense that
the diskette has a format and logical structure that only applies to the
program (DOS) which works with the disk. Likewise, there’s no funda-
mental problem with a game program using its own peculiar diskette
format if it wants to (which many games do, just for copy-protection
reasons). Although odd diskette formats can be a nuisance for us, it’s not
any fundamental problem for our use of our PCs, simply because our
machines aren’t committed in any sense to always using these odd for-
mats, since we can just switch our diskettes around, take one out, and put
another on it.

With a (fixed) hard disk the situation is completely different. If our
hard disk is ‘‘owned’’ by one operating system (say our DOS), then we
can’t use it with another operating system (say any of the increasingly
popular UNIX-type systems). Since almost everything that we do with our
PCs is based on DOS, we’d be tempted to say ‘‘So what?’’ But that is a
very short-sighted view. The world of computing is always changing, and
it’s quite likely that the operating system that we use for our computers
today isn’t the one we’ll use a few years hence. Even today, there are PC

150

10.1 HARD DISK FEATURES AND PARTITIONS

users who find good reasons to use systems besides DOS. How do we
accommodate different operating systems, with incompatible ways of struc-
turing the use of a disk, all on one hard disk?

The answer, of course, is partitioning: dividing a hard disk into areas
which can be ‘‘owned’’ by different operating systems. Within the confines
of each partition, the disk can be formatted and logically structured to meet
whatever the needs are of the operating system that ‘‘owns’’ the partition.

This arrangement allows for a great deal of flexibility in the use of our
hard disks, but it relies on some across-the-board standards that every pro-
gram using the disk must follow. There has to be a variety of master format
that the disk has which all the operating systems on the disk must live
within. Part of this common ground is the actual physical formatting of the
disk, which sets, among other things, the sector size that will apply in every
partition on the disk. This points up the distinction between physical and
logical formatting that we discussed in Chapter 9. But a common sector
size isn’t all there is to the common ground and rules of coexistence that
apply to a partitioned hard disk. There also has to be standard way of
marking off the boundaries of a disk’s partitions; and each operating system
using a partitioned disk has to agree to stay within its own bounds and not
poach on another partition’s territory.

Here is how it’s done. The very first sector of a hard disk is set aside
for a special master record, which contains a partition table describing the
layout of the disk. This table shows what the dimensions of the disk are,
and shows how many partitions there are, and what the size and location of
each is. Now a disk doesn’t have to be divided into more than one parti-
tion—in fact, the most common thing on our PCs is to have only one
partition, a DOS partition, which takes up the entire disk. However many
partitions there are on the disk—from one to four—and whether they take
up the whole disk or leave part of it for future use, this master disk record,
stored on the first sector of the disk, shows how many there are, and where
they are located in the hard disk. Figure 10-1 gives you a picture represent-
ing what this is like.

By far the most common thing that PC owners do is to ignore the extra
possibilities and complexity that disk partitioning brings us. Instead, most
of us simply create a single DOS partition that fills the entire hard disk, and
use it as if DOS owned the whole disk and as if there were no such thing as
partitioning. This, in fact is the most sensible thing to do. Until you have a
need for another partition, which may never happen, there is no reason to
set aside hard disk space in case you might need another partition in the
future. We can take care of that problem when the time comes.

To deal with partitions on our hard disks, DOS has a program called

151

INSIDE THE IBM PC

Partition
Table

Partition Partition Partition Unused

Figure 10-1. A partitioned hard disk.

FDISK, which can display and change partition data. Figure 10-2 shows a
typical display of partition data, for a disk that’s devoted entirely to DOS.
There can be up to four partitions in the list that FDISK displays. Each will
have its own starting and ending location and size in disk cylinders.
Together they can take up the entire disk (as you see in Figure 10-2) or
leave parts of the disk open.

The FDISK program allows us to manipulate the disk partitions while
we’re working with DOS. If we’re working with other operating systems,
they should have equivalent programs. DOS’s FDISK allows us to create or
delete a DOS-owned partition, but it doesn’t allow us to remove a partition
that belongs to another operating system. This seems like a good safety
feature, but it has its disadvantages: if we end up with an unwanted parti-
tion from another system, we can’t blow it away from DOS, so we could
end up being stuck with a bum partition (this has happened to acquaintances
of mine).

Suppose we’ve devoted our entire hard disk to DOS and now we want
to surrender some of the space to make room for another partition? Can we
simply give up the space? Unfortunately not. The way DOS structures it’s
disk partitions, it can’t just simply shrink the partition. If we need to resize
a DOS partition (to make it smaller or larger), we need to unload all the
contents of the partition (say with the DOS utility BACKUP), delete the
partition (with FDISK), create a new partition, format it (with FORMAT)
and reload the data (with RESTORE). That can be a laborious process,
which we can avoid by leaving room for new partitions when we first start
using our hard disks. We could leave room, but I don’t recommend it. I
think that unless we know for sure that we’ll be needing another partition,
we’re better off letting DOS use all of our hard disks, and face the chore of
repartitioning when the need arises.

152

10.1 HARD DISK FEATURES AND PARTITIONS

Display Partition Information
Partition Status Type Start End Size

1 A DOS 0 613 614

Total disk space is 614 cylinders.

Press Esc to return to FDISK Options

Figure 10-2. Hard disk partition data.

In Figure 10-2 you’ll notice that the sole partition is marked with
status ‘‘A’’: that means that it is the active partition. On any partitioned
disk, one partition at a time is marked as active. This has to do with the
start-up, or booting, process. We know that every ordinary disk has a boot
program on its first disk sector, which begins the process of starting up or
booting the operating system. The same thing applies to a partitioned hard
disk, but there is an extra set involved. The first sector of a partitioned hard
disk contains a ‘‘master boot program’’ along with the table that describes
the partitions. This master boot program looks at the partition table to see
which partition is active. Then it fires up the boot program starting that
partition. Each partition has its own boot program (just as each diskette has
a boot record) that is tailored to the needs of the particular operating system
which owns that partition. The master boot record does the job of finding
the right partition boot record and getting it going.

We’ve spoken of disk partitions as belonging to distinct operating sys-
tems, but that isn’t always the case. Officially there can be only one DOS
partition on a hard disk, but sometimes there are actually two or more, and
for an important reason. As we saw in Chapter 9, DOS ordinarily has a

153

INSIDE THE IBM PC

32-megabyte limit to the size of the disks it can work with. What if we have
a larger disk, say a 70 meg disk? The DOS partition that we create on such a
disk ordinarily couldn’t be bigger than 32 megs, leaving the rest of the disk
unavailable to DOS. But, we can create other DOS-style partitions on the
disk, and access them through a special DOS device driver. Using this trick,
we can use the entire disk for DOS data, although it would be divided up into
separate partitions (which we would treat as if they were separate disks).

You can see from all this that partitions are a special key to making the
large storage space of hard disks work for us, with an extra flexibility that
just doesn’t apply to our diskettes. With this large size and extra flexibility,
though, comes an additional degree of complexity that we have to master,
if we want to get the full benefit from our computer’s hard disks.

Next, we’re going to look inside the structure that DOS places on our
disks, and see some of the fascinating technical details of how DOS man-
ages our disks.

TECHNICAL BACKGROUND | | 1 B I I I

10.2 Detailed Disk Structure

In this section we’re going to take a deeper look at the way DOS
structures a disk, so we can better understand what’s going on with our
disks. That will help us appreciate and use our disks when everything is
going right with them, and it may help us work our way out of trouble when
something goes wrong.

As we saw in Chapter 9, DOS divides each disk into two parts: the
system part, used for DOS’s record-keeping, and the data part, where our
files are stored. The system portion itself has three parts: the boot record,
the FAT (File Allocation Table), and the root directory. Now we’ll get a
closer look at what’s stored inside each one.

The boot record is always the very first part of each disk. As we
learned before, it’s used to hold a short program which begins the process
of starting up (‘‘booting’’) DOS. The boot record is present on every disk,
even those we can’t boot from (because they don’t contain a copy of the
DOS system files).

The boot program is small enough to easily fit into a single disk sector,
so it isn’t necessary for the boot portion to take up more than one sector.
But in case some future circumstance does make it necessary to have a
larger boot program, DOS’s method of handling disks allows for the possi-
bility that the boot area might have to become larger.

154

10.2 DETAILED DISK STRUCTURE

There are more interesting things inside the boot record of a disk than you
might imagine. We can use the DOS DEBUG program to inspect the contents
of a boot record; it only takes two simple DEBUG commands: L 0 0 O 1,
which reads into memory the boot record from a disk in the A drive, and D 0
L 200, which displays the boot record’s data in hex and ASCII. Figure 10-3
shows what this information looks like for DOS version 3.10.

2B35:0000 EB 29 90 49 42 4D 20 20-33 2E 31 00 02 02 01 00 .).IBM 3.1.....
2B35:0010 02 70 00 DO 02 FD 02 00-09 00 02 00 00 00 00 00 .p..............
2B35:0020 00 00 00 00 OF 00 00 00-00 01 00 FA33 CO8EDO 3..
2B35:0030 BC 00 7C 16 07 BB 78 00-36 C5 37 1E 56 16 53 BF ..l...x.6.7.V.S
2B35:0040 20 7C B9 0B 00 FC AC 26-80 3D 00 74 03 26 8A 05 oo &2 t.&
2B35:0050 AA 8A C4 E2 F1 06 1F 89-47 02 C7 07 20 TCFBCD G... |
2B35:0060 13 72 67 A0 10 7C 98 F7-26 16 7C 03 06 1C 7 03 .rg..l..& |...l.
2B35:0070 06 OE 7C A3 34 7C A3 2C-7C B8 20 00 F7 26 11 7C ..l.41.,1. . &.|
2B35:0080 8B 1E OB 7C 03 C3 48 F7-F3 01 06 2C 7C BB 00 05 ...l|..H....,I..
2B35:0090 Al 34 7C E8 96 00 B8 01-02 E8 AA 00 72 19 8B FB .4l......... r...
2B35:00A0 B9 0B 00 BE BE 7D F3 A6-75 0D 8D 7F 20 BEC9 D}..u... ..}
2B35:00B0 BY OB 00 F3 A6 74 18 BE-5F 7D E8 61 00 32 E4 CDt.._}.a.2..
2B35:00C0 16 SE 1F 8F 04 8F 44 02-CD 19 BE A8 TDEBEB A1 . "....D..... ..
2B35:00D0 1C 05 33 D2 F7 36 OB 7C-FE CO A2 31 7C A1 2 7C ..3..6.1...11.,1I

2B35:00E0 A3 32 7C BB 00 07 A1 2C-TC E8 40 00 A1 18 7¢ 24 .2l....,|l.@...I*
2B35:00F0 06 30 7C 40 50 E8 4E 00-58 72 CF 28 06 31 7C 76 .0l@P.N.Xr. (.1lv
2B35:0100 0C 01 06 2C 7C F7 26 0B-7C 03 DS EBD9 8A 2E 15 ..., l.& I.......
2B35:0110 7C 8A 16 1E 7C 8B 1E 32-7C EA 00 00 70 00 AC 0A |...l..2l...p...
2B35:0120 CO 74 22 B4 OE BB 07 00-CD 10 EB F2 33 D2 F7 36 .t'......... 3..6
2B35:0130 18 7C FE C2 88 16 30 7C-33 D2 F7 36 1A 7C 88 16 .l....0l3..6.1..

2B35:0140 1F 7C A3 2E 7C C3 B4 02-8B 16 2E 7C B1 06 D2 E6 . I..|...... ...
2B35:0150 O0A 36 30 7C 8B CA 86 E9-8B 16 IE 7C CD 13 C3 0D .60l....... boo..
2B35:0160 O0A 4E 6F 6E 2D 53 79 73-74 65 6D 20 64 69 73 6B .Non-System disk
2B35:0170 20 6F 72 20 64 69 73 6B-20 65 72 72 6F 72 0D 0A or disk error..
2B35:0180 52 65 70 6C 61 63 65 20-61 6E 64 20 73 74 72 69 Replace and stri
2B35:0190 6B 65 20 61 6E 79 20 6B-65 79 20 77 68 65 6E 20 ke any key when

2B35:01A0 72 65 61 64 79 OD 0A 00-0D 0A 44 69 73 6B 20 42 ready..... Disk B
2B35:01B0 6F 6F 74 20 66 61 69 6C-75 72 65 0D 0A 00 49 42 oot failure...IB
2B35:01C0 4D 42 49 4F 20 20 43 4F-4D 49 42 4D 44 4F 53 20 MBIO COMIBMDOS

2B35:01D0 20 43 4F 4D 00 00 00 00-00 00 00 00 00 00 00 00 COM............
2B35:01E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
2B35:01F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 55 AA U.

Figure 10-3. A boot record displayed.

There are several obvious things that we can see looking at this boot
record. The error messages, and the names of the two DOS system files
(IBMBIO.COM and IBMDOS.COM) give us an idea of some of the things
that can go wrong during the boot process, and it also, indirectly, tells us
that the boot program checks for these two names in the disk’s directory, to
see that it is a system disk. You’ll also see, near the beginning, a version

155

http:IBMDOS.COM
http:IBMBIO.COM
mailto:01@P.N.Xr

INSIDE THE IBM PC

marker that reads ‘‘IBM 3.1°". Not so obvious, but quite interesting, is that
this version marker is just the first element in a table describing the charac-
teristics of the disk to DOS. The table includes key information such as the
number of bytes per sector, sectors per track, and so on (the physical
dimensions of the disk), and also the size of the FAT and the directory (the
logical dimensions of the DOS structure on the disk). This table, and also
an identifying signature at the end of the record, (hex 55 AA) are included
in all disks except those formatted for versions of DOS earlier than version
2.0.

DOS needs to identify all the characteristics of each disk that it works
with. In the earliest versions of DOS, when there were only a few disk
formats, knowledge of those characteristics was built into DOS, and all
DOS needed from a disk was a single-byte ID code (which is stored in the
FAT) to know everything it needed about a disk. That approach isn’t really
flexible enough, though, so now DOS learns what it needs to know about a
disk from the information table in the boot record.

If you want to decode the boot program to study it, you can use
DEBUG’s U-unassemble command. To see all of it, you’ll have to unas-
semble it in pieces, and look to the addresses used in any ‘‘jump’’ com-
mands to see where other parts of the program code begin. For the boot
record shown in Figure 10-3, these two unassemble commands will get you
started: U O L 2 and U 2B.

Immediately following the boot record on each disk is the File Alloca-
tion Table, or FAT, which controls the use of file space on the disk. As we
discussed in Chapter 9, the data portion of a disk is divided into clusters of
segments, and the clusters are the units of space that are allocated to files.
Each cluster is identified by a sequential number, beginning with number 2
for the first cluster on a disk (cluster numbers 0 and 1 are reserved for the
convenience of DOS). Regardless of the cluster size (which might be a
single sector, or as much as eight sectors or more) each cluster has an entry
in the FAT which records its status.

Since what’s stored in each cluster’s FAT entry is the identifying
number of another cluster, the total number of clusters identifies how big a
FAT entries need to be. Originally the FAT entries were stored as 12-bit
numbers, which could accommodate numbers as large as 4K—and that set
a limit of about 4,000 on the possible number of clusters. However, the
design of the AT model’s 20-meg hard disk called for over 10,000 clusters;
that, in turn, required a larger FAT design. So, now there are two FAT
formats: one, for smaller disks, with entries 12 bits in size, and one with
entries 16 bits in size. The difference between the two is only in how the
FAT itself is stored; the way the FAT is used is the same for both sizes.

156

10.2 DETAILED DISK STRUCTURE

If a FAT entry is zero, that indicates that the corresponding cluster is
not in use—it’s free for allocation to any file that needs it. For clusters that
hold file data, the FAT entry contains either the identifying number of the
next cluster or a special number which marks the end of a file’s space
allocation chain. The clusters where a file is stored are ‘‘chained’’ together
by the numeric links that are stored in the FAT. The file’s directory entry
indicates the first cluster number, and each cluster points to the next clus-
ter, or indicates the end of the chain (the end marker is hex FFF for a 12-bit
FAT, FFFF for a 16-bit FAT). This allows DOS to trace the location of a
file’s data from front to back. Portions of a disk which are defective and
shouldn’t be used—so-called ‘‘bad track’’ areas—are identified by a FAT
entry of FF7 (or FFF7 for a 16-bit FAT). Other special FAT codes, FFO
through FFF or FFFO through FFFF, are reserved for any needs that may
arise in the future.

You’ll note that the special FAT codes are kept to the 16 highest
values (for either FAT format), so that there are as many usable cluster
numbers as possible: up to 4078 for 12-bit FATs and 65,518 for 16-bit
FATs. As we know, the number 0 is used to identify available clusters, and
the number 1 is also reserved for a technical reason.

Both 12-bit and 16-bit FATs are used the same, but each is recorded in
its own way, to take account of the difference in the size of the entries.
There’s nothing special about how a 16-bit FAT is stored: 16-bit numbers
are part of the PC’s natural scheme, and so the numbers in a 16-bit FAT are
simply stored as a list of 2-byte words. For 12-bit FATs, things are more
complicated. The PC’s microprocessors don’t have any natural and conve-
nient way to record numbers that are 1% bytes long. To deal with this
problem, the FAT entries are paired, so that two FAT entries take up three
bytes with no wasted space. The method of coding two 12-bit numbers in
three bytes is set up to be as convenient as possible to handle with assembly
language instructions, but it’s rather difficult for us to make sense of it if
we look at the hex coding for this kind of FAT.

Each FAT table actually begins with the entry for cluster number O,
even though the first actual cluster is number 2. The first two FAT entries
are dummies, and they are used to provide a place to store an ID byte that
helps DOS identify the disk format. The very first byte of the FAT contains
this code. For example, the hex code FE identifies the PC’s original 160K
single-sided diskette format.

To help safeguard the FAT, DOS can record more than one copy of
the FAT. Usually disks have two copies of the FAT stored on them,
although it’s possible for a disk to have only one copy, or more than two.
However many copies of the FAT there are, they are stored one after

157

INSIDE THE IBM PC

another. To the best of my knowledge DOS does not make any use of the
second copy of the FAT, although it carefully records it each time the FAT
is changed.

The next and final element of the system portion of each disk is the
root directory, which is stored immediately following the disk’s FATs. The
directory works as a simple table of 32-byte entries that describe the files
(and other directory entries such as a volume label) on the disk.

The directory entries record, as we noted in Chapter 9, the 8-byte
filename, the 3-byte filename extension, the file’s size, the date and time
stamp, the starting cluster number of the file, and the file attribute codes.
There is also an unused 10-byte field in each directory entry that can be
used to take care of future needs. There are a lot of interesting things for us
to discover in these directory entries. For example, in the filename field,
there are two special codes that are used in the first byte of the filename. If
this byte is 0, it indicates that the directory entry (and any following entries
in this directory) has never been used; this gives DOS a way of knowing
when it’s seen all the active entries in a directory without having to search
to the end. Another code, hex ES, is used to mark entries that have been
erased. That’s why, whenever we work with erased files (using my
UnErase program or any similar program) we don’t see the first character of
the erased file’s name; that’s because when a file is erased, the first charac-
ter of the filename is overwritten with this hex ES erasure code. Inciden-
tally, when a file is erased (or a subdirectory removed) nothing else in the
directory entry is changed: all the information is retained. The only thing
that’s done when a file is erased is that the filename is marked as erased,
and the file’s space allocation in the FAT is released.

There’s one more special and interesting thing to know about the file-
name and extension fields. For files and subdirectories, these two are
treated as separate fields. But when a directory entry is used as a disk’s
volume label, the two together are treated as a single unified 11-character
field. When a disk’s volume label is displayed (as it is by the DIR and
CHKDSK commands) the label isn’t punctuated with a period the way
filenames are.

The size of each file is stored in the file’s directory entry as a 4-byte
integer, which accommodates file sizes much larger than any disk we could
use—this guarantees that our files won’t be limited by the size that can be
recorded in the file directory. Incidentally, the file size is recorded only for
true files. Other types of directory entries have their file size entered as
zero. That makes sense for the directory entry which serves as a volume
label, but it’s a little surprising for subdirectories. Even though subdirecto-
ries are stored in the data portion of a disk the same way files are, and even

158

10.2 DETAILED DISK STRUCTURE

though a subdirectory has a size to it, it’s not recorded in the subdirectory’s
own directory entry.

The date and time stamp in each directory entry is formatted in a way
that can record any date from January 1, 1980, through the end of 2099; the
time stamp records times to an accuracy of two seconds, although when
DOS shows us the time stamp it only displays the time to the minute. The
date and the time are separately recorded in two adjacent 16-bit words, and
each is coded according to its own formula. However, the way they are
stored allows the two together to be treated as a single 4-byte field that can
be compared in a single assembly language instruction to learn if one stamp
is earlier or later than another. The date and time are coded into 2-byte
numbers by these formulas:

DATE = DAY + 32 * MONTH + 512 * (YEAR -1980)
TIME = SECONDS /2 + 32 * MINUTES + 2048 * HOURS

The final item of interest to us inside a directory entry is the file
attribute byte. This single byte is treated as a collection of eight flags, each
controlled by a single bit. Six of the eight are currently in use, while the
other two are available for future use. Two of the six attribute bits are
special and are used by themselves, without any other bits set: one marks a
disk’s volume label directory entry; the other marks a subdirectory entry, so
that DOS knows to treat it not as a file but as a subdirectory. The other four
attributes are used to mark files, and they can be set in any combination.
One marks a file as read-only, not to be modified or erased; another marks
a file as having been changed. This is used by the BACKUP program (and
similar programs) to indicate which files need to have backup copies made.
The final two attributes are called ‘‘hidden’’ and ‘‘system’’; they are used
to make a file invisible to most DOS commands. There is essentially no
difference between hidden and system status. The two DOS system files
that are on every bootable system disk are both marked as hidden and
system. As an interesting oddity, hidden or system files are invisible to the
DOS commands DIR, COPY, and DEL, but they are seen by the TYPE
command; you can verify that for yourself by entering the command TYPE
IBMDOS.COM on a system disk.

Like the other elements of the system portion of a disk, the root direc-
tory has a fixed size for each disk, so that DOS knows exactly where to find
the beginning of the directory, and the beginning of the data area that
follows it. This means that the root directory can only hold so many entries,
which is a rigid limit. Subdirectories, on the other hand, don’t have that

159

http:IBMDOS.COM

INSIDE THE IBM PC

problem. While subdirectories work essentially just like the root directory,
they are stored in the data portion of the disk—just as though they were
ordinary files—and they can grow to any size that the disk can accommo-
date. Using subdirectories, which were introduced with DOS version 2.00,
avoids any arbitrary limit on the number of files that a disk can hold.

Menu 1.5

Select Disk Sector

You may select a sector numbered from O through 319
Enter sector number:

Press Esc or Enter to return to Top Level Menu

Outline of Sector Usage on This Disk

0 Boot Area (used by DOS)
1 -2 FAT Area (used by DOS)
3-6 Directory Area (used by DOS)
7 - 319 Data Area (where files are stored)

Currently selected: No file or disk sector selected
Drive B: Directory: root directory

Figure 10-4. Showing the sizes of parts of the disk.

As we’ve mentioned, each element of the system portion of a disk has
a fixed size for that particular disk format. The boot record is always one
sector. The FAT varies from as little as two sectors on a 160 kilobyte
diskette to much larger sizes, such as 82 sectors on the AT’s 20-meg hard
disk. The root directory also varies, so that on a 160K byte diskette it has
64 entries and occupies four sectors, and on a 20-meg disk it has 512
entries and fills 32 sectors. If you have my NU program, you can see the
size of each part of the disk, using menu selection 1.5. Figure 10-4 shows
an example of this information for a standard 160K diskette.

The final and largest part of each disk is the data space. As you can
imagine, there aren’t quite as many fascinating details to discover about this
part compared to the system part of the disk, but there are interesting things
there. We know that our file data can have any length, but the file data is
always stored on complete 512-byte disk sectors, and the sectors are allo-
cated to files in complete clusters. So at the end of most files there is some

160

10.3 NONSTANDARD FORMATS AND COPY PROTECTION

slack filling out the last sector that’s used, and there may even be com-
pletely unused slack sectors at the end of the last cluster assigned to a file.

When DOS writes file data out to the disk, it doesn’t do anything to
clean up these slack areas. Any slack sectors are just left undisturbed from
whatever was recorded there before. In the case of any slack bytes at the
end of the last sector of a file, we’ll pick up whatever was stored in the
computer’s memory area where DOS was putting the sector’s data together;
usually it’s a small fragment of other disk data—part of another file, or part
of a directory. If you inspect the slack area at the end of a file, you’ll find
these odds and ends.

10.3 Nonstandard Formats and
Copy Protection

Nearly everything that we’ve learned so far about our disks has to do
with the standard way that DOS formats and structures a disk. But our
computer’s disks aren’t bound by the rules that DOS follows; there are
many other possible ways of handling a disk.

Some of the ways that we may encounter have to do with other operat-
ing systems, as we’ve mentioned—operating systems like CP/M-86, the
p-System, and others. Also, there are a few programs that create their own
operating system environments to suit their special needs. To see why,
consider the limitation that DOS places on filenames: no more than 11
characters including the extension. If a program wants to have longer, more
meaningful names for its data files, it needs to break out of the DOS mold.
And that is one of the reasons why we sometimes find programs that use
their own special disk formats.

However, when we encounter nonstandard disk formats it’s usually for
only one reason: copy-protection. If a program has its own peculiarities in
the way its disks are formatted, then it has at least some resistance to being
copied. Unfortunately for us, any nonstandard disk format presents us with
special problems in using and protecting our programs and data, which has
little to do with copy-protection. Discussing the matter here can only do
very little to reduce the difficulties that copy-protection can impose. It’s
worthwhile to have a basic idea of what is going on with these nonstandard
disk formats, so that we have the least possible difficulty with them.

The first thing that we need to know is that there are two distinct
categories of nonstandard disks—one of disks that are totally different than
the DOS format, and the other of disks that we might call tampered-with,
but otherwise in DOS format.

161

INSIDE THE IBM PC

Some copy-protected programs really have nothing to do with the
ordinary uses that we put our computers to, and they have no reason to
exchange data with other programs that use DOS. These are often game
programs, such as the Flight Simulator program. Programs like this are
usually designed to be self-loading from disk: they boot up the same way
that DOS boots up. But while DOS goes into action to create an environ-
ment to help other programs run, these self-loading programs are booted up
strictly to run themselves. Game programs like this have no need to
exchange disk data with other programs, and so there is no compelling
reason for them to be stored on standard DOS disks. They could be, but
they don’t need to be, and by being stored in their own unique self-loading
formats, they can resist ordinary efforts to be copied.

In contrast, there are many programs that are copy-protected which also
need to work with DOS so that they can fit into the overall DOS scheme of
using our computers, including exchanging data files stored in the standard
DOS manner. The best-known example of this type of program is Lotus’
1-2-3. These programs completely make use of standard DOS disk formats,
with one exception, which forms the basis of their copy-protection. Typically
these programs make use of a special master or key diskette, which has some
special marking on it that resists conventional copying. When we begin using
a program like this, the program inspects the key disk to see that the special
copy-resistant marking is there—if it doesn’t find the special marking then
the program refuses to continue working.

How is it possible for these nonstandard formats to be created, and
what makes them resist copying? As we saw in Chapter 8, our disks can be
formatted with a variety of sizes of sectors, number of sectors per track,
and so forth. DOS uses only a very simple variety of disk formats. For
example, DOS only uses sectors of 512 bytes, even though our disks can
have sectors of different sizes. The standard copy routines in DOS, includ-
ing the COPY and DISKCOPY commands, only handle the standard forms
of disk. Anything unusual—an odd-size sector, an oddly numbered sector,
a missing sector, an extra sector, and so on—can’t be properly handled by
DOS. However, a smart program can work with these oddities to create and
maintain copy-protection. Special copy programs, which know about the
usual schemes used, can often defeat copy-protection, but the standard
DOS operations cannot.

When we encounter a completely non-DOS disk format—whether it’s
a copy-protected disk, or a disk from another operating system—the ordi-
nary things that we might do with a disk (for example, use the DIR com-
mand to see a list of the files on the disk) just can’t be done. Don’t expect
to do anything like that with a game program. On the other hand, disks

162

SOME THINGS TO TRY

such as the 1-2-3 key disk, which are mostly in DOS format, can be treated
largely like any other disk that we use. We can get a directory listing of the
disk, we can copy the files (but not the special copy-protected part of the
disk), and so forth.

There’s one additional thing that we need to know about copy-
protection, and that’s how it’s accomplished on a hard disk. Most
copy-protected programs require that we load their original diskettes into
our computer’s diskette drive, even if we can copy the programs to our hard
disks. To run, these programs have to inspect their key diskettes to check
the copy protection. This of course is a real nuisance, and defeats one of the
greatest advantages of having a hard disk, which is to avoid playing around
with diskettes. However, there are some copy-protected programs that are
able to transfer their copy protection schemes onto a hard disk, so that we
don’t have to fiddle with a key diskette. How can this be done?

Fortunately for us, it’s not done by tampering with the format of our
hard disk in anything like the way that a copy-protected diskette has a
specially tampered format. Instead, these hard-disk copy protection
schemes are based on the unusual use of file formats. These methods can
involve things like hidden files (which ordinarily can’t be copied) and spe-
cial encrypted data which records key information about the computer it’s
loaded on (so that if it is transferred to another computer that’s even slightly
different, the copy-protection scheme can detect it).

Because there are so many different ways of achieving copy protec-
tion, and so many possible oddities in copy protection, there is no way that
I can explain all of them to you, or offer any tips on dealing with
copy-protection that would apply all or even most of the time. But hope-
fully just a little understanding of the nature of copy-protection and non-
standard disk formats will help you deal with any peculiarities that come
the way of you and your computer.

Some Things to Try

1. Can you explain why a DOS partition on a hard disk can’t be
changed in size without reformatting it? Is it possible to write a
conversion program that can resize a partition? Describe the steps
that would be involved.

2. Using the techniques shown in Section 10.2, inspect a boot record
from one of your own disks and compare it to the one shown.

163

INSIDE THE IBM PC

164

Then, using the U-unassemble command of DEBUG, get an
assembly language listing of the boot program and discover how it
works.

For every diskette format that your computer handles (sin-
gle-sided, double-sided, etc.), format a diskette with the DOS
files, and then inspect the disk to see what the differences are in
the boot record and other elements.

If you have my NU program, use it to inspect the slack area at the
end of your disk files. Go to menu selection 1.3 to select a file,
then go to selection 2.5 to display the file’s data; press the End
key to jump to the end of the file—and see what you can find.

11

Video:
An On-Screen Overview

n one odd sense I suppose we could say that the only part of our
computer that really matters is the display screen. At least that’s the
way it can seem, since most of the time that we’re using our com-
puters it’s the results that appear on the screen that we’re interested
in, and not the messy details of what it took to figure out those results.

In this chapter, and the next two, we’re going to discover how our
computer’s display screens work, and learn what they can do and what the
limits are on what they can do for us. To begin, our goal for this chapter is
to simply understand the basics of how our computer screens work, so that
we know fundamentally what they can do for us. Then, in the next two
chapters, we’ll cover what’s special about the two main screen modes: text
mode and graphics mode.

We begin with the basics.

11.1 How the Screen Works

The first thing that we ought to note about our computer’s display
screens is that they show information, and that information has to be
recorded somewhere. To gain the maximum flexibility and speed, the PC
keeps the data that’s shown on the screen inside the computer, rather than
inside the display screen. That’s in contrast to the way many computer
terminals work. Consider, for example, the terminals used by travel agents.
There, the screens are located miles away from the computers that feed
them. They must hold their own record of the data that’s displayed, and talk
to the computer far away only when new data is needed. That’s an approach
that tends to make response on the display screen sluggish. By contrast, the
display screens in our PCs are so close by that the screen and the computer
can work together very intimately.

The way that’s done is to place the memory that holds the data appear-
ing on the display screen inside the computer. The memory is inside the

165

INSIDE THE IBM PC

computer in two senses: it’s there physically, because the memory chips are
inside the computer’s boxy system unit, but it’s also there in a logical
sense, because the display screen data is recorded in an integral part of the
computer’s memory space. In Chapter 7 we discussed how our PCs have a
one-million byte ‘‘address space’” of memory that they can work with. The
very memory that the display screen needs to record its data is a part of the
PC’s address space, so that it’s not in any way remote to our computers and
the programs that we run in them. The display memory is very intimately
connected with the computer, so there is no delay or inconvenience in
getting to it. This helps make our PC computers very responsive.

The display memory is rather different than the rest of the computer’s
memory, though, because it has to serve two masters. On the one hand it
must be accessible to the PC’s microprocessor and programs, just like any
other part of the memory. On the other hand, the display memory also has
to be accessible to the display screen, so that the screen can see the infor-
mation that it is supposed to display.

As a consequence, the display memory used by our PC has special
circuitry working with it. In effect the display memory is a room with two
doors into it. The rest of the computer’s memory has only a single ‘‘door,”’
a single way of being accessed, because only one thing uses that memory—
the microprocessor. But two parts of the computer work with the display
memory: the microprocessor places data into the display memory to make it
visible; and the display screen looks at that data to know what to show on
the screen. Both parts access the display memory, and each part has its own
‘‘doorway’’ into the memory so that the two do not get in each other’s way.

The programs running in our computer’s microprocessor only have to
tap into the display memory when they need to change what’s being shown.
The display screen, however, is constantly reading the display memory and
constantly creating a screen image that reflects the contents of the display
memory. Roughly 50 times a second, the display screen’s electronic cir-
cuitry reads the display memory and paints a new picture on the screen to
reflect what’s recorded in the memory. With the screen being repainted that
often, new data can appear almost instantly. All a program has to do to
make new information appear in the screen is to place the data in the
display memory and right away it shows up on the screen.

The electronic work behind all this is found in an optional part of our
computer called the display adapter. To allow the PC family to work in as
many ways as possible, the PC’s display adapter was made a changeable
part, which plugs into the computer’s option slots inside the system unit.
This makes it possible for us to change the kind of display adapter we have
to suit our needs. We can even have more than one type installed in our

166

11.1 HOW THE SCREEN WORKS

computers, to give us more than one type of display screen at once. In
Section 11.2 we’ll take a look at the various kinds of display adapters for
the PC family and see what each one can do for us.

As part of the idea of making the PC family’s display screens change-
able, the PC’s design has numerous video modes, or ways of presenting
data on the display screen. Each display adapter has its own repertoire of
video modes which it can use. The video modes define what kind (and
quality) of information we can show on the screen, and we select the
display adapter hardware for our PCs to get the video modes that we want
to work with—although, when we select the hardware for our PCs, we may
not think of it in exactly those terms, but that’s basically what we’re doing.
We’ll see an outline of the various video modes in Section 11.2, and the
following two chapters are devoted to discovering the ins and outs of how
these video modes work and what they can do for us.

Because each display adapter uses its own video modes and because
each mode has its own particular memory requirements, the display mem-
ory that our computers use is physically located on the display adapter
board itself—so that if we change from one adapter to another, we’ll also
change the memory. That way, we automatically get just the right amount
and kind of display memory when we install a display adapter in our
computers.

Our computer’s display screens themselves work in a manner very
much like a television set. The scheme is what’s known as raster scan, and
it works like this: the display screen is constantly being ‘‘painted’’ by a
moving electron beam which traces a path through the entire screen roughly
the way we read; it starts at the upper left, ‘‘scans’’ the first thin line of the
image from left to right, lighting up the active parts of the screen, and then
skips back to the left to trace the next fine line. It proceeds from top to
bottom, painting the entire image. As the electron beam scans over the
screen, the display adapter’s circuitry continuously reads out data from the
display memory and translates the data bits into the signals that control the
electron beam. To minimize flicker on the screen, the image is actually
painted in two interleaved halves: every other line is painted from top to
bottom, and then the remaining lines are painted in a second scan; after two
quick scans, the image is complete. Television sets use the same inter-
leaved double scan.

The Screen and its Border

There is a border area on our computer’s display screens that
surrounds the working part of the screen where data is displayed.

167

INSIDE THE IBM PC

This border is an inactive part of the screen, and our programs can’t
show any information there—but that doesn’t mean that the border is
necessarily blank.

The electron beam that traces out the working part of the screen’s
“‘raster scan’’ also passes beyond the working area into what’s called
an overscan—the border area of the screen.

While we can’t put data into the border, we can, at times, set the
border color. The results we get vary among the display adapters and
screens that we use. The Monochrome Adapter doesn’t generate a
changeable border; the Color Graphics Adapter does and so does the
Compaq adapter (though at times in a less satisfying way). The
Enhanced Graphics Adapter sometimes does and sometimes doesn’t,
even when it’s being used in a way in which the Color Graphics
Adapter does provide color.

The PC’s ROM-BIOS software provides a service that sets the border
color when it’s available. BASIC gives us access to this service
through the COLOR statement. This little program demonstrates the
border colors if they are active:

10 SCREEN 0,1 : WIDTH 80 : CLS

20 FOR BORDER.COLOR = 0 TO 15

30 COLOR , , BORDER. COLOR

40 PRINT "Border color is '"; BORDER.COLOR
50 PRINT "Press a key..."

60 WHILE INKEY$ - "" : WEND

70 NEXT

The main reason for setting a border color is to have it match the
background color that’s being used—that can make the screen much
easier on the eyes. Often it’s not a good idea for a program to use a
background color if it can’t be matched with a border color.

Those are the basic principles behind how our computer’s display
screens work. The fundamental ideas are very simple, and the interesting
parts lie in the details of what our PC’s display screens can do for us. We’ll
begin uncovering those details by looking at an overview of the various
video modes that our PCs can show us.

11.2 Video Mode Overview

Just about the most important thing for us to know about our com-
puter’s display screens is the variety of modes that they can work in. We
need to know the different stunts that our screens can perform, and that

168

11.2 VIDEO MODE OVERVIEW

means understanding the video modes, the different ways that our display
screens can operate.

There are two parts to that. First, we need to understand what the
range of modes is on our computer’s screen. We need the answer to the
question, ‘‘What tricks can my computer do?’’ Second, we need to under-
stand the full range of video modes. We need the answers to the two
questions, ‘‘What tricks can the PC family do?’’ and, ‘‘Do I want to add
new tricks to my machine?’’ We need to know what our machines can do,
what they could do if we equipped them with different display options; and
then we need to decide if we’ve got the wrong stuff.

We’ll start on the analytic side, seeing what the basic differences are
among the display modes, seeing how the video modes provide us with a
multi-dimensional range of choices. Then we’ll tidy up by listing all the
modes and seeing which ones apply to which display adapters.

The first big division among the video modes, the first of two main
dimensions for us to consider, is between text mode and graphics mode. In
a text mode (and there are several distinct text modes), all the display screen
can show is the PC family’s basic character set, which we pored over in
Chapter 4; only these characters can be shown and nothing more. It’s worth
pausing to note again that the PC’s character set is a rich one, and, it
provides plenty of opportunities for showing more on the screen than just
written text. The box-drawing characters and others that we saw in Chapter
4 make it possible to create impressive character-based drawings on the
PC’s screen. But still, in a text mode, the only thing that can be shown are
these 256 PC characters. In the text modes, the PC’s screen is divided up
into specific character positions—usually 80 columns of characters across
the width of the screen, and 25 lines of characters from top to bottom.
Chapter 12 is devoted to covering the details of how our computers work
with the text modes.

The alternative to the text modes are the graphics modes. In the graph-
ics modes the screen is treated as an array of tiny dots, called pixels (which
is short for picture elements), and anything that appears on the screen is
shown by building up a drawing made up of these dots. The various graph-
ics modes differ in how many dots there are on the screen, which is called
the resolution; a typical high-resolution mode has 640 columns of dot posi-
tions across the screen, and 200 lines of dots down. Any kind of
dot-drawing can be built up from these dots, including drawings of the PC’s
text characters, like the letter A. The PC’s built-in ROM-BIOS programs
do the work of drawing characters dot-by-dot, so that programs operating in
a graphics mode don’t have to take on that chore, if they don’t want to
(sometimes they do to draw the characters in special ways such as italic).

169

INSIDE THE IBM PC

Chapter 13 is devoted to covering the details of how our computers work
with the graphics modes.

Text versus graphics is one dimension of the video modes; color is the
other main dimension. There are modes which have no color range at all.
These are the black-and-white or two-color modes. There are the hon-
est-to-gosh color modes, which provide us with as few as four or as many
as 64 colors to choose from. Finally, there are the monochrome modes,
which don’t have color in the ordinary sense, but have display attributes
which are the equivalent of a variety of colors. The monochrome display
attributes include normal and bright high-intensity, reverse video (dark
characters on a lit background instead of the other way around), underlined
characters, and so forth. There are color and black-and-white video modes
for both text and graphics modes.

Within the four main possibilities that these two dimensions
describe—text or graphics, colored or not—there are a number of minor
dimensions, lesser variations in the range of video possibilities. These vari-
ations include the resolution (how many dots or characters the display
screen holds), the range of colors, and so forth. We’ll see them as the
details of the video modes unfold.

The next way that we need to view the PC family’s video modes is to
see them from the hardware angle: looking at the various display adapters
(and thé display screens which connect to them) that determine which of
the video mode possibilities apply to our computer. We’ll look at the four
main display adapters that the PC family uses (and peek at a few others as
well).

The first two display adapters that appeared for the PC family and the
most important ones are the IBM Monochrome Adapter and the IBM Color
Graphics Adapter (CGA). The Monochrome Adapter was intended as the
PC family’s standard professional choice, the display adapter for ‘‘serious’’
work. It’s a text-only display adapter which generates very crisp,
easy-to-read characters. As a ‘‘monochrome’’ option, it only shows one
actual color, but the video mode for this display adapter and screen features
the color-like display attributes we mentioned before: underlining, bright
intensity, and so forth. The Monochrome Adapter only works with IBM’s
Monochrome Display Screen or its equivalent. The IBM Monochrome Dis-
play Screen glows in a soft green color, but there are equivalent screens
available in amber color as well. The Monochrome Adapter has only a
single video mode.

The other of the PC’s original pair of display adapters is the Color
Graphics Adapter. The Color Graphics Adapter works in both text modes
and colored and colorless modes in various resolutions, a total of seven

170

11.2 VIDEO MODE OVERVIEW

video modes in all. It also works with four different types of display
screens, in contrast to the one type that can be used with the Monochrome
Adapter. By these simple specifications, it sounds as though the Color
Graphics Adapter completely has it over the Monochrome Adapter, and
superficially that’s true. Everything that the Monochrome Adapter can do,
the Color Graphics Adapter can also show—with color and graphics in
addition. However, the Color Graphics Adapter has serious drawbacks
which led to most PCs being equipped with the Monochrome Adapter. The
main problem with the CGA is its relatively poor display quality. Its screen
images are not nearly as crisp and clear as the Monochrome Adapter’s. In
fact many people, me included, think that the Color Graphics Adapter is
too fuzzy and hard on the eyes to work with for an extended period of time.
But, fuzzy or not, the Color Graphics Adapter gives us color, graphics, a
selection of resolutions, and a selection of display screens that goes far
beyond what the Monochrome Adapter gives us.

As I mentioned, the Color Graphics Adapter is able to work with four
different types of display screens. One—which is not often used—is a TV
set. The picture quality with a TV set is poor, and using it requires one
additional piece of equipment, a RF modulator, which translates the Color
Graphics Adapter’s signal into TV signals. The best type is called an RGB
monitor, because it accepts the display adapter’s Red-Green-Blue display
signals, and produces the best possible picture image; the standard IBM
Color Display is an RGB monitor. In between a TV and an RGB monitor
are the other two types, known as composite monitors. They work with a
lower quality image signal from the Color Graphics Adapter, so they don’t
produce as good a picture as an RGB monitor. There are two kinds of
composite monitors, color and monochrome; the monochrome composite
monitors do accept a color signal, but they show colors in the form of
shades of the one color the screen can show.

There is a special variation on the Color Graphics Adapter we need
to know about, although it is not part of the mainstream of the PC family.
That is the display adapter that comes with each of the Compaq computer
models. This Compaq display adapter functions just like the Color Graph-
ics Adapter, with its full range of video modes, but it has a special feature
that overcomes the main problem with the Color Graphics Adapter, its
fuzzy text characters. When the Compaq display adapter is working in the
standard text mode it’s able to show its text characters with the same
clarity and fine-drawing that the Monochrome Adapter uses. The Compaq
display adapter effectively combines the virtues of both the Color Graph-
ics Adapter and the Monochrome Adapter. However, the Compaq adapter
is only available on the Compaq members of the PC family. Some people

171

INSIDE THE IBM PC

find that sufficient reason to choose these models over other members of
the PC family. The Compaq adapter can work with the same four types of
display screen as the Color Graphics Adapter. Essentially everything that
there is to say about the Color Graphics Adapter applies as well to the
Compagq adapter. If you’re using a Compaq computer, you can think of it
as having a special and slightly better version of the Color Graphics
Adapter.

The next display adapter for us to consider is the Hercules graphics
adapter—popularly called the Herc card—and its equivalents. There are
strong similarities between the Herc card and the Compaq adapter. While
the Compaq adapter is essentially a Color Graphics Adapter with the main
advantage of the Monochrome Adapter (clear text characters) added, the
Herc card is essentially a Monochrome Adapter with the main advantage of
the CGA (graphics) added. The Herc card acts exactly as a Monochrome
Adapter, but it has an additional display mode which provides
high-resolution monochrome graphics, very suitable for most important
graphics applications. The Herc card’s graphics mode is, in IBM’s view,
very much a nonstandard display format which we might not take too
seriously. However, the PC community has taken so favorably to the Herc
card’s capabilities that I consider it to be a key part of the PC family’s
equipment, and one of the four main display adapters that we’ll be covering
in this chapter and the next two. The Herc card, like the Monochrome
Adapter, only works with the Monochrome Display or its equivalent.
Although the Herc card’s graphic mode is not a standard display mode (as
IBM sets the standards) it has been widely accepted by software develop-
ers, so that most important graphics-oriented software works with the Herc
card.

The last of our four mainstream display adapters for the PC family is
the IBM Enhanced Graphics Adapter (EGA). The Enhanced Graphics
Adapter is IBM’s effort to unify the variety of display adapters and
extend the PC family’s capabilities into new technology. The Enhanced
Graphics Adapter essentially combines all the features of the Mono-
chrome Adapter, the Color Graphics Adapter, and the Herc card, together
with new video modes that can be used with higher-quality color monitors
like the IBM Enhanced Color Display, which is essentially a technologi-
cally advanced version of an RGB monitor. The Enhanced Graphics
Adapter clearly set out to be the wonder-board, a single display adapter
which would combine all the advantages of the other boards, obsoleting
each of them. The Enhanced Graphics Adapter would be a complete
replacement for both of IBM’s original display adapters if it weren’t twice
as expensive as either of them. It would also be a replacement for the

172

11.2 VIDEO MODE OVERVIEW

Herc card if it weren’t for the fact that the EGA’s monochrome graphics
mode isn’t compatible to the Herc card’s, and for some time there will be
more Herc software than EGA software, because the EGA is a relative
late-comer.

While these four are what I consider to be the mainstream of the PC
family’s display adapters, there are others; we’ve already seen one, the
Compaq display adapter. You also should know about the PCjr’s built-in
display adapter, which acts very much like the Color Graphics Adapter, but
adds to the CGA'’s skills some extra graphics modes. There is also the very
special IBM Professional Graphics Adapter, which is intended for unusu-
ally demanding circumstances. The Professional Graphics Adapter is so
special that it has its own microprocessor built into it, a microprocessor that
is more powerful than the one in the PC that it is installed in. In this case,
the accessory has more horsepower than the instrument it’s designed for.
Because the peculiar capabilities of the PCjr and the Professional Graphics
Adapter are so removed from the heart of the PC family, we won’t go into
them in any detail.

Most PC computers have a single display adapter in them, but it is
possible to install and use two display adapters in the same machine. Before
we move on to summarize all the display modes that these display adapters
provide, let’s take a look at which combinations of display adapters we can
use, and which we can’t.

The Monochrome Adapter and the Color Graphics Adapter can be
used together, and either can be combined with the Enhanced Graphics
Adapter. So any two of these three can be together in the same machine.
The Herc card can’t be combined with any of the three IBM display adapt-
ers, but Hercules makes an equivalent to IBM’s Color Graphics Adapter
that can be combined with the Herc card (just as IBM’s own CGA can be
combined with IBM’s Monochrome Adapter).

Now, how do we make sense of all the possibilities that these various
display adapters present us with? The best way to see them is to list them
out in the form that IBM’s technical manuals see them, by the video mode
numbers that identify them. We’ll gloss over some of the more interesting
details until we get to the next few chapters; what we’ll see here are the
main aspects of each mode. After we talk about these modes, I’ll show you
how you can determine which mode your computer is in, and do some
exploring with them.

The first seven modes, numbered O through 6, apply to the Color
Graphics Adapter and any equivalent display adapter (which includes the
Enhanced Graphics Adapter, the Compaq adapter, and the PCjr’s built-in
display adapter). Here’s a list of them:

173

INSIDE THE IBM PC

There are some easily identifiable patterns in these seven modes.
You’ll note that the first six modes are in pairs, one mode with color, the
other without. For the colorless modes, colors appear as shades of grey
when they appear on either a TV set or a composite monitor (on an RGB
monitor, color still appears, regardless). You’ll also notice an inconsistency
in the order of the color and colorless mode for video modes 4 and 5, the
graphics modes. For all these modes which have more than two colors, a
colorless variation makes sense. Mode 6 has only two colors (black and
white) to start with so there would be no distinction between a colored and
colorless variation on this mode. In the text modes, there are two widths
available (40 and 80 characters across). The 40-column mode was created
to be more legible when a TV set is used as a display screen, but few PCs
use TV sets or this mode. Most major programs for the PC family are not
designed to work in 40-column mode. All the text modes have 25 lines of
characters on the screen. In the graphics modes, there are also two widths
and two resolutions. The high-resolution mode has 640 dots across and the
medium-resolution modes have 320 dots across. All three of these graphics
modes have 200 lines from top to bottom. You’ll also note the progression
of colors that’s available: 16 in the text modes, 4 in medium-resolution
graphics, and 2 (or, if you prefer, none) in high-resolution graphics.

Those seven modes are all used by the Color Graphics Adapter, and
any other adapters which duplicate its features, including the Enhanced
Graphics Adapter. The Monochrome Adapter, on the other hand, has a
single video mode, in keeping with its single-minded focus on text applica-
tions. Here it is:

174

11.2 VIDEO MODE OVERVIEW

This monochrome text mode, video mode 7, is similar to the 80-col-
umn text modes that the Color Graphics Adapter provides, with 80 col-
umns of characters across and 25 lines down. There are two important
differences: one is that the characters themselves are drawn in a more
detailed way that produces an easier-to-read character (we’ll see the
details of that in Chapter 12). The other is that the the Monochrome
Adapter has a special concept of ‘‘color,”” which displays characters in a
variety of ways: underlined, in reverse video, and so forth. The Mono-
chrome Adapter only works with the Monochrome Display screen, which
is specially designed for it.

The next three video modes were introduced with the PCjr and only
apply to it. It is possible that we’ll see them also in use by some future
display adapters, but I think that isn’t likely since they were not included in
IBM’s do-everything Enhanced Graphics Adapter. They are all special
graphics modes which extended the range of graphics that the Color Graph-
ics Adapter provides:

Each of these three modes is a natural extension of the graphics modes
we’ve seen so far. Mode 8 introduces a low-resolution (160 dots across)
mode. Modes 9 and 10 add more color to the existing medium- and
high-resolution modes. The PCjr’s built-in display adapter works in these
three special modes, plus all eight of the conventional Color Graphics
Adapter modes. Like the Color Graphics Adapter, the PCjr works with four
different kinds of display screen (TV, color and monochrome composite,
and RGB).

After these video modes there are a missing pair of mode numbers, 11
and 12. They probably belong to modes that IBM defined for the PC fam-
ily, but decided not to introduce. There’s little to say about them, except
that they could possibly appear in a later IBM product.

The Enhanced Graphics Adapter works in all of the first nine standard
modes (but not the three special PCjr modes. In addition, it adds these four
modes:

175

INSIDE THE IBM PC

These four new modes have more that’s special about them than is
readily apparent from this short summary table, such as which display
screens they apply to. The first two, 13 and 14, work with the four standard
color-graphics types of displays. These modes are similar to the PCjr’s
medium- and high-resolution modes 9 and 10, but the high-resolution mode
here, mode 14, offers the PC’s full complement of 16 colors, rather than
just 4. Both of these new graphics modes, like all the ones we’ve seen so
far, have 200 lines of dots up and down the screen, but the two following
modes, 15-16, have nearly twice as many, 350 lines. Mode 15 is IBM’s
monochrome graphics mode, which is only used with the Monochrome
Display screen. Mode 16 is a special high-color, high-resolution graphics
mode that can only be used with the special Enhanced Color Display which
was developed to accompany the Enhanced Graphics Adapter. Using the
Enhanced Color Display, video mode 16 can provide the highest resolution
we’ve seen so far (640 across, 350 down) and many more colors—64—
than any other mode can provide.

Finally, there is one more mode for us to consider, the monochrome
graphics mode that is used by the Hercules graphics adapter. Since this
mode is not a part of IBM’s own designs, it does not have an IBM video
mode number; we’ll call it the Herc mode. It is similar to IBM’s mono-
chrome graphics mode (mode 15), but it has different dimensions and a
slightly higher resolution:

It’s worth noting that the two monochrome graphics modes that we’ve
seen, IBM’s 640 by 350 mode, and Hercules 720 by 348 mode, are roughly
equivalent. IBM’s has the advantage of being ‘‘IBM standard’’ and also of
having built-in support in the machines’ ROM-BIOS. Hercules has the
advantage of having a 17 percent higher horizontal resolution and the initial

176

11.3 EXPLORING VIDEO MODES

advantage of being more widely used and software-supported. Ultimately I
expect that both modes will have equal software support.

Now that we’ve dug our way through an overview of the video modes,
it’s time for us to have a little fun with them.

11.3 Exploring Video Modes

It’s relatively easy to explore and tinker around with most of the video
modes.

To begin, let’s see how we can discover the video mode that our
computer is currently using. As we saw in Chapter 7, in the Low-Memory
Goodies sidebar, the PC’s ROM-BIOS programs use a low-memory area,
starting at hex address 400, to store information that the ROM-BIOS needs
to keep track of. Part of that information is current status information about
the display screen, including the current video mode. The mode is recorded
in a single byte located at hex address 449. Any tool that allows us to
inspect data in memory can show us the video mode. We can easily do it
with either BASIC or with DEBUG.

In BASIC it requires two simple commands: the first sets up BASIC to
inspect low-memory locations: DEF SEG = 0; the second command
extracts the byte where the video mode is, and displays it on the screen:
PRINT PEEK (&H449). To try it yourself, fire up BASIC and give it those
two commands, and you’ll see your current mode.

To do the same thing with DEBUG, activate DEBUG and give it this
command: D 0:449 L 1. That tells DEBUG to display (D) one byte (L 1) at
the address we’re interested in. DEBUG will show us the mode, displayed
in hex form, something like this:

0000: 0440 07

That shows a video mode of 7, the standard Monochrome Adapter
mode.

If you do either of those two experiments, you’ll see what mode your
computer is currently in. It’s also possible to change the mode and then
inspect it. We can only see some of the possible modes, because the tools
that we’ll be using—DOS, BASIC, and DEBUG—only operate in certain
video modes. While a program—say Lotus 1-2-3—is running, it can
change the mode to anything it wants; but the tools which we’ll experiment
with only work in certain modes. And, of course, you can only see the
modes that your computer is equipped to use. If your computer only has the
standard Monochrome Adapter, the only mode you can see is mode 7. Even

177

INSIDE THE IBM PC

though we won’t be able to see every mode, the experiments I’ll describe
here will let you tinker a bit, and get a feeling for what it’s like to be in
control of the display screens different modes.

There are two ways that we can change the mode, just as there are two
ways that we can detect what mode we’re in. One uses the DOS command
MODE to set the mode; we can use this together with DEBUG to display
the mode. The other method uses BASIC both to set the mode and to show
it.

We’ll begin with MODE and DEBUG. These two commands work in
the standard DOS way, which only accepts text modes so we won’t be able
to try any of the graphics modes.

To do this experiment, we enter a MODE command to set the mode,
and then use DEBUG in the way we’ve already seen to show what mode
we’re in. The idea is that we try to switch to a new mode with the MODE
command, and then use DEBUG to see if we actually got there. We set the
mode like this: MODE X, where, for X we put MONO, CO80, BW80.
C040, BW40, 40, or 80. After we’ve done that, we try DEBUG to see
what mode we’re actually in.

If we use BASIC, we can perform the same sort of experiment, but in
a way that also allows us to try the graphics modes. Here is an example,
which switches us into a medium-resolution graphics mode (if our com-
puter is equipped to do it):

10 SCREEN 1
20 DEF SEG = 0
30 PRINT PEEK (&H449)

You can tinker with this program by changing line 10 to any of the
screen modes that are allowed for your computer’s BASIC. (By the way,
don’t be confused by mode numbers that BASIC uses in the SCREEN
command; they aren’t the same as the fundamental video mode numbers
we’ve been using in this chapter.) If BASIC reports an error when it tries to
perform the SCREEN command, then that mode does not apply to your
computer.

You’ll see a more elaborate version of this program under the name
VID-MODE in Appendix A. Try running that program to see more about
the video modes, or just study the program to learn more about how BASIC
interacts with the PC family’s video modes.

Now that we’ve covered the fundamentals of our computer’s display
screens, it’s time to move on to see the specific details. We’ll begin in
Chapter 12 with the text modes.

178

SOME THINGS TO TRY

Some Things to Try

1.

Try all the MODE commands suggested in Section 11.3. Also,
check your DOS manual to see if there are any other MODE
commands that apply to your display screen. New ones may have
been added to the list.

Check your computer’s BASIC manual to see if any new display
modes have been added beyond the ones covered here. You can
find out by comparing the description of the SCREEN command
options with the SCREEN commands that appear in the
VID-MODE listing in Appendix A.

179

12

Video: Text Fundamentals

n this chapter we’re going to explore the inner workings of the PC’s

display screen text modes. Although there is a growing shift in the

use of computers towards the extra appeal and benefit of graphics

images, by far the majority of work that’s done on our PCs is done
entirely in text mode, with nothing appearing on the display screen but the
PC family’s text character set. In fact, most PCs are equipped only with the
IBM Monochrome Adapter, which can only show text characters and noth-
ing more.

No matter how you look at it, and even if you are a graphics enthusi-
ast, the PC’s text mode is very important. So, we’re going to see how it
works and what the capabilities and limitations of the text mode are. We’ll
begin with an outline of how the text modes are organized and the funda-
mentals of how they work. Then we’ll look at more of the technical details
underlying the text modes; and we’ll finish up by exploring some tricks that
can be used to add sizzle to a program’s use of the text modes.

12.1 Text Mode Outline

Underlying the PC family’s text screen modes is the division of the
display screen into individual character positions, arranged in a grid of
columns and lines. Each character position has two separate components:
its data, which determines what character appears on the screen, and its
attribute, which determines how that character is to appear (in color, or
blinking, or whatever).

In the text modes, our programs have full control over both the data
and the attributes, so that they can specify exactly what characters will
appear, where they will appear among the predefined character positions,
and how they will appear in terms of the predefined color attributes, which
we’ll be discussing shortly. However, our programs have no control over
any other details, such as how the characters are drawn or the precise
position of the character locations. That’s all strictly defined by the capabil-

181

INSIDE THE IBM PC

ities of the display adapter and the display screen. (By contrast, as we’ll see
in Chapter 13, when characters are used in the graphics modes, some or all
of these things can be controlled by our programs.)

In short, in the text modes, our programs work within a rigid frame-
work of what can be shown on the screen. That predefined framework,
though, frees our programs from a great deal of overhead work that they
would otherwise have to take care of, directly or indirectly.

Figure 12-1. Display columns and rows.

The character positions on the screen are organized into 25 rows and
usually 80 columns—but, as we saw in Chapter 11 there are two text video
modes which have only 40 columns of characters across the screen. These
40-column modes were created to make it more practical to use a TV set as

182

12.1 TEXT MODE OUTLINE

the display screen for a PC, since the resolution and picture quality on a TV
screen is not good enough to show 80 characters clearly. The 40-column
modes, together with a few other features (like the cassette tape link), were
designed into the PC when it was thought that many people might want
low-budget minimally equipped PCs. As it turned out, the 40-column
modes are seldom used, and many programs do not accommodate them.
Figure 12-1 shows how the display screen is organized into columns and
rows for either 40- or 80-column widths.

We and our programs can treat the screen as either being divided into
lines, or as a single continuous string of characters 2000 long (or 1000 for
40-column mode). The PC family’s text mode is designed to work either
way, in a neat and simple way. If our programs ask for their output to be
placed on a particular row and column position, it will appear there. On the
other hand, if our programs just pour out data onto the screen, it will be
written out wrapping around from the end of one line to the beginning of
the next. The PC’s screen will work either way with equal ease, for maxi-
mum flexibility.

Our display screens are able to show all of the PC’s character set that
we learned about in Chapter 4, and saw demonstrated in the ALL-CHAR
and REF-CHAR programs (see Appendix A). But to get some of the char-
acters to appear on the screen can require special techniques such as the
POKE statements used in those two programs. This is because the ASCII
control characters, codes 0-31, have special meanings that are used to affect
the way output appears, such as skipping to a new line. If any of these
control characters are written to the screen—say with the PRINT statement
in BASIC—generally they’ll take action as control characters, but they may
simply appear as ordinary PC characters. The results vary depending on
which character codes are being written, and also they can vary depending
on which programming language is being used.

Except for these ASCII control characters, though, all of the PC fam-
ily’s text character set can be easily shown on the display screen, placed in
any of the screen’s character positions.

The character that appears in each position is the data component of
the character position. There is also an attribute component, which controls
how the character appears, such as whether it’s in color.

A character’s attribute is a control code that determines how it is shown,
and each position has its own attribute that’s independent of all the others.
There are basically two different sets of attribute codes, one designed for the
Monochrome Adapter and one for the Color Graphics Adapter, but the two
schemes are organized in a way that makes them as compatible as possible.
Let’s look at the Color Graphics Adapter’s attributes first.

183

INSIDE THE IBM PC

For the Color Graphics Adapter, each character position’s attribute has
three parts: one specifies the foreground color (the color of the character
itself); the second controls the background color (the color around or
“‘behind’’ the character); and whether or not the character blinks. There are
16 foreground colors, numbered O through 15, as listed in Figure 12-2. The
colors are made up of the three component parts red, green, and blue. The
various combinations of those three elements give us eight main colors, and
with a normal or bright variation on each of the eight gives us a total of
sixteen. There are eight background colors, just the main eight colors with-
out their bright variations. The final part of the color attributes is a switch
which allows the foreground character to either blink or appear solid and
steady.

Code Appearance

0 Black (nothing)

1 Blue

2 Green

3 Cyan (blue + green)

4 Red

5 Magenta (blue + red)

6 Light yellow or brown (green + red)

7 White (blue + green + red)

8 Grey (bright only)

9 Bright Blue (blue + bright)
10 Bright Green (green + bright)
11 Bright Cyan (blue + green + bright)
12 Bright Red (red + bright)
13 Bright Magenta (blue + red + bright)
14 Bright yellow (green + red + bright)
15 Bright White (blue + green + red + bright)

Figure 12-2. Color attributes.

What I’ve just described is the normal form of the color attributes, but
some of the fancier display adapters can work variations on this scheme.
For example, the PCjr’s built-in adapter is able to trade the blinking feature
for bright background colors, allowing a full 16 background colors. And
the PCjr and the Enhanced Graphics Adapter are able to remap the color
palette, so that when we use the code for one color (say 1 for blue) another
color actually appears. These are fancy features which are interesting and

184

12.2 DETAILS OF THE TEXT MODE

have their uses, but they’re not a part of the PC family’s standard repertoire
of tricks.

The Monochrome Adapter also uses attributes to control how its char-
acters will appear, but in a different way. The Monochrome Adapter
doesn’t have color at its command, but it can make its characters appear in
bright or normal intensity, blinking, underlined, or in reverse video (black
characters on a lit background). You’ll see the various possibilities listed in
Figure 12-3. Not all combinations of these features are possible; for exam-
ple, there’s no reverse underlined.

Code Appearance
0 Invisible
1 Underline
7 Normal
9@8+1) Bright underline
15@8+7) Bright normal
112 Reverse
129 (128+1) Blinking Underline
135 (128+7) Binking Normal
137 Blinking Bright underline
(128+8+1)
143 Blinking Bright normal
(128+8+7)

240 (128 +112) Blinking Reverse

Figure 12-3. Monochrome attributes.

That’s the essence of the features of the PC’s text display modes.
What’s left to learn about them are the technical details of how the display
data is laid out in memory, how the attributes are coded, and other fascinat-
ing details. We’ll cover that next, in a more technical section.

TECHNICAL BACKGROUND | 1 1 H I B I

12.2 Details of the Text Mode

Each display adapter contains its own memory chips which record the
data that is displayed on the screen, and a special part of the PC’s address
space is set aside to hold this display memory. A 128K block of memory is

185

INSIDE THE IBM PC

available for use by the display adapters, filling the A- and B-blocks of
memory (see Section 7.3).

The B block is the standard display memory area, where both the
Monochrome Adapter and the Color Graphics Adapter place their memory.
The Monochrome Adapter places its memory at the beginning of the B
block, starting at hex paragraph address BO0O. The Color Graphics Adapter
starts its memory at the middle of the B block, at hex paragraph address
B800. (You’ll see these addresses in some of the listings in Appendix A.)

Each of these two display adapters uses only part of the 32K of mem-
ory that’s set aside for it. The Monochrome Adapter has only 4K of mem-
ory, while the Color Graphics Adapter has 16K. Each has just enough for
the information that’s displayed on the screen.

The Monochrome Adapter needs 4K, because the display screen has
2000 character positions (80 columns times 25 rows), and each position
needs two bytes of memory to support it: one to hold the character data, and
one to hold the display attributes. Exactly 4000 bytes used for the display
data, and another, unused 96 bytes bring the total up to a round number in
binary, 4096 or exactly 4K. The Color Graphics Adapter also needs 4000
bytes for its text mode, but more is needed for the graphics modes, as we’ll
see in Chapter 13, so the CGA has 16K of memory. In Section 12.3 we’ll
see how this extra memory is put to use.

The other display adapters are similar to these original two. The Com-
paq adapter works just like the Color Graphics Adapter, and the Hercules
adapter, in text mode, works just like the Monochrome Adapter. Both have
the same amount of memory and memory addressing as the adapters they
mimic. The PCjr’s built-in display adapter acts as though it were a Color
Graphics Adapter, and its display memory appears to be located at memory
address B800, as it is for the CGA. In fact, the PCjr uses part of its
standard memory for the display screen, and special addressing circuits
make this ordinary memory appear to be located at B800.

The Enhanced Graphics Adapter can have even more memory,
depending upon how much has been installed in it. Since the EGA is able to
act like either a Monochrome Adapter or Color Graphics Adapter (or use its
own special video modes), it’s flexible about the memory addresses that it
uses. Normally the EGA makes its memory appear in one of the two stan-
dard locations, BOOO or B800. When the EGA switches into some of its
special modes, it also makes use of the A-block of memory addresses.
However, when it’s functioning in an ordinary video mode, none of the
EGA'’s display memory appears at A-block addresses, which is why we
can’t detect it with memory snooping tools, like DEBUG or the SI-System
Information program that’s part of my Norton Utilities set.

186

12.2 DETAILS OF THE TEXT MODE

While different starting addresses are used for display memory of the
Monochrome Adapter and Color Graphics Adapter, the layout of the text
mode memory from there is the same. Memory is used in pairs of bytes,
with two bytes for each text position on the screen. The very first byte of
the display memory holds the character data for the top left-most screen
position, and the next byte holds the display attribute for that position. The
next pair of bytes are for the second column on the first line, and so on,
continuously without any gap until we reach the last position on the screen.
(See Figure 12-4.)

Figure 12-4. Display memory and the screen in text mode.

In the display memory, the screen is treated as a continuous string of
2000 pairs of bytes, and nothing indicates the division of the display into
lines. So, if information is simply stored into the memory, byte after byte,
it appears on the screen automatically wrapping around from one line to
another. In the display memory, there are lines: only byte after byte of
information. When the line and column positions matter to our programs,
they calculate the relative position of the appropriate bytes, and set their
data there.

187

INSIDE THE IBM PC

We can calculate the relative memory location of any position on the
screen, by using simple and obvious formulas. If we number the rows and
columns on the screen starting with O (rather than 1), then this gives the
location of a data byte:

LOCATION = (ROW * 80 + COLUMN) * 2

That location is relative to the beginning of the display memory, and
the formula is for a 80-column mode; for a 40-column mode on the Color
Graphics Adapter, we’d multiply the row by 40, not 80. The location of the
attribute byte for the same screen position is just one higher.

The only way that information ever appears on the display screen is
for it to be stuffed into the display memory by some program or other. It
can be either done directly by the programs that we run, or it can be done
by the computer’s built-in ROM-BIOS services. There are two schools of
thought about which way it should be done. If a program does this
itself—by placing its data directly into the display memory— it can be
done with great efficiency and impressive speed. Most or all of the
snappy-appearing programs that you use work like this. When our pro-
grams work that way, they have to know how the display memory is laid
out, and they have to incorporate a fair amount of knowledge about how
the display adapters work. Programs like that wouldn’t be able to work
with any display adapter that placed its display memory at a new location.
On the other hand, if our programs rely on the services of the ROM-BIOS
to place data into the display memory, then it’s easy to adjust to any
changes in the display screen—whether it’s a new location for the display
memory, or a windowing environment like TopView that can move infor-
mation around on the screen. Using the ROM-BIOS services decouples
our programs from the peculiarities of the display screen and display
memory, and that should make our programs more adaptable to changes
in the computer they run on.

Seen from that point of view, it appears that all our programs should
use the ROM-BIOS services for screen data, to get the maximum flexibil-
ity. But there is an enormous penalty in using the ROM-BIOS services:
they take a surprising amount of time to work. (If you have my Norton
Utilities program set, you can demonstrate this for yourself, because the
NU program uses both methods of creating screen displays. Try the pro-
gram with the *‘/D0’’ option to see how quickly it works with direct screen
output, and try the ‘/D1’’ option to see how much slower it performs when
it uses the ROM-BIOS services.) It’s because of the heavy penalty in using

188

12.2 DETAILS OF THE TEXT MODE

the ROM-BIOS that so many programs perform their own screen output,
moving their data directly into the screen buffer.

It’s clear that IBM originally wanted all of our programs to route their
display data through the ROM-BIOS, but things didn’t work out that way.
So many programs do their own screen output, using the two key display
adapter memory addresses of B0OOO and B800, that it’s become impossible
for IBM to consider any radical change to the way the display memory
works, at least for the text modes. That’s why IBM has now announced that
any future display adapters developed for the PC family will maintain com-
patibility with the original two adapters and continue using these two
addresses. We can see that commitment in action in the Enhanced Graphics
Adapter.

When people use their computers, they easily get the impression that
there is a close link between the cursor and the information that gets dis-
played on the screen, as if information could only appear when it’s painted
there by the cursor. But we know that that’s simply not true. Whatever
information is placed in the display memory will appear on the screen,
completely independent of the cursor. The cursor is simply a convenient
way of indicating where the active part of the screen is, which can be very
helpful for the person looking at the screen.

To reinforce that idea, the ROM-BIOS services that place information
on the screen for our programs carefully match the writing of information
with the placement of the cursor. For the ROM-BIOS, the cursor isn’t only
a visual clue for anyone looking at the screen, it’s also a means of coordina-
tion between the screen, the ROM-BIOS, and the program that is generat-
ing information. The cursor lets both the program and the ROM-BIOS have
one single way to indicate where information is to appear. For more infor-
mation on the cursor, see the sidebar The Cursor.

The Cursor

The flashing cursor that we’re accustomed to seeing on our screen is
a hardware feature of the PC’s display adapters, and it only applies
to the text modes that we’re covering here, and not to the graphics
modes.

The flashing cursor is generated by the display adapter itself, which
controls, among other things, the rate at which the cursor blinks on
and off. The blink rate can’t be changed, but the position of the
cursor and the size of the cursor—which scans the lines it appears
on—can be changed, and there are ROM-BIOS services built into the
PC that control the cursor for our programs.

189

INSIDE THE IBM PC

Normally the cursor blinks at the bottom of a character on the last
two scan lines. But the lines the cursor appears on can be changed
with a hardware command which is performed through the
ROM-BIOS. We can experiment with changing the size of the cursor
using BASIC’s LOCATE statement. We can change the cursor to
start and end on any pair of the scan lines that make up a character
position (lines 0-13 for the Monochrome Adapter, 0-7 for the Color
Graphics Adapter). One real curiosity is that if we start the cursor on
a higher line number than we end it, we get a two-part wrap-around
cursor. You can experiment with that using this BASIC statement:

LOCATE ,,,6,1

The blinking cursor we’ve been describing is a hardware cursor
that’s an integral part of each display adapter. Many programs find
that the hardware cursor doesn’t suit their purposes, so they create
their own logical cursor, typically by using reverse video to highlight
the cursor area. One of the main reasons why programs create their
own cursor is to extend the cursor to more than one character
position on the screen (for example, the way a spreadsheet’s cursor
highlights the entire width of a cell). Technically, a cursor like that
is something completely different from the hardware cursor, but the
function of all kinds of cursors are the same: to show us where the
active part of the screen is.

When programs create their own logical cursors, they normally make
the hardware cursor disappear, either by deactivating it or by moving
it to a position just off the edge of the screen.

Next we want to take a look at how the coding is worked out for
attribute bytes which control how text characters appear on the display
screen. Although the attributes for the Color Graphics Adapter and for the
Monochrome Adapter are quite different, there is a common design that
underlies each scheme. Let’s start by looking at the common part, and then
we’ll get into the specifics for both color and monochrome.

The eight bits of each attribute are divided into four fields, like this:

76543210

B....... Blinking (of foreground)

.RGB Background color
... Intensity (of foreground)

..... RGB Foreground color

As we can see, the rightmost four bits control the foreground color:
three bits (RGB) specify the main red-green-blue components of the

190

12.2 DETAILS OF THE TEXT MODE

color, and an intensity bit (I) makes the color bright or dim. The other
four bits similarly control the background color, but the bit we might
expect to control the background intensity is instead borrowed to con-
trol foreground blinking (as we saw in Section 12.1, the PCjr is able to
borrow it back to make 16 background colors). All possible combina-
tions of bits are faithfully produced based on this scheme. You can
demonstrate them all with the program COLORTXT listed in Appendix
A. Every combination works—no matter how hard on the eyes or how
bizarre. Some color combinations are very pleasing, such as bright yel-
low on blue (one of my favorites). Others are amazing, such as bright
blinking blue on red, attribute hex C9, bits 11001001. If you have a
color screen, you can try that combination in BASIC with the command
COLOR 25,4.

The Color Graphics Adapter uses these attribute bits exactly as this
table suggests. The Monochrome Adapter matches this scheme as closely
as it reasonably can. The normal display mode, lit characters on a black
background, is coded hex 07 (in bits 00000111), which corresponds to the
color attributes of white on black. Reverse video is coded just the opposite,
hex 70, the equivalent of black on white. The code for underlined is hex
01, which makes the monochrome underlined attribute equivalent to the
foreground color blue. The Monochrome Adapter’s invisible or nondisplay
mode is coded hex 00, the equivalent of black on black. We might expect
that the white-on-white code, hex 77, would give us another invisible mode
with the whole character area lit up—but it doesn’t. The Monochrome
Adapter only has a handful of attribute modes, just the ones listed in Figure
12-3. We don’t get all the combinations of the Monochrome Adapter’s
attributes that we might expect—that’s why there is no reverse video under-
lined mode, for example. The Monochrome Adapter only shows those
combinations shown in Figure 12-3.

Even though the Monochrome Adapter has only a limited number of
distinct display attributes, it works properly no matter what the setting of
the attribute bits is. No matter what attribute bits we set, the Monochrome
Adapter produces one of its standard ways of showing characters. In most
cases, it shows the characters in the normal way, as if the attribute were set
to hex 07. If you have a Monochrome Adapter in your computer, you can
see how it responds to all the possible combinations of attribute bits by
running the COLORTXT program, the same program we use to demon-
strate the Color Graphics Adapter’s colors.

The attributes that we’ve been discussing control how characters
appear on the screen, in the terms that we’ve been discussing: color, blink-
ing, and so forth. What they don’t control is the actual appearance or shape

191

INSIDE THE IBM PC

of the characters, which is controlled by the display adapter. For more on
that, see the sidebar The Character Box.

The Character Box

In the text modes, the characters that we see on our computer’s
screen are drawn by the display adapter, rather than by the PC’s
software (which is the way they are drawn in the graphics modes, as
we’ll see in Chapter 13). The quality of the characters that we see
displayed varies among the display adapters, because of differences
in what’s called the character box.

The character box is the framework that our PC’s characters are
drawn in. In every case the characters are drawn from a rectangular
matrix of dots, although it’s not easy to see that looking at the
screen.

For the IBM Monochrome Adapter—and any adapter mode that
matches it—the character box is composed of nine dots across and 14
down, which allows a well-drawn character. For the Color Graphics
Adapter, the character box is eight by eight, which only allows for a
noticeably cruder character drawing. For some of the special modes
of the Enhanced Graphics Adapter, the character box is eight by 14,
nearly as good as the Monochrome Adapter.

It’s relatively easy to observe the vertical dimension of the character
box, just by turning up the brightness on our display screens.
Because the screen’s scan lines don’t completely overlap, we can see
where they fall. But the horizontal resolution is more difficult to see:
the pixel dots overlap and blur together so we can’t see any
separation between them. It’s only by carefully observing and
comparing the characters that we can judge how many dots across
our characters are.

The character box only defines the framework within which the
characters are drawn. Not all of the box is used for the characters
themselves—parts are set aside for the space between characters. To
see how this goes, we’ll use the Monochrome Adapter’s character
box as an example.

The complete Monochrome Adapter character box is nine by 14. Of
the nine columns across, the first and last are reserved for the space
between characters, so our characters are actually drawn out of seven
dots across. Of the 14 rows down, the top two and the bottom one
are similarly used for the space between lines of characters, so there
are 11 rows to draw the characters with. Two of those rows are used
for descenders, as on the lowercase letters p, g, or y. That leaves
nine rows for the main part of the characters. So, the Monochrome
Adapter’s characters are called seven by nine, referring to the main

192

12.3 TEXT MODE TRICKS

part of the character box, the part that a capital X will fill; the actual
working part of the character box, including the descender rows, is
seven by 11.

The parts set aside for spacing—one column on each side, two rows
at the top and one row at the bottom—only apply to conventional
characters. The special drawing characters—such as the solid
character, code 219, or the box-drawing characters which we
mentioned and demonstrated in the BOXES program—use these parts
of the character box, so that they can touch each other without any
space between.

The finer a character box is, the more detailed the drawing of a
character can be. That’s why the Monochrome Adapter’s characters
are able to have serifs, the fine parts on the ends of characters which
dress them up, and make them more legible.

That’s the main part of what there is to know about the technical
details that underlie our PC family’s text modes. But there’s still more to
know, and we’ll see some of it in Section 12.3 on text mode tricks.

12.3 Text Mode Tricks

There are special features and tricks inherent in our computer’s text
modes which can be used to enhance the operation of programs and to
produce some special effects. Of course the full range of tricks is only
limited by our imagination and cleverness, and I can’t begin to discover and
explain everything that can be done. But there are some fundamental fea-
tures and tricks that will help us understand the workings of the text mode,
and that’s what we’ll look at in this section. We begin by considering the
uses of excess display memory.

While the Monochrome Adapter has just enough display memory to
hold all the information that appears on the display screen at once, the
Color Graphics Adapter and the Enhanced Graphics Adapter contain more
memory than is needed for one text screen image. That’s because the graph-
ics modes that these adapters also provide require more display memory
than the text modes require. Rather than let this memory go to waste, it’s
put to use to hold several independent screen-loads of information. These
separate screen-loads are called display pages.

Figure 12-5 shows how this works for the Color Graphics Adapter
when it’s in an 80-column text mode. For 80-column text, only 4000 bytes

193

INSIDE THE IBM PC

are needed to hold the display screen information (which is just the amount
of memory in the Monochrome Adapter). But the Color Graphics Adapter
has 16K bytes of memory, enough for four separate sets of 4000. The Color
Graphics Adapter’s memory can be divided into four independent display
pages.

<«— 16K Memory ———»

4K 4K 4K 4K
Page 0 Page 1 | Page 2 Page 3

Inactive Active Inactive Active

Figure 12-5. Four display pages.

Any one of these display pages can be activated so that its information
appears on the display screen. The display adapter is able to switch imme-
diately from one page to another, so that what appears on the screen can be
changed without delay. While only one page appears on the screen at a
time, our programs always have access to all the data in all the screens, all
the time.

That’s the point of having and using multiple display pages: while it
may take a noticeable amount of time for a program to generate informa-
tion for the screen, the information can be made to appear instantaneously,

194

12.3 TEXT MODE TRICKS

by switching from one page to another. While we’re looking at one
screen-load of information, the program can be invisibly building another
screen image off stage in another page buffer. When we’re ready to have it
appear, it can appear without delay.

The number of screen pages available varies with the display adapter
and the video mode that we’re using. As we’ve seen, the Monochrome
Adapter has only one page, so no page switching is possible (more on this
in a moment). The standard Color Graphics Adapter provides four pages for
80-column text, or eight pages for 40-column text. The Enhanced Graphics
Adapter, which can be equipped with varying amounts of memory, can
have even more pages.

These multiple display pages can be put to any use. They might be
used to hold completely new information or slightly changed data. If we
built four or eight versions of a character-based drawing, we can rapidly
page through them, making them appear in succession creating an anima-
tion effect.

Programs switch among the pages by a simple command to the display
adapter that tells it to paint the screen image from another part of the
display memory. BASIC includes features that let us work with multiple
display pages. You’ll find them as parts of the SCREEN statement, and you
can experiment with them, provided your computer has a Color Graphics
Adapter or the equivalent. The third parameter of BASIC’s SCREEN state-
ment, the parameter called apage, is the ‘‘active page,”’ and it controls
which page the program is working with (that is, if the program is writing
information to the ‘‘screen,”’ which screen page is being changed by the
program). The fourth parameter of the SCREEN statement, called vpage, is
the “‘visible page,’’ and it controls which page image is currently appearing
on the screen.

While BASIC provides us with features that do the basic tasks of
screen page control, programs written in other languages have to do this
themselves, with the assistance of some features provided by the com-
puter’s built-in ROM-BIOS. One of the things that the ROM-BIOS will do
for our programs is to keep track of a separate cursor location for each
page. But, whether our programs take advantage of BASIC’s features, or
use the ROM-BIOS’s features, or do all the screen page control themselves,
the multiple-page feature is there to be used.

Few programs actually use the paging feature though, because it’s
simply not of as much benefit as we might think. For one thing, it’s not
available on computers equipped with the Monochrome Adapter—and
that’s been the majority of PCs. If a program has to do without the benefit
of the display paging with the Monochrome Adapter, it may not be worth

195

INSIDE THE IBM PC

the extra programming effort to have a program use pages with one display
adapter and not use them with another.

Even though the Monochrome Adapter does not have multiple display
pages built into it, programs can—and often do—adopt the paging idea to
make their screen images appear instantaneously. This is done by setting
aside a portion of the program’s conventional memory as an improvised
display page, where a complete screen image is constructed. When the data
is ready, it’s moved into the real display memory in one quick assembly
language operation. The mechanics are different than what’s done with true
display pages. With true pages, the display data is not moved. Instead, the
display adapter switches from looking at one page of memory to another,
while with this pseudo-page operation the data is actually moved from
another location to the display memory. Moving a full screen-load of data
takes such a small fraction of a second that it appears to happen as quickly
as true page switching does.

If any of the programs you work with present unusually snappy screen
displays, it’s likely that they use this ‘‘private paging’’ technique that I’ve
described. My own NU program does as well.

There is more that can be done with the screen display than just mov-
ing data into or out of it. It’s also possible, with assembly language tricks,
to blank out the data that’s on the screen, or to change the display attrib-
utes, the colors, in a flash. The slow and laborious way to change the data
on the screen is to do it a character at a time, changing each position on the
screen individually. But there are faster and more efficient ways.

For example, if we want to clear the whole screen, we can do it with
just a few assembly language instructions. To blank the screen properly,
we’d want to set each data byte to a blank space (code 32, hex 20) and each
attribute byte to the ‘‘normal’’ color (which is usually 7, hex 07). We can
set the first screen position to blank-normal by using the assembly language
instruction that places a two-byte word anywhere we want in memory. The
word we’d use is hex 2007, which combines the blank space character (20)
with the normal color attribute (07). A variation on the instruction that
moves a single word into memory can be used to repeat the operation into
successive words of the display memory, so that the same data is propa-
gated over the whole screen.

A variation on the same trick can be used to change only the color
attributes, leaving the data unchanged, or vice versa. That’s done with the
assembly language instructions that ‘‘AND’’ and ‘‘OR’’ data, so that we
can just turn on or off the bits we want. Using these tricks, just a couple of
instructions can paint a new color across the entire screen, faster than the
eye can see.

196

SOME THINGS TO TRY

In addition to the tricks that our programs can perform on their own,
the PC’s ROM-BIOS contains service routines that will do most of the
things that we would like done, including some fancy steps that you’ll
rarely see used. One of these ROM-BIOS services lets us define a rectangu-
lar window anywhere on the screen, and inside that window we can display
information and scroll it off the window without disturbing any other data
outside the window. That service is among the ones we’ll look at in Chapter
17.

But, before we move on to new topics, we have more to explore about
our computer’s video capabilities. Next comes the graphics modes, a spe-
cial dimension beyond the text mode we’ve just seen.

Some Things to Try

1. In BASIC, or any other programming language you use, write a
program that prints the 32 ASCII control characters, codes 0-31,
on the display screen. See what happens with each, and note
which ones appear as their PC characters and which ones work as
control characters. Compare your results with the information on
these control characters in Chapter 4.

2. Figure out what the memory addresses will be for the four differ-
ent display pages that a Color Graphics Adapter has when it’s
working in 80-column mode, and the eight pages in 40-column
mode.

3. Why does the Monochrome Adapter have 4,096 bytes of display
memory when it only needs 40007 Why might it be risky for a
program to attempt to use the left-over 96 bytes in the display
memory?

4. If your computer has the Color Graphics Adapter (or any other
adapter, including the PCjr’s or the Compaq’s, that has more than
one video page), experiment with text pages using the BASIC
SCREEN command to switch pages and the PRINT command to
place some information in each page.

197

13

Video: Graphics Fundamentals

n this chapter we’ll take a look at the unique characteristics and

capabilities of the graphics modes. We’ll begin by seeing what the

main features of the graphics modes are, and while we’re doing that

we’ll repeatedly contrast the graphics modes with the text modes, to
highlight the differences. Then we’ll look at the variety of different modes
that are at our disposal. Finally, we’ll finish up our discussion with a look
at some of the technical details that underlie the workings of the graphics
modes.

13.1 Graphics Modes Outline

In each of the graphics modes, our PC’s display screen is divided up
into a series of dots, called pixels. The pixels are arranged in a rectangular
grid of rows and columns, and each pixel can be individually set to show
some color, within the range of colors that the particular mode allows. In
those respects, the graphics modes aren’t fundamentally different than the
text modes. And even though there are many more pixel dots in the graph-
ics modes than there are text characters in the text modes—for example,
320 pixels across and 200 down, compared to 80 characters across and 25
down—that’s mostly a difference of degree, rather than a fundamental
difference in kind.

What is really different about the graphics modes is that each pixel on
the screen is simply a small splash of light that has no form to it. In the text
modes, each position on the screen is a rich entity in itself: it holds a
character that has its own unique shape, and the shape is made visible by
the contrast between the two colors that fill the foreground and background
of the character position. But with the pixels in the graphics modes, we just
have a dot of light, with no unique shape and no division between fore-
ground and background. In the text modes each screen position has three
elements to it. First, there are the two main elements of data (which charac-
ter is to be shown) and attribute (how the character is to be shown). Then,

199

INSIDE THE IBM PC

the attribute part is divided into two parts, the foreground color and the
background color, so that we end up with a total of three separate elements
to each text screen position. By contrast, in the graphics modes, each pixel
has only one element, the color that the pixel is set to. In graphics modes,
there is no ‘‘data’” (in the sense that each text mode position has a data
element) and there is no background color, only the color of each individual
pixel.

If we want to understand the graphics modes, it’s important for us to
understand the meaning of ‘‘background.’’ In the text modes, there really is
something called a background color; each character position has one. But
in the graphics modes, each pixel simply has a color to it: no foreground,
no background, just a single color. What we think of as the background
color in a graphics mode is just the color that we give to all the pixels that
we’re not doing something in particular to. The ‘‘background color’’ in a
graphics mode is the default color that we set all the pixels to, so that they
contrast with the color (or colors) that we’re drawing with. That’s a practi-
cal convention (and a sensible and necessary one) that has to do with the
way we make pictures that people can look at and understand. However, it
doesn’t have anything to do with the fundamental way the graphics modes
operate. In text mode, the background color is something that’s a technical
reality as well as a visual reality. In graphics mode, the ‘‘background
color’’ is just a visual convention that has nothing to do with the technical
way graphics modes work.

There is one other thing that the graphics modes give up, compared
to the text modes: blinking. In the text modes, we’re used to seeing
blinking in two things: one is the cursor, and the other is the blinking
attribute of characters. The graphics modes don’t have either. There is no
blinking cursor in the graphics modes, and in fact there is no cursor at all,
in the technical sense. (For more on that, see The Graphics Cursor
sidebar.) In addition, one aspect of the ‘‘colors’’ that are available in the
text modes is blinking. Of course blinking isn’t a color in any real sense,
but in the text modes, as we saw in Chapter 12, characters can be made to
blink on and off, and the blinking feature is controlled in the same way
that true color is controlled—so for the text modes the blinking feature is,
in effect, a special kind of color. The normal graphics modes don’t pro-
vide us with blinking in any form. (There is, however, one exception,
which we’ll see later, in graphics mode 15.) Software can do almost
anything, so our programs can make things blink on and off on the screen
simply by changing the screen image on a regular interval. There is no
inherent (and hardware supported) blinking feature in any of the graphics
modes.

200

13.1 GRAPHICS MODE OUTLINE

The Graphics Cursor

If we activate BASIC, we’ll see on the screen a flashing cursor, of
the type we’re most used to. If we switch to a graphics mode—say
by using the SCREEN 1 command—we still seem to have a cursor
on the screen, although if we’re observant we’ll notice that the cursor
appears as a solid block, rather than in the normal flashing form.

What’s going on here? A trick!

In the hardware sense, there is no such thing as a cursor in graphics
mode. The standard flashing cursor—as we saw in Chapter 12—is a
designed-in feature of the display adapters, which applies only to the
text modes. This hardware cursor flashes and it appears only on just
one character space at a time. Normally it just underlines the current
position on the screen, and it’s created specifically by the display
adapter hardware circuitry. Its appearance requires no special effort
from our software (other than the occasional command to position the
cursor where it’s wanted). That cursor, the hardware cursor, simply
does not exist in the graphics modes.

What we see as a cursor in the graphics modes is a software-created
effect that serves the role of a cursor (indicating where the active
location is on the screen). Functionally it’s no different than the
hardware cursor, but technically it’s a totally different animal,
because it’s created a completely different way.

When a program—such as BASIC operating in a graphics mode—
wants to create a cursor on the screen it simply does whatever is
necessary to produce the right kind of effect. Usually that’s nothing
more than changing the background color where the cursor is to be
shown. This same thing can be done in a text mode, to supplement
or completely replace the blinking hardware cursor. We’re used to

* seeing this sort of software-generated cursor with spreadsheet
programs, which place a cursor on the current cell by making the cell
appear in reverse video.

In text mode, programs have the option of using the hardware cursor
or creating their own software cursor. In the graphics mode, there’s
no choice because there is no hardware cursor in graphics mode.

You may encounter the two main conventions for showing a cursor
in graphics mode. One, which we see used by BASIC, is the old
standard of indicating the cursor location by changing the background
color. The other is a newer standard popularized by the Apple
Macintosh computer and used more and more in software for our PC
family. It shows the cursor as a thin vertical line which may blink
(the blinking is a software-generated effect). This line-cursor can be
hard to see and use, but it has the advantage of being able to appear
anywhere, even between characters, not just on top of a character.

201

INSIDE THE IBM PC

No matter what it looks like, anything that acts like a cursor in one
of the graphics modes is simply a visual effect created by our
software, to serve the same purpose as the text modes’ hardware
cursor.

Instead, the graphics modes simply have available at their command a
palate of colors that each pixel dot position on the screen can be set to.
Each graphics mode has its own repertoire of colors—that, and the number
of dot positions is what makes up the differences among the various modes.
What they all have in common, what characterizes the graphics modes, is
the grid of dots and the ability to set each dot to a solid color chosen from a
palette of colors.

If that seems remarkably simple and primitive to you, then you are
understanding the essential character of the graphics modes. They are at
once cruder and more powerful than the text modes. Cruder, because all
they can show are colored dots. More powerful, because from those dots
we can construct rich and complex drawings that would not be possible to
create from the more specialized text modes. The graphics modes provide
us with a rawer material to work with than the text modes. There is a
greater variety of things that we can do with the graphics modes, but getting
those things done requires more work, because everything has to be drawn,
dot by dot, the hard way, by our software. And that includes, by the way,
any text characters that we might want to appear on the screen; they have to
be drawn dot by dot as well (see the Writing Text in Graphics Mode
sidebar).

Writing Text in Graphics Mode

The ROM-BIOS routines that supervise the graphics modes provide
services to write text characters on the screen, just as they do for the
text modes. The reason is simple enough: if the ROM-BIOS provides
character-writing services for any mode, it ought to provide it for all
modes. There’s an important addition to that reason: any part of any
program ought to be able to toss an error message on the screen in
case it gets in trouble. Having a universal set of text-output routines
in the ROM-BIOS, which work in every mode, text or graphics,
provides a common way for any program to send up an emergency
flare.

In the text modes, programs—including the ROM-BIOS—write
messages on the screen by outputting the ASCII character codes, and
the display adapter hardware takes on the job of producing a

202

13.1 GRAPHICS MODE OUTLINE

recognizable character. But in the graphics modes, characters can
only appear on the screen if they are drawn like any other picture.

The ROM-BIOS is prepared to do just that, in a standard way, with a
set of little drawing templates, one for each character that it can
draw. A table of character drawings is stored in the ROM-BIOS
memory area for this purpose. While some of the newer graphics
modes, like those provided by the Enhanced Graphics Adapter, may
require their own specific drawing tables, a standard table—based on
the eight by eight pixel character box used in Color Graphics
Adapter’s graphics modes—can be found at memory location
FOO00:FAGE in most PCs.

The bits in this drawing table are used to indicate the pixel settings,
on or off, used to draw each character. For the standard table, eight
bytes represent each character: the bits of the first byte give the eight
pixel settings for the first scan line, and so on. In Appendix A you’ll
find a program called GRAPHTXT, which will decode this table, and
display each character drawing in enlarged form, so that we can
inspect how each character is drawn. You can use the GRAPHTXT
program with any display adapter, because it recreates the drawings
with characters, so you don’t have to have a graphics screen to use
GRAPHTXT to see how graphics characters are drawn.

When our programs use the ROM-BIOS services to display
characters in a graphics mode, the ROM-BIOS looks up the
character’s drawing in this table, and uses the bits in the table as a
code to set the appropriate bits in the display memory, so that a
drawing of the character appears on the screen. The technique used is
roughly the same as our demonstration program GRAPHTXT uses.

In the original PC design, only the first 128 ASCII characters were
provided in this table. That covered the most important characters,
particularly the letters of the alphabet, but it didn’t provide the entire
PC character set. Drawings for the upper 128 characters can be
provided by our programs, and the ROM-BIOS will use them,
provided we tell the BIOS about them by placing the address of the
table in the interrupt vector for interrupt 31.

It’s common for game programs, and other *‘light-duty’’ programs
that use graphics, to rely on the ROM-BIOS’s services to display any
text information that needs to be shown. But ‘‘heavy-duty”’
programs, such as 1-2-3 or Framework, generally paint their own
character data when they work in a graphics mode. This is because
these programs have their own demanding needs for how characters
should appear, and by doing their own character drawing, they can
control the size, type style, and features (such as bold or italic) of
the characters that appear. The same is true of word-processing
programs that can work in graphics mode.

203

INSIDE THE IBM PC

No matter which approach a program uses—do-it-yourself or leave it
to the BIOS—any text characters that appear when our computers are
in a graphics mode are drawn on the screen, pixel by pixel, through
the work of software, and not, as it is in the text modes, by
hardware.

That’s given us a basic idea of what the graphics modes are about,
collectively. Now it’s time for us to consider the range of graphics modes
and see what the characteristics and potential of each is.

13.2 A Tour of the Graphics Modes

There are no fewer than 11 graphics modes that we’ll be taking a look
at, which we saw in the brief summary in Chapter 11. For easy reference,
here’s a quick recap from Chapter 11 (the mode numbers in the first column
of the table, are the numbers used by the PC’s ROM-BIOS to identify each
mode):

These are the 11 main modes that are available for our PC family.
There are other modes, such as the extra-high quality modes provided by
the very expensive and very specialized IBM Professional Graphics
Adapter, but these 11 are the main ones and probably the only ones that
most of us will encounter. In fact, we’ll only encounter a few of them at a
time, because this full list is provided by a variety of display adapters and
we can only have one or two at the most installed in a single computer.

204

13.2 A TOUR OF THE GRAPHICS MODES

That’s the point we should begin with—reviewing what modes are
available with what adapters—before we get into the details of each mode.
That way, if you are only interested in the modes that apply to your com-
puter, you’ll have a roadmap of the ones to pay attention to. And if you’re
interested in the full range of the PC family’s graphics capabilities, you can
study them all, and also know what applies to which adapter.

The IBM Color Graphics Adapter—one of the two original display
adapters for the PC family—provides us with the first three graphics
modes, numbered 4-6. These are the modes that we’ll be spending the most
time discussing, because they are the most commonly used, and because
they provide us with a model for the other modes, which are mostly just a
variation on the themes that these three provide. These modes are not
exclusive to the Color Graphics Adapter, as we’ll see.

The special built-in display adapter in the PCjr mimics the Color
Graphics Adapter, so it provides the first three graphics modes. In addition,
three modes were specially created for the PCjr, modes 8-10. These PCjr
modes are not supported by any other display adapter; they are unique to
the PCjr.

The IBM Enhanced Graphics Adapter (EGA), like the PCjr, covers
the three standard CGA graphics modes and also provides its own unique
modes, four of them in this case, numbered 13-16. It’s important to note
that two of these four, like all the other modes we’ve covered so far, are
used with standard RGB or composite monitors. For the other two new
modes, one is used with the Monochrome Display and one is used with the
special Enhanced Color Display (ECD).

Finally, the Hercules adapter provides one special graphics mode for
use with the Monochrome Display. While the other graphics adapters
we’ve been discussing provide a variety of graphics modes, the Hercules
only has this one. (It also provides the standard monochrome text mode.)

Now that we know which modes are provided by which display adapt-
ers, let’s take a look at the particular capabilities of each one.

Video mode 4 is a medium-resolution, four-color mode. It uses a pixel
grid of 320 dots across and 200 lines down. All of the standard graphics
modes are drawn with 200 lines. The variation in resolution shows only in
the horizontal dimension: 160 dots across is called low-resolution; 320 is
medium; 640 is high. You might expect that it would not work well to use
the same vertical resolution with three different horizontal resolutions, but
on the whole it works out reasonably well. In any event, technical limita-
tions largely forced the use of a common 200-line vertical dimension.

Since video mode 4 uses four colors, it works with just part of the PC
family’s standard 16-color color repertoire. The colors that are made avail-

205

INSIDE THE IBM PC

able are a curious combination of free choice and preselection. One of the
four colors can be freely chosen to be any of the 16 basic colors. The other
three colors are predefined by IBM, but we get to choose from two different
sets of three. One set, known as palette 0, includes the colors green, red,
and brown (also known as dark yellow), palette 1 has the colors cyan
(blue-green to those of us unfamiliar with that word), magenta, and white.
We can’t mix and match these palettes: they are predefined and fixed by
IBM (except as we’ll note in a moment). Our programs can, however,
freely switch between the two palettes, and freely set the other color to
anything, including any of the colors used in the fixed part of the palette.

When a program uses these four colors, it requests them by a number,
0 through 3; O selects the freely chosen color (whatever it happens to be)
while 1, 2, and 3 select green, red, and brown from palette O or cyan,
magenta, and white from palette 1. One thing particularly worth noting is
that these selections are all relative. If a program paints a picture using
color 0 and then changes the selection of what color is color 0, everything
that was painted 0 instantly and automatically changes to the new color; the
same thing happens if we change our palette selection. This trick can be
used in a number of ways to good graphic effect. For example, a drawing
can be made to appear and disappear by changing its color to contrast or be
the same as its background; or we can make the screen appear to shake
violently just by rapidly alternating between the palettes.

You’ll see a demonstration of what can be done with color in video
mode 4 in the program COLOR-4, listed in Appendix A. (To use
COLOR-4 or to experiment with the example given here, you’ll have to
have a computer equipped for color graphics, of course.)

For a shorter introduction to the color capabilities of video mode 4, try
these statements in BASIC: SCREEN 1 will switch you into video mode 4.
COLOR, 0 will select the predefined palette 0, while COLOR, 1 will select
palette 1. These statements demonstrate what happens when we change the
one freely selectable color:

10 FOR CHOICE - 0 TO 15

20 COLOR CHOICE

30 PRINT "This is color number"; CHOICE
40 NEXT CHOICE

The color palettes that we’ve talked about are predefined and fixed in
the ordinary sense. However, two of our display adapters, the PCjr’s and
the Enhanced Graphics Adapter, have the ability to remap the color selec-
tion, so that when a program apparently asks for one color—say red—
another color might appear, say blue. This is done through the magic of a

206

13.2 A TOUR OF THE GRAPHICS MODES

hardware register, which allows us to redefine the meaning of the numbers
that are used to identify colors. When we can do that, then we can have our
own free choice of the four colors that are used in this video mode 4.
Instead of being bound by the two standard palettes, we can remap the color
numbers so that the standard palettes give us whatever colors we want. This
trick only works, however, with those two special display adapters—it
doesn’t apply to the standard Color Graphics Adapter or any equivalent
adapter (such as the Compaq adapter).

Mode 4 provides 200 lines of 320 dots, or 64,000 pixels total. With
four color choices for each, we need two bits of memory to record the four
possible color choices. That means that this video mode needs 128,000 bits
of memory to support it; that’s 16,000 bytes. Since the Color Graphics
Adapter’s display memory provides 16K of memory, there is just enough
memory for this video mode. (In Section 13.3, where we dive into more
technical details, we’ll see how that memory is used.)

Now we’re ready to move on to look at some of the other graphics
modes. Most of the ideas that we’ve covered for mode 4 apply to the other
modes as well, so we’ve already covered most of what there is to know
about the standard graphics modes.

Mode 5 is a special color-suppressed variation on mode 4. It works
just like the two color-suppressed text modes (modes O and 2). Mode 5
works identically to mode 4, but the signal coming out of the composite
video jack does not have a color signal in it, so that the four colors appear
more-or-less as four shades of grey. However, that only applies to the
composite video jack; the signals coming out the RGB socket of the display
adapter are as colorful as ever. Since this mode is organized just like mode
4, the memory requirements are the same.

Mode 6 is a high-resolution, two-color mode. As a high-resolution
mode, it has 640 pixel dots across (and the standard 200 lines down). There
are two colors available in mode 6; they are predefined and fixed as the
colors black and white. It’s debatable, of course, whether or not we should
say that this mode has colors; in the technical sense it clearly does: there are
two to choose from (just as mode 4 has four to choose from) and they are
part of the PC’s standard 16-color range. On the other hand, most of us
would say that black and white are ‘‘black and white’’ and not a selection
of two colors. Call it what you will, as long as you understand what this
video mode provides us with: twice the resolution and half the colors of
mode 4.

The black and white colors that are used by mode 6 can be remapped,
just like the remapping of mode 4’s colors when we’re using a PCjr or an
Enhanced Graphics Adapter. This remapping doesn’t increase the number

207

INSIDE THE IBM PC

of colors that appear at one time, which is fixed at only two for mode 6, but
it does permit the use of ‘‘real color’’ in place of the colorless colors black
and white.

Mode 6 has twice as many pixels as mode 4, 640 by 200 for a total of
128,000. But with half as many color choices to be recorded, only one bit
is needed for each pixel in this mode. So, the total memory requirement of
this mode is the same as for modes 4 and 5: 16K.

These modes, 4-6, are the main, common graphics modes for the PC
family because they apply to every standard graphics display adapter
(excluding the Hercules adapter). As a general rule, we find mode 4 used
for light-duty programs, such as games and educational programs, while
mode 6 is used by heavy-duty business programs such as 1-2-3. Games use
mode 4 to gain color, sacrificing detailed picture resolution; business pro-
grams use mode 6 to gain high-resolution, sacrificing color. It’s a clear
tradeoff, but a trade off that isn’t necessary in some of the more advanced
graphics modes that we’ll be covering next.

The next three modes, 8-10, are special to the PCjr, and they pro-
vide some natural and expected extensions to the basic complement of
graphics modes, resolving some of the most obvious shortcomings of the
basic set.

Mode 8 is a low-resolution, 16-color mode. It’s a bridge from mode 4,
in the opposite direction from mode 6. In this low-resolution mode there are
only 160 columns of dots across each row, half the number provided by the
medium-resolution modes. There are more colors, as you would expect, but
not just twice as many, four times as many, 16 colors, the PC’s full com-
plement of colors.

Because mode 8 is able to use all 16 colors at once, there are no
annoying palette restrictions in this mode. Since this is a PCjr mode, and
since the jr has the ability to remap colors, the colors used in this mode can
be altered and tinkered with in many ways. In mode 4, where there is a
limited selection of colors, there’s a good reason to use this feature; to
increase the choice of colors to be used. But in this mode (and mode 9
following) remapping the colors has a less obvious benefit. It can be used,
though, for special effects such as making parts of a drawing appear and
disappear (by blending in with a same-colored background).

Although this mode does provide more colors than any of the previous
graphics modes, the picture quality in this low-resolution mode is so poor
that there are few uses for it. If you have a PCjr you can see just how poor
the resolution is for yourself by using the BASIC command SCREEN 3.

This mode uses just as much memory as mode 4, 16K, because it has
only half as many pixels—160 times 200, totaling 32,000—and needs just

208

13.2 A TOUR OF THE GRAPHICS MODES

four bits (twice as many) to specify the colors for each pixel. The four bits
per pixel provide 16 color-selecting values. Here we get four times the
color choice for only twice the memory. That would be a real plus if this
video mode were more useful.

Mode 9 is the second of our special PCjr modes; it’s medium resolu-
tion but it provides the full 16 colors. This mode breaks out of the 16K
memory mold, thanks to some special tricks concerning how the PCjr man-
ages its display memory. This is one of most satisfying graphics modes,
because it combines medium-resolution, 320 dots across, with the full use
of the PC’s color set. For this mode, 32K of display memory is needed, and
any program using this mode must know how to perform some special
Jr-specific tricks to set aside this much display memory. In BASIC we do it
by first using the statement CLEAR ,,,32768 to set aside the memory, and
then SCREEN 5 to switch to this video mode.

Mode 10 is the third and last of the jr-specific modes;.it is a variation
similar to what mode 9 provides. Mode 10 is high-resolution with four
colors. Like mode 9, this mode needs 32K of memory, double the standard
graphics 16K. BASIC switches to this mode using the SCREEN 6 state-
ment after CLEAR ,,,32768 to reserve enough memory. Like mode 9, and
unlike mode 8, this is a very powerful and useful graphics mode, thanks to
the combination of high-resolution and four colors. The four colors for this
mode are the same as palette 1 in mode 4: the first color is freely selectable,
and the other colors are set to cyan, magenta, and white. But, since this is a
PCjr mode, color remapping can be used to change the palette to any color
selection.

The next set of graphic modes are provided by the Enhanced Graphics
Adapter. They provide a variety of special graphics capabilities that span
most of what we find available in the other specialty adapters.

Mode 13 is a medium-resolution, 16-color mode. It is essentially the
same as the PCjr’s mode 9. Like mode 9, is calls for 32K of display
memory. (BASIC does not support this mode, or any of the other EGA
modes so there’s no simple way to demonstrate these modes, even on a
computer equipped for them.) The colors can be remapped, as we’re used
to seeing for anything involving either the PCjr or the EGA. In addition, if
this or another EGA mode is used with the EGA’s special Enhanced Color
Display, the colors of this mode can be remapped not just into the PC’s
basic 16-color set, but the ECD’s extended 64-color set.

Mode 14 is a high-resolution 16-color mode. It’s similar to the PCjr’s
mode 10, but it goes even further in providing all sixteen colors, not just
four colors, in high-resolution. Doing that requires a complement of 64K of
display memory.

209

INSIDE THE IBM PC

So far, all the modes we’ve seen have been intended for the standard
types of color graphics display screens used in the PC family: RGB
monitors, color composite screens, TV sets, and so forth. The next special
EGA mode, though, is intended for use only with the Monochrome Dis-
play, the screen normally used with the Monochrome Adapter. This is
mode 15, IBM’s version of a monochrome graphics mode. It provides a
pixel grid of 640 dots across and 350 lines down. The total number of lines
corresponds to the total number of scan lines used in the regular mono-
chrome mode, where there are 25 character lines, and each character is
drawn with 14 scan lines; 14 times 25 gives us 350, the number of graphics
lines in this mode. There is one very special thing about this mode: it
provides blinking in a very special way. Each pixel in this mode has four
possible attributes: off (black), on, blinking-on, and bright. The main rea-
son for having this unusual combination of pixel attributes is that it allows
this monochrome graphics mode to match the features of the standard mon-
ochrome text mode (which includes blinking and bright high-intensity fea-
tures) while it adds a graphics capability. Since there are four possible
attributes for each dot on the screen, the memory requirement is two bits for
each pixel, 448,000 bits or 56,000 bytes.

The next mode, and the final one of the EGA’s special modes, also
calls for a special display screen, but this time it’s the Enhanced Color
Display, a display screen that is able to show a full 64 distinct colors, four
times as many as the PC’s standard 16. This is mode 16. It has the same
extra-high-resolution as mode 15—640 across and 350 down. Each pixel
can be set to any of 64 colors, which calls for six bits to support each pixel.
This requires a whopping 1,344,000 bits, or 168,000 bytes of display mem-
ory. That’s a lot of memory! But if we want to have all that color on all
those pixels, that’s the memory price that has to be paid.

The final video mode that we’ll consider is the one provided by the
popular, but non-IBM, Hercules graphics adapter. The Hercules adapter
pioneered graphics for the Monochrome Display, providing a mode that is
similar to what the EGA later provided in its mode 15. There is no IBM
mode number for this mode, since it’s not IBM supported. For identifica-
tion purposes, I call it simply the Herc mode. While this mode is similar to
the EGA’s mode 15, the details are different. It has a small but noticeable
increase in the horizontal resolution, 720 pixels rather than 640, and an all
but unnoticeable two fewer vertical lines, 348 rather than 350. The figure
of 348 is odd because this same adapter has to provide 350 scan lines when
it works in monochrome text mode; but that’s the way it is. This display
mode needs 250,560 bits (one for each pixel), or 31,320 bytes. That is just
under 32K of memory. You’ll note that the Herc mode provides mono-

210

13.3 GRAPHICS DETAILS

chrome graphics as we might expect them to be, a fairly pure form of
monochrome graphics that does not have the particular features of the mon-
ochrome text mode (that is, it doesn’t have either bright intensity or blink-
ing as ‘‘colors’’). By contrast, the monochrome graphics mode number 15,
provided by IBM’s EGA board, provides both of those special features.
That finishes our summary of the 11 main graphics modes. What we
have left to explore are some details of how the graphics modes use their
memory, which is at times peculiar. We’ll see that in Section 13.3.

TECHNICAL BACKGROUND | | 1 H B H I

13.3 Graphics Details

Now it’s time for us to explore the inner workings of how the graphics
modes use their display memory. It’s substantially trickier than it is for the
text modes, both more complicated to understand and for most students of
the PC family less important to our overall goal of knowing the main inner
workings of the PC.

The layout of the display memory for the graphics modes follows most
of the principles that we learned when we explored the layout of the text
modes, but some new complications are added that considerably increase
the amount of work that a program has to do to place data into the display
memory.

The main complication is that while in the text modes the display data
is laid out in one continuous lump. In the graphics modes the data is broken
down into either two or four interleaved banks.

For example, in video mode 4, the medium-resolution, 4-color mode,
the 200 lines of pixels are divided into two banks, consisting of the even
and odd numbered lines. The first bank holds the data for line number 0
(the first line), followed by lines 2, 4, and so on to line 198, the last of the
even numbered lines. A separate memory bank holds the odd numbered
lines, 1, 3, 5, and so on to the very last line, number 199. Figure 13-1
shows how this is laid out.

There are two variations on this banking operation. One divides the
horizontal lines of graphics pixels into two banks and the other into four
banks. The original three graphics modes, modes 4-6, work in two banks;
so does video mode 8, the PCjr’s low-resolution mode. The other two PCjr
modes, numbers 9 and 10, and the Hercules mode divide their lines into
four banks. Figure 13-2 summarizes how the lines in the banks are
interleaved.

211

INSIDE THE IBM PC

Even Bank Odd Bank
—3 QO |ssecvessveccccecnssse ceveessens 0
1 ® o o0 002000 LY . e . 3 3 . 3 1 '
ﬂ 2 s e s e 000w eeee eeseeee 002
—a 2 es oo s e s 0. a0 00 3 -
- R cenes 4
5

. . 1974'—J
197 |+eveereees ceresene
L~>198 cecsceee seee ceessssssssss]| 198

199 Lo°*-* TN ceceroes] 199

Figure 13-1. Graphics memory banks.

Within each bank, the graphics data is laid out in a direct and compact
manner, just as it is in the text modes. The data for the first line in each
bank fills successive bytes from the beginning of the bank, and the second
line in each bank immediately follows the first, without any gap. However,
there is a small gap between the banks, just as there is between the different
display pages in text modes. Each bank occupies somewhat less than 8K
bytes of storage, and each bank begins on an even 8K address boundary,
with a small amount of unused slack space between the banks.

This arrangement of graphics data into banks is done basically for the
convenience of the hardware. Since the display screen’s picture is painted
in two passes, with the lines of each pass interleaved, the graphics memory
is laid out in the same fashion, so that the graphics data can be retrieved
from memory in a way that’s close to the way in which it’s needed for the
screen. This reduces the overhead involved in painting a graphics picture on
the screen.

The flip side to that coin is that the work involved for our software to
create a graphics picture is considerably increased, because the address
calculations needed to locate each dot are more complicated. The difference

212

13.3 GRAPHICS DETAILS

Two bank modes:
Bank 0: O, 2, 4, 6, 8,
Bank 1: 1, 3, 5, 7, 9,

Four bank modes:
Bank 0: O, 4, 8, ...
Bank 1: 1, 5, 9,
Bank 2: 2, 6,
Bank 3: 3, 7,

Figure 13-2. Bank line interleaving.

isn’t enormous: after all, some arithmetic has to be done to calculate the
location whether the lines are continuous (as they are for the text modes) or
separated into banks (as they are for the graphics modes). However, this
bank-separate does increase the amount of calculation that has to be done to
work with the graphics display memory.

While the layout of the graphics display memory is essentially the
same for all of the modes we’ve been talking about (modes 4-6, 8-10, and
the Herc mode), differing only in whether there are two or four banks on
interleaved lines, the composition of the pixel data within the lines has
more variation from mode to mode. This is because the different modes
need different amounts of data for each pixel. There’s also one special
complication in one of the PCjr modes, as we’ll see in a moment.

For the 2-color modes—mode 6 and the Herc mode—there is only one
bit for each pixel dot. The data scheme here is as simple as you would
expect it would be. Each successive byte in the display memory holds the
data for eight pixels; the high-order bit of the byte (bit number 7) is for the
first pixel, and so on down the bits. For the standard 4-color modes—
modes 4 and 5—there are two bits per pixel. Just as you would expect, each
byte holds the complete data for four pixels with the bits taken in pairs: the
first two bits of each byte, bits 7 and 6, hold the data for the first of the four
pixels, and so on.

But, for the other 4-color mode, the PCjr’s mode 10, the bits aren’t
coded that way at all. Instead, the display memory is used in pairs of bytes,
with each pair providing the bits for eight pixels together. The first of the
eight pixels gets its data bits from both of the high-order bits in the two
bytes. The next pixel gets its two bits from the next bit of each of the two
bytes, and so on. This curious scheme was worked out so that the PCjr’s
slower operating speed could keep up with the rapid data demand of this
video mode; it works because the PCjr has two memory circuits that sup-

213

INSIDE THE IBM PC

port every other memory byte. By grabbing and decoding data in pairs of
bytes, the PCjr’s memory can effectively work twice as fast.

Finally, the 16-color modes, PCjr modes numbers 8 and 9, use four
bits for each pixel. For these modes, each display memory byte covers two
pixels; the four high-order bits provide the data for the first of the two
pixels, and the low-order bits the other pixel.

When our software sets to work drawing a graphics picture, it has to not
only calculate the memory addresses where the data is stored, but it also has
to carefully set the appropriate bits and leave the other bits undisturbed. If the
program is painting an entire picture, it could construct the pixel data in
* groups of 2 or 4 or 8 pixels at a time and simply store the complete data bytes
in place—a relatively quick operation. But if the program is controlling the
pixels independently, then the data for the pixels that share each byte has to
be preserved. The microprocessor’s bit-manipulating operations, ANDs,
ORs, shifts, and so forth, are used for this. If a lot of bits are being set, the
process can become quite lengthy, which is one of the main reasons why
graphics-oriented programs run slowly compared to their text-based cousins.
The PC’s built-in ROM-BIOS provides service routines for manipulating
individual pixels, but that doesn’t speed the operation up any—it just saves
programmers the work of creating these services themselves.

While it’s been reasonably easy to make sense out of the graphics
modes that we’ve covered so far, the special modes provided by the
Enhanced Graphics Adapter are a world to themselves which is so compli-
cated that it seems to defy description or explanation. If I tried to explain it
in a comprehensive way, it would take up about two chapters worth of
space here—and when I was done, I’d probably need to be locked up in an
asylum: the EGA modes are that complex and perverse. To spare my san-
ity, and yours, I’ll simply summarize what makes these modes so messy.

The first thing is that the special EGA modes require gobs of memory,
an amount of memory that can’t be fit into the available part of the PC’s
address space. (The available part is the 64K sized A-block of memory.
While there is a 128K total of two memory blocks dedicated to display
memory, the B-block may be in use by either of the other display adapters
that the EGA works with—so, for its special modes the EGA has to work
within the 64K A-block.)

This means that the working display memory has to be switched in and
out of the PC’s address space, as needed. While normal PC memory, and
conventional display memory, is stable in the way it’s addressed, the
EGA’s memory appears and disappears from the address space, so that the
microprocessor and our programs can gain access to every part of it, even
though there is more than will fit into the allotted space at one time.

214

SOME THINGS TO TRY

The matter is further complicated by the fact that the EGA can have
various amounts of memory installed in it, unlike the other display adapt-
ers, which come with a fixed amount of memory—just the amount that they
need and no more. The EGA, on the other hand, can do so many different
things that there’s no one right amount of memory that it can need. But
changing the amount of memory that’s installed in an EGA doesn’t just
change the modes it can use, or the number of display pages that are
available in those modes: it also changes how the memory is used and the
way it’s addressed.

The circuitry of the EGA performs a remarkable juggling act with its
memory, adjusting the way the board operates to the amount of memory
installed and the video modes that are being used, and making the memory
appear and disappear from the PC’s working address space as the situation
calls for. Any programs that work intimately with the EGA in these new
video modes have to be able to perform a dance that matches the skills and
peculiarities of the EGA, by giving the EGA commands that control the
memory addressing.

If you sensed that it is complicated for a program that uses the standard
graphics modes to work out the addressing of the two (or four) banks of
lines of graphics data, you can imagine how much more complicated it is to
work with the EGA.

Some Things To Try

1. Experiment with the GRAPHTXT program shown in Appendix
A. The program stops with character code 127. What happens if it
went further? This program assumes that the table it displays is at
a certain memory location (FOOO:FAG6E). Can you think of a rea-
sonable way to recognize such a table if we had to search for it?

2. For something more ambitious, try using GRAPHTXT as a start-
ing point and create a program that allows you to create your own
character drawings in large scale.

3. Imagine that you are creating specifications for the PC’s hardware
engineers, and you want to add a cursor and the blinking feature
to the color graphics modes. How would you have it operate? Can
you work out the reasons why the graphics modes don’t have
blinking or a cursor? Can you think of ways to overcome these
problems?

215

14

Keyboard Magic

ince we’ve just finished our look at the PC family’s display

screens, it’s appropriate that the next topic be the keyboard—the

other half of our interface with the computer. It’s mostly through

the keyboard and the screen that we interact with our computers,
so it’s very worthwhile to know the ins and outs of our computer’s
keyboard.

It should be obvious to all of us that the display screen is a very
complex topic—and we’ve seen just how complex in the last three chapters.
Our computer’s keyboard, on the other hand, seems like a very simple
item—and it is, indeed, comparatively simple. But there are complexities
and capabilities just under the surface of the PC’s keyboard, complexities
that make the keyboard a lot more flexible and a lot more interesting to
explore than you might think.

You’ll see why in this chapter, and it will make it possible for you to
understand how some programs are able to work with the keyboard in some
very unusual ways.

14.1 Basic Keyboard Operation

To understand what’s going on with our computer’s keyboard, we
need to understand two key things: first that it isn’t what it appears to be,
and second that keyboard information journeys through several layers of
transformations, until it emerges as what we thought it was in the first
place.

It all takes place through some indirect magic. To make sense out of
this, I’ll begin by explaining why the keyboard works so indirectly, and
then we’ll see just how it works.

We expect our computer’s keyboard to work in a very crude way: we
press the A key, and the keyboard says to the computer ‘‘A’’; just that, and
nothing more. It doesn’t work that way. The reason is very simple. If the
keyboard is assigned the task of making the A key mean the letter “‘A’’,

217

INSIDE THE IBM PC

then the keyboard is in the business of giving meaning to what we do when
we pound away on the keyboard. There are two things wrong with that.
One is that it’s not the business of the computer’s hardware to assign
meaning to what we’re doing. Hardware is supposed to be like a blank
slate—full of potential but with nothing happening. Software, on the other
hand, is supposed to bring the computer’s hardware to life, giving it activ-
ity and meaning. So, the first thing that would be wrong with the keyboard
deciding that the A key meant the letter ‘A’ is that the hardware would be
intruding on a job that should belong to software.

The other thing that is wrong with the keyboard making the A key
mean the letter *‘A’’ is that that would be inherently inflexible. You and I
may say to ourselves that it would be stupid for the A key to mean anything
else, but that’s not the issue. As much as possible, a computer should be
flexible and adaptable; and if the computer’s hardware doesn’t impose any
meaning onto our keystrokes, so much the better.

Those are the ideas that are behind what may seem to be a curious
relationship between the keyboard and our computers (and the computer’s
built-in ROM-BIOS programs).

Here is what happens when you or I press a key on our computer’s
keyboard: the keyboard recognizes that we’ve pressed one of the keys and
makes a note of it. (The keys are assigned an identifying number, called a
scan code, and that’s what the keyboard makes a note of—that key number
such-and-such has been pressed. You’ll see what the identifying scan code
numbers are for the standard PC keyboard in Figure 14-1.)

After the keyboard has made a note of the fact that we’ve pressed a
key, it tells the computer that something has happened—it doesn’t even say
what, it just says that something has happened on the keyboard. That’s
done in the form of a hardware interrupt. The keyboard circuitry gives our
computer’s microprocessor an interrupt using the particular interrupt
number that’s assigned to the keyboard, interrupt number 9. That interrupt
simply tells the computer that there has been a keyboard action. Interrupts,
as we learned in Chapter 6, cause the microprocessor to put aside what it
was doing and jump to an interrupt-handling program; in this case, one that
is an integral part of the PC’s ROM-BIOS software.

At that point, the ROM-BIOS’s keyboard interrupt handler swings into
action, and finds out just what took place on the keyboard. It does that by
sending a command to the keyboard to report what happened. The keyboard
responds by telling the ROM-BIOS which key was pressed. (The command
and the reply work through the PC’s ports, which we also discussed in
Chapter 6. The ROM-BIOS issues its command by sending a command
code out to a port address that the keyboard responds to. The keyboard

218

J;'

(GBI

I]ll]T@ | IT@E

:IITB_ITIITI

Ef'

"I]BI‘I LIKETIE

E]’I@

E_;I

E@E@Ehl @|E|H|Tﬂlﬂ‘

=
(2]

55@-

@‘
Kl |[E
-
BB

C]

]
[:I

61¢

Figure 14-1. Keyboard keys and scan codes.

|

35&]
[]

S} pu—C
3
]

Felol|Fe

[+]

NOILVYddO d4vOdAT JISvVd 11

INSIDE THE IBM PC

replies by sending the scan code of the key on another port address, which
the ROM-BIOS reads.) In a moment we’ll see what the ROM-BIOS does
with that information, but first we need to finish up looking at this first
layer of operation, that takes place in the keyboard itself.

The keyboard, of course, has to keep track of what key was pressed,
waiting until the ROM-BIOS asks for it. (It isn’t a long wait—usually about
one ten-thousandth of a second; still, for computer hardware, that’s a wait.)
To do this, the keyboard has a small memory, and the memory is big
enough to record 20 separate key actions, in case the microprocessor does
not respond to the keyboard interrupts before more keys are pressed; that’s
rare, but the keyboard design allows for it. After the keyboard reports the
details of a key action, it’s flushed out of the keyboard’s own special little
memory, making room for new scan codes.

There are two more things we need to know about the keyboard. The
first one is very critical. The keyboard doesn’t just note when we press a
key—it also notes it when we release a key as well. Either the pressing or
releasing of any key is noted in the keyboard, and each separate key action
is recorded by the keyboard, turned into an interrupt, and fed to the
ROM-BIOS on command. There are distinct scan codes for the press and
release of each key, so that they can be distinguished (the press codes are
shown in Figure 14-1; the release codes are the same plus 128, hex 80).

That means that the ROM-BIOS is being interrupted to learn about key
actions twice as often as we might have guessed. It also means that the
ROM-BIOS is able to know whether a key is still being held down or
whether it’s been released, and that allows the ROM-BIOS to know, for
example, if we’re typing in capital letters because the shift key is held
down.

The other thing that we need to know about the keyboard is that it’s
the keyboard hardware which makes the repeat-key action work. The key-
board hardware keeps track of how long each key is held down, and if it
passes the ‘‘repeat threshold’’ (about half a second) then the keyboard
hardware generates repeated key-pressed scan codes at a regular interval,
just as if we had (somehow) repeatedly pressed the key without ever releas-
ing it. These repeat key signals appear to the ROM-BIOS just like regular
keystroke signals. If it needs to, the ROM-BIOS can distinguish them by
the absence of the key-released scan codes in between.

What I’ve been describing so far is exactly how the standard PC key-
board works, but that’s not exactly how the PCjr’s keyboard and the AT
keyboards work. To learn what the differences are, see the sidebar Key-
board Differences. The next thing for us to discover is how the ROM-BIOS
works with the keyboard’s scan codes and turns them into meaning.

220

14.1 BASIC KEYBOARD OPERATION

Keyboard Differences

What we’ve been describing here is the standard PC keyboard, which
forms the basis of all keyboards for the PC family. Some models
have keyboards that differ from the standard PC one, and they work
their way around the differences to maintain full PC compatibility.
That’s made possible by the modular stages that the computer’s
keyboard data moves through.

In the case of the PCjr, the keyboard has fewer keys and is unable to
hold key action data and wait for the microprocessor to request it.
The PCjr’s keyboard transmits its key actions—with unique jr key
scan codes—through an interrupt other than the standard keyboard
interrupt 9. Since the jr can’t wait, it signals a key action by a
nonmaskable interrupt, number 2. The interrupt handler for that
interrupt quickly reads the keyboard data as it is being transmitted,
and then translates the jr scan codes into the equivalent standard PC
scan codes, and then—in a final bit of trickery—invokes an interrupt
number 9 to pass that to the regular ROM-BIOS routines (or to any
program that has interposed itself before the ROM-BIOS and which
expects to see standard PC scan codes, rather than PCjr codes.)

The PCjr goes to great lengths to make its nonstandard keyboard and
scan codes appear to work identically to the PC-standard through a
quite elaborate and clever set of programming tricks. Other
keyboards that differ from the original PCs, such as the ATs, use
similar methods although they don’t require going to quite such
extreme lengths.

In the standard PC keyboard, the two controlling factors of the
repeat-key action—the time delay before it begins, and the time
interval between generated key strokes—are fixed items. In both the
PCjr and the AT model they can be changed. In the AT, the
repeat-key action is a hardware feature, as it is for the PC; but the
AT’s keyboard hardware is programmable, so that we can change the
repeat-key delay and interval. In the PCjr, the repeat-key action is
created by the ROM-BIOS software, and it can be changed or even
turned off entirely.

When the ROM-BIOS’s keyboard interrupt handler springs into

action, it receives one of the scan codes from the keyboard, and it has to
decide what the key means. The ROM-BIOS quickly goes through several
stages of analysis to discover how it should interpret and what it should do
to the key action. First, it tests to see if the key action applies to one of the
shift-type keys (such as the shift keys on the left- and right-hand side of the
keyboard, or the ALT key, or the CTRL key). If so, the ROM-BIOS makes
a note of the shift state, since it will affect the meaning of the keys that

221

INSIDE THE IBM PC

follow. Next, the ROM-BIOS tests to see if the key action is one of the
“‘toggle’’ keys (such as the CAPSLOCK key, NUMLOCK, SCROLL-
LOCK, or INS). The toggle keys, like the shift keys, affect the meaning of
other keys, but the action is different here: the shift keys apply only when
they are held down, and the toggle keys apply depending upon whether
they are toggled ‘‘on’’ or ‘‘off’’.

For both the shift keys and the toggle keys, the ROM-BIOS has to
keep a record of the current state of things, so that it knows what’s what.
This record is kept in two bytes of low memory, at hex addresses 417 and
418. Each of the bits in these two bytes separately records one part of the
keyboard status, either recording if one of the keys is pressed down or
recording whether one of the toggle states is on or off. You can inspect and
play with these keyboard status bits using the KEY-BITS program listed in
Appendix A. KEY-BITS demonstrates how the keyboard status is recorded,
and also shows you some surprising things about what information the
ROM-BIOS keeps track of. You’ll see some things that you wouldn’t
expect to be recorded—such as keeping separate track of the left- and
right-hand shift keys, or noting whether the toggle keys are pressed. Exper-
imenting with KEY-BITS tells you a lot about how the ROM-BIOS works
together with the keyboard.

(To help you get the most from KEY-BITS, here are two tips: it takes
a bit of time for the program to decode the keyboard bits and display them
on the screen. Give it a few seconds to show the results of your key actions.
Also, when you’re experimenting, remember that the keys interact—if
you’re in the shift state, pressing the Ins key isn’t interpreted as the Ins key,
it means the zero key instead.)

After the ROM-BIOS has taken care of the shift and toggle keys, it
needs to check for some special key combinations, like the CTRL-
ALT-DEL combination that reboots the computer. Another special combi-
nation is CTRL-NUMLOCK, which makes the computer pause. See the
sidebar About CTRL-NUMLOCK Print-Screen and More for more
information.

About CTRL-NUMLOCK Print-Screen and More

The keyboard ROM-BIOS routines do more than supervise the raw
keyboard input and translate it into meaningful key characters. They
also oversee some built-in features of the PC family.

The three best-known of the PC’s features that the keyboard routines
invoke are the system reboot (invoked by the CTRL-ALT-DEL

222

14.1 BASIC KEYBOARD OPERATION

Displaying the keyboard control bits; press Enter to stop

To see the changes in action, press these keys:
Both shift keys, Ctrl, Alt, CapsLock, NumLock, ScrollLock, Ins

0110 00 10

—» (not used) off
PCJr click state off
—» Hold state active off
Scroll lock pressed ON
Num Lock pressed ON
—» Caps Lock pressed off
“» |ns pressed off

10 00 O
Ll I--b(not used) off

— Right shift pressed off
-» |_eft shift pressed ON

—» Ctrl pressed off

- Alt pressed off

Scroll Lock state off

—» Num Lock state ON

-» Caps Lock state ON

> Insert state off

Figure 14-2. Sample screen from KEY-BITS.

key-combination), print-screen (shift-left-asterisk), and system pause
(CTRL-NUMLOCK).

In the case of both reboot and print-screen, these are services that are
always available to any program that wants to invoke them,;
print-screen, for example, is simply invoked by issuing an interrupt
5. In the case of these two services, the keyboard routines simply
provide us, the user, with a way of getting at a service that normally
is only available to a program.

The CTRL-NumLock or pause feature, however, is a special feature
peculiar to the keyboard ROM-BIOS. When the keyboard routines
recognize this key combination, the ROM-BIOS makes a note of it,
and goes into a never-ending do-nothing loop—effectively

223

INSIDE THE IBM PC

suspending the operation of any program that is running. When this
pause state is in effect, the machine is not locked up, and it
continues to respond to any hardware interrupts that occur, such as
disk and timer interrupts. However, when any of those interruptions
are completed, control passes back to the keyboard routine and it
refuses to return control to the program that’s been suspended. Only
when we press one of the PC’s regular keys does the ROM-BIOS
reset its pause bit, and return the microprocessor to active duty.
You’ll see the pause bit, which the ROM-BIOS uses to keep track of
this state, if you run the KEY-BITS program. However, KEY-BITS
can’t show the pause bit set, since when it’s set, no program,
including KEY-BITS, is running.

On some members of the PC family there are other special services
that the keyboard ROM-BIOS supervises. On the Compaq models,
special key-combinations control the special Compaq display mode
and control loudness of the the key-clicking. In the Compaq-286
modes, another key-combination also controls the running speed.
And in the PCjr, keyboard clicking is also controlled by a key
combination.

Finally, if a key action passes through all that special handling, it
means that the key is an ordinary one which can be assigned some mean-
ing—that is, if the action is the key being pressed and not released. Releas-
ing a key ordinarily means nothing, if it’s not one of the special shift or
toggle keys. When we press an ordinary key, the ROM-BIOS can recognize
it as it produces keyboard characters in the ordinary sense—such as the A
key. To give an ordinary key meaning, though, the ROM-BIOS has to
translate the key into its character code. This is the point where the A key
becomes the letter ‘““‘A’’. In this translation process, the shift-states are
taken into account, to distinguish letter ‘‘a’’ from ‘‘A’’ and so forth.

When a keystroke is translated into its meaning, there are two sets of
meanings, two types of keyboard characters. The first is the ordinary ASCII
characters, such as ‘‘A’’ or Control-A (ASCII code 1) or whatever. The
second is for the PC’s special keys, such as the function keys. These
keys—which include the function keys, the cursor keys, the Home key and
so forth—have special codes which distinguish them from the ordinary
ASCII character keys.

The ALT-Numeric Trick

There is one more special trick that the keyboard ROM-BIOS
routines perform for us that many PC users don’t know about,
something I call the ALT-Numeric Trick.

224

14.1 BASIC KEYBOARD OPERATION

Most of what we want to type into our computers is right there on
the keyboard, in plain sight: the letters of the alphabet, and so forth.
And much of the more exotic stuff can be keyed in by combining the
CTRL key with the alphabetic keys; for example, CTRL-Z keys in
ASCII code 26, which is used as an end-of-file marker for text files.
But we can’t key in every one of the PC’s character set that way. For
example, if we wanted to key in the box-drawing characters that we
saw in Chapter 4, we won’t be able to do it.

To make it possible for us to key in virtually anything, the
ROM-BIOS provides a special way for us to enter any of the
characters with ASCII codes 1 through 255. (Oddly though, we can’t
key in ASCII code 0 this way, or any other way.)

We do it by holding down the ALT-shift key, and then keying in the
ASCII code of the character we want; we enter the code in decimal,
and we have to use the numeric keys on the right-hand side of the
keyboard, not the number keys on the top row of the keyboard. When
we key in this special way, the ROM-BIOS makes a note of it,
calculates the code number we’ve keyed in, and when we release the
ALT key, it generates an ASCII character, very much as if we had
pressed a single key that represented that ASCII character.

To try it yourself, you can use the ASCII code for capital A, which
is 65. Hold down the ALT key, press and release 6 then 5 on the
right-hand side keys, then release the ALT key. The letter A should
appear on your screen, just as if you typed in a capital A.

This special scheme works under most circumstances, but not all.
BASIC changes the keyboard operation so it doesn’t work when
we’re using BASIC. And keyboard enhancing programs, such as
Prokey, may modify the scheme so it works differently. But, under
most circumstances, we have this special ROM-BIOS facility at our
command to enhance our ability to enter anything on the keyboard.

To accommodate both the plain ASCII codes and the PC’s special
codes, the ROM-BIOS records its key characters as a pair of bytes. If the
character at hand is an ASCII character, then the first of the two bytes is
non-zero and it holds the ASCII character itself. (In this case, the second
character can be ignored. It generally holds the scan code of the key that
was pressed.) The special PC characters are identified by a zero in the first
byte. When the first byte is zero, the second byte contains the code identi-
fying which of the special key characters is present.

BASIC practically gives us access to these two-byte keyboard codes
with the INKEY$ function. With it we can inspect the keyboard codes. The
little program below shows you how. Just run this in BASIC, and start
pressing keys (the Enter key will stop the program):

225

INSIDE THE IBM PC

100 FOR I - 1 TO 10 : KEY I, "' : NEXT

110 K$ - INKEY$

120 L - LEN (K$)

130 IF L = 1 THEN PRINT "ASCII character ";ASC(LEFT$ (K$,1))
140 IF L - 2 THEN PRINT "Special key code ";ASC(RIGHT$ (K$,1))
150 IF K$ = CHR$(13) THEN SYSTEM ELSE 110

After a ‘‘real’’ keystroke has been recognized and translated into its
two-byte meaning, it’s stored in the ROM-BIOS’s own keyboard buffer.
This is the second time that the keyboard information has been stored in a
buffer—once in the keyboard’s own internal memory and now in the
ROM-BIOS’s storage area. The ROM-BIOS has a buffer large enough to
store 15 characters. If it overflows, the ROM-BIOS issues the complaining
beep on the speaker which experienced PC users are accustomed to, and
then it throws away the latest key data.

Once our key actions have been received and translated into meaningful
characters by the ROM-BIOS, they are available for our programs to use. Our
programs can either take them directly from the ROM-BIOS—using the
ROM-BIOS keyboard services—or they can get them from DOS—using the
DOS keyboard services, which indirectly takes them from the ROM-BIOS.
Either way, our programs end up using these keyboard characters that have
been constructed from our key actions by the ROM-BIOS.

That, anyway, is the way things work with our keyboards when things
are proceeding in a straightforward way. But, the whole elaborate scheme
for processing our key strokes that we’ve been following is intended to
allow programs to sidestep the normal keyboard operation and start pulling
rabbits out of hats. Next we’ll see some of how that is done.

14.2 Keyboard Tricks

The PC’s design allows our programs to work with the keyboard in
many, many ways. Even when our programs aren’t doing anything exotic,
they have a choice of two ways of obtaining their keyboard data—either by
obtaining it directly from the ROM-BIOS or by getting it through the DOS
services. But that certainly isn’t the only way that a program can come by
keyboard information.

I certainly can’t give you an exhaustive rundown of keyboard tric