

OS/390 ÉÂÔ

C/C++
IBM Open Class Library User's Guide

 SC09-2363-03

OS/390 ÉÂÔ

C/C++
IBM Open Class Library User's Guide

 SC09-2363-03

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xi.

Fourth Edition, September 1998

This edition applies to Version 2 Release 6 of OS/390 C/C++ (5647-A01) and to all subsequent releases and modifications until
otherwise indicated in new editions or other updated documentation. Make sure that you use the correct edition for the level of the
program listed above. Also, ensure that you apply all necessary PTFs for the program.

Technical changes in the text since the last release of this book are indicated by a vertical line (|) to the left of the change.

Order publications through your IBM representative or the IBM branch office serving your location. Publications are not stocked at the
address below. The OS/390 C/C++ publications are available through the OS/390 Library page on the World Wide Web
(http://www.s390.ibm.com/os390/bkserv).

IBM welcomes your comments. You can send your comments electronically to the network ID listed below. Be sure to include your
entire network address if you wish a reply.

 ¹ Internet: torrcf@ca.ibm.com
 ¹ IBMLink: toribm(torrcf)
 ¹ IBM/PROFS: torolab4(torrcf)
 ¹ IBMMAIL: ibmmail(caibmwt9)

You can also send your comments by facsimile (attention: RCF coordinator) or you can use the Reader’s Comment Form that is
provided at the back of this publication. Refer to “Communicating Your Comments to IBM” for a description of the methods. This
information immediately precedes the Reader’s Comment Form at the back of this publication. You can also address your comments
to:

IBM Canada Ltd. Laboratory
 Information Development
 2G/345/1150/TOR

1150 Eglinton Avenue East
North York, Ontario, Canada. M3C 1H7

If you send comments, include the title and order number of this book, and the page number or topic related to your comment.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1996, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xi
Standards . xi
Trademarks . xii

About This Book . xv
IBM OS/390 C/C++ and Related Publications . xv
Hardcopy Books . xxii
Softcopy Books . xxii
Softcopy Examples . xxiii
OS/390 C/C++ on the World Wide Web . xxiii
C/C++ News... . xxiv

About IBM OS/390 C/C ++ . xxv
Changes for Version 2 Release 6 . xxv
The C/C++ Compilers . xxvi

The C Language . xxvi
The C++ Language . xxvi
Common Features of the OS/390 C and C++ Compilers xxvii
OS/390 C Compiler Specific Features . xxviii
Features That Are Specific to the OS/390 C++ Compiler xxviii

Utilities . xxix
Class Libraries . xxix

Class Library Source . xxx
The Debug Tool . xxxi
OS/390 Language Environment . xxxi
The Program Management Binder . xxxii
OS/390 UNIX System Services (OS/390 UNIX) xxxii
OS/390 C/C++ Applications with OS/390 UNIX C/C++ Functions xxxiv
Input and Output . xxxv

I/O Interfaces . xxxv
File Types . xxxvi
Additional I/O Features . xxxvii

The System Programming C Facility . xxxvii
Interaction with Other IBM Products . xxxvii
Additional Features of OS/390 C/C++ . xxxix
Suggested Reading . xl

Chapter 1. Introduction to IBM Open Class Library 1
History of IBM Open Class Library . 1
Hierarchies of the Class Libraries . 1

| Coding with Class Libraries under OS/390 UNIX System Services 5
Compiling Programs that Use IBM Open Class Library 5
Binding with IBM Open Class Library . 6

Migration Notes . 6
Thread Safety and the IBM Open Class Library 7

Why Thread Safety? . 7
Levels of Thread Safety . 7

Part 1. Complex Mathematics Class Library . 9

 Copyright IBM Corp. 1996, 1998 iii

Chapter 2. Using the Complex Mathematics Classes 11
Review of Complex Numbers . 11
Header Files and Constants for complex and c_exception 12
Constructing complex Objects . 12
Complex Mathematics Input and Output . 13
Mathematical Operators for complex . 14

Equality and Inequality Operators Test for Absolute Equality 15
Assignment Operators Do Not Produce an lvalue 16

Friend Functions for complex . 16
Mathematical Functions for complex . 16
Trigonometric Functions for complex . 17
Magnitude Functions for complex . 18
Conversion Functions for complex . 18

Using the c_exception Class to Handle Complex Mathematics Errors 19
Defining a Customized complex_error Function 19

Errors Handled Outside of the Complex Mathematics Library 20
An Example of Using the Complex Mathematics Library 20

Part 2. The I/O Stream Class Library . 23

Chapter 3. Introduction to the I/O Stream Classes 25
The I/O Stream Classes and stdio.h . 25
Overview of the I/O Stream Classes . 25

Combining Input and Output of Different Types 26
Input and Output for User-Defined Classes . 26

The I/O Stream Class Hierarchy . 26
The I/O Stream Header Files . 28
Predefined Streams . 28
Anonymous Streams . 29
Stream Buffers . 30

What Does a Stream Buffer Do? . 30
Why Use a Stream Buffer? . 30
How Is a Stream Buffer Implemented? . 30

Format State Flags . 32
Thread Safety . 32

Chapter 4. Getting Started with the I/O Stream Library 35
Receiving Input from Standard Input . 35

Multiple Variables in an Input Statement . 35
String Input . 36
White Space in String Input . 36
Incorrect Input and the Error State of the Input Stream 38
Using Input Streams Other Than cin . 38

Displaying Output on Standard Output or Standard Error 38
Multiple Variables in an Output Statement . 39
Using Output Streams Other Than cout, cerr, and clog 39

Flushing Output Streams with endl and flush . 40
Placing endl or flush in an Output Stream . 41

Parsing Multiple Inputs . 41
Opening a File for Input and Reading from the File 42

Constructing an fstream or ifstream Object for Input 43
Reading Input from a File . 44

Opening a File for Output and Writing to the File 45

iv OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

Chapter 5. Advanced I/O Stream Topics . 47
Associating a File with a Standard Input or Output Stream 47
Using filebuf Functions to Move Through a File 48
Defining an Input Operator for a Class Type . 50

Using the cin Stream in a Class Input Operator 51
Displaying Prompts in Input Operator Code 52

Defining an Output Operator for a Class Type 52
Class Output Operators and the Format State 53

Correcting Input Stream Errors . 54
Changing the Formatting of Stream Output . 56

ios Methods and Manipulators . 56
Using setf, unsetf, and flags . 57
Changing the Notation of Floating-Point Values 59
Changing the Base of Integral Values . 60
Setting the Width and Justification of Output Fields 61

Defining Your Own Format State Flags . 61
Using the strstream Classes for String Manipulation 63

Chapter 6. Manipulators . 65
Introduction to Manipulators . 65
Simple Manipulators and Parameterized Manipulators 65
Creating Simple Manipulators for Your Own Types 66
Creating Parameterized Manipulators for Your Own Types 67

Part 3. The Collection Class Library . 71

Chapter 7. Overview of the Collection Class Library 73
Benefits of the Collection Class Library . 73
Concrete Classes Provided by the Library . 73
Types of Classes in the Collection Class Library 77
Flat Collections . 78

Ordering of Collection Elements . 79
Access by Key . 79
Equality for Keys and Elements . 79
Uniqueness of Entries . 81

Restricted Access . 81
Trees . 82
Auxiliary Classes . 83
The Overall Implementation Structure . 83

Categories of Classes . 84
Default Classes . 85
Variant Classes . 85
Collection Class Hierarchy . 85
Typed and Typeless Implementation Classes 85
Class Template Naming Conventions . 86

Chapter 8. Instantiating and Using the Collection Classes 89
Instantiation and Object Definition . 89
Adding, Removing, and Replacing Elements . 90

Adding Elements . 90
Removing Elements . 91
Replacing Elements . 93

Cursors . 93

 Contents v

Using Cursors for Locating and Accessing Elements 94
Iterating over Collections . 96

Iteration Using Cursors . 96
Iteration Using allElementsDo . 97
Iteration Using Applicators . 98

Copying and Referencing Collections . 99
Bounded and Unbounded Collections . 100

Chapter 9. Element Functions and Key-Type Functions 101
Introduction to Element Functions and Key-Type Functions 101
Using Member Functions . 102
Using Separate Functions . 103
Using Element Operation Classes . 105

Memory Management with Element Operation Classes 109
Functions for Derived Element Classes . 109
Using Smart Pointers . 111

Overview of Smart Pointers . 112
Element Pointers . 113
Managed Pointers . 116
Automatic Pointers . 116
Constructing Smart Pointers . 118

Chapter 10. Tailoring a Collection Implementation 121
Introduction . 121
Replacing the Default Implementation . 121
The Based-On Concept . 122
Provided Implementation Variants . 122
Features of Provided Implementation Variants 123

Sequences . 124
Trees . 126
Hash Table . 129

Chapter 11. Polymorphism and the Collections 131
Introduction to Polymorphism . 131
Using the Abstract Class Hierarchy . 131
Adding and Overloading Member Functions . 132

Chapter 12. Support for Notifications . 135
Example for IVSequence<IString> . 136

Chapter 13. Thread Safety and the Collection Classes 139
Guard Objects . 139

Usage . 139
Restrictions . 141

Chapter 14. Exception Handling . 143
Introduction to Exception Handling . 143

Exceptions Caused by Violated Preconditions 143
Exceptions Caused by System Failures and Restrictions 144

Precondition and Defined Behavior . 144
Levels of Exception Checking . 145
List of Exceptions . 145
The Hierarchy of Exceptions . 147

vi OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

Chapter 15. Collection Class Library Tutorials 149
Preparing for the Lessons . 150
Lesson 1: Defining a Simple Collection of Integers 150
Lesson 2: Adding, Listing, and Removing Elements 153
Lesson 3: Changing the Element Type . 158
Lesson 4: Changing the Collection . 163
Lesson 5: Changing the Implementation Variant 171
Errors When Compiling or Running the Lessons 173
Other Tutorials . 173

Using the Default Classes . 173
Advanced Use . 174
Source Files for the Tutorials . 174

Chapter 16. Solving Problems in the Collection Class Library 177
Cursor Usage . 177
Element Functions and Key-Type Functions . 178
Key Access Function - How to Return the Key (1) 179
Key Access Function - How to Return the Key (2) 180
Definition of Key-Type Functions . 180
Exception Tracing . 181
Declaration of Template Arguments and Element Functions (1) 181
Declaration of Template Arguments and Element Functions (2) 181
Declaration of Template Arguments and Element Functions (3) 182
Default Constructor . 182

Chapter 17. Compatibility Information . 185
Compatible Items . 185
Incompatible Items . 186

Part 4. Application Support Class Library . 189

Chapter 18. Application Support Class Library 191
Organization of Classes . 191
IBase Class . 194
IVBase Class . 194
String and Buffer Classes . 195
Thread Safety . 195
MBCS and National Language Support . 195

Turning on Internationalization Semantics . 196
Setting the Locale . 196

Chapter 19. String Classes . 199
Introduction to the String Classes . 199

String Buffers . 200
Multiple-Byte Character Set Support . 200
Indexing of Strings . 200

What You Can Do with Strings . 200
Creating and Copying Strings . 201
Doing String Input and Output . 203
Concatenating Strings . 204
Finding Words or Substrings within Strings . 204
Replacing, Inserting, and Deleting Substrings 206
Determining String Lengths and Word Counts 207

 Contents vii

Extending Strings . 207
Converting between Strings and Numeric Data 207
Converting between Strings and Different Base Notations 208
Testing the Characteristics of Strings . 209
Formatting Strings . 211
Other IString Capabilities . 212

IStringTest Class . 212

Chapter 20. Exception and Trace Classes . 215
Introduction to the Exception Classes . 215

Characteristics of the Exception Classes . 215
Derivation of the Exception Classes . 215
Situations in Which the Exception Classes Are Used 216

Catching Exceptions Thrown by Class Library Functions 217
An Example of the Subscript Operator Throwing an Exception 217

Throwing Your Own Exceptions Using the Exception Classes 218
Macros Used with the Exception Classes . 219

Why Use the Macros? . 220
Using the ITrace Class . 222

Using the Trace Macros to Control Trace Output 222
Capturing Trace Output in a File . 223
An Example of Using ITrace . 223

Chapter 21. Date and Time Classes . 225
IDate Class . 225

Creating an IDate Object . 225
Changing an IDate Object . 226
Information Functions for IDate Objects . 226
Testing and Comparing IDate Objects . 226

ITime Class . 227
Creating an ITime Object . 227
Changing an ITime Object . 227
Information Functions for ITime Objects . 227
Comparing ITime Objects . 228
Writing an ITime Object to an Output Stream 228

ITimeStamp Class . 229
Creating an ITimeStamp Object . 229
Changing an ITimeStamp Object . 229
Information Functions for ITimeStamp Objects 229
Comparing ITimeStamp Objects . 230

Chapter 22. Controlling Threads and Protecting Data 231
Accessing the Current Thread . 232
Starting a Thread . 232

Starting Nonmember Functions . 232
Starting a Member Function . 232

Protecting Data . 234

Chapter 23. The IBM Open Class Notification Framework 235
Notifiers and Observers . 235
Notification Protocol . 236
IBM C++ Notification Class Hierarchy . 237

Chapter 24. Using the Binary Coded Decimal Class 239

viii OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

Header File and Constants for IBinaryCodedDecimal 239
Constants Defined in idecimal.hpp . 239

Constructing IBinaryCodedDecimal Objects . 240
IBinaryCodedDecimal Input and Output . 240
Mathematical Operators for IBinaryCodedDecimal 240

Relational Operators . 240
Equality Operators . 241

Converting IBinaryCodedDecimal Objects . 241
IBinaryCodedDecimal Object to a IBinaryCodedDecimal Object 241

Number of Digits of an IBinaryCodedDecimal Object 242
Precision of an IBinaryCodedDecimal Object . 242
IBinaryCodedDecimal Object Exceptions . 242

| Chapter 25. Using the Decimal Class . 243
| Header File . 243
| Constructing Decimal Objects . 243
| Decimal Class Input and Output . 244
| Operators for Decimal Class . 244
| Arithmetic Operators . 244
| Relational Operators . 245
| Equality Operators . 245
| Converting Decimal Objects . 245
| Decimal Object to a Decimal Object . 245
| Decimal Object to an IString Object . 246
| Decimal Object from a char * Type . 246
| Decimal Object from an Integer Type . 246
| Decimal Object to and from IBinaryCodedDecimal Object 246
| Number of Digits in a Decimal Object . 246
| Precision of a Decimal Object . 246
| Decimal Object Exceptions . 247

Part 5. Glossary, Bibliography and Index . 249

Glossary . 251

Bibliography . 281
OS/390 . 281
VS COBOL II Release 4 . 281
COBOL FOR MVS & VM Release 2 . 281
COBOL for OS/390 & VM Version 2 Release 1 281
PL/I for MVS & VM Release 1 Modification 1 . 281
OS PL/I Version 2 Release 3 . 282
VS FORTRAN Version 2 Release 6 . 282
CICS/ESA Version 4 Release 1 . 282
CICS Transaction Server for OS/390 Release 2 282
DB2 Version 3 Release 1 . 282
DB2 Version 4 Release 1 . 282
DB2 Version 5 Release 1 . 282
IMS/ESA Version 4 Release 1 . 282
IMS/ESA Version 5 Release 1 . 282
IMS/ESA Version 6 Release 1 . 283
QMF Version 3 Release 2 . 283
VSAM . 283

 Contents ix

Index . 285

x OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Notices

Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM’s licensed program may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY, 10594, USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM Canada Ltd., Department 071,
1150 Eglinton Avenue East, North York, Ontario M3C 1H7, Canada. Such
information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

This publication may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

This publication documents intended Programming Interfaces that allow the
customer to write OS/390 C/C++ programs.

Any interfaces, including service component interfaces, that are not documented in
the OS/390 C/C++ publications are not formal interfaces. You should not build any
dependencies on these interfaces, as IBM can change or remove interfaces at any
time, without notice.

Any pointers in this publication to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites. IBM
accepts no responsibility for the content or use of non-IBM Web sites specifically
mentioned in this publication or accessed through an IBM Web site that is
mentioned in this publication.

 Standards
Extracts are reprinted from IEEE Std 1003.1—1990, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 1: System
Application Program Interface (API) [C language], copyright 1990 by the Institute of
Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE P1003.1a Draft 6 July 1991, Draft Revision to
Information Technology—Portable Operating System Interface (POSIX), Part 1:

 Copyright IBM Corp. 1996, 1998 xi

System Application Program Interface (API) [C Language], copyright 1992 by the
Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std 1003.2—1992, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 2: Shells and
Utilities, copyright 1990 by the Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std P1003.4a/D6—1992, IEEE Draft Standard
Information Technology—Portable Operating System Interface (POSIX)—Part 1:
System Application Program Interface (API)—Amendment 2: Threads Extension [C
language], copyright 1990 by the Institute of Electrical and Electronic Engineers,
Inc.

Extracts from ISO/IEC 9899:1990 have been reproduced with the permission of the
International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC). The complete standard can be obtained from
any ISO or IEC member or from the ISO or IEC Central Offices, Case postale 56,
CH - 1211 Geneva 20, Switzerland. Copyright remains ISO and IEC.

Extracts from X/Open Specification, Programming Languages, Issue 4 Release 2,
copyright 1988, 1989, February 1992, by the X/Open Company Limited, have been
reproduced with the permission of X/Open Company Limited. No further
reproduction of this material is permitted without the written notice from the X/Open
Company Ltd, UK.

 Trademarks
The following terms, which may be denoted by a single asterisk (*), are trademarks
of International Business Machines Corporation in the United States or other
countries or both:

AD/Cycle AFP AIX
AIX/6000 AT AS/400
BookManager C Set ++ C/370
C/MVS C++/MVS Common User Access
CICS CICS/ESA CICSPlex
COBOL/370 CUA CT
DATABASE 2 DB2 DFSMS
DFSMS/MVS DFSMSdfp DRDA
ESCON GDDM Hiperspace
IBM IBMLink IMS
IMS/ESA MVS/DFP MVS/ESA
MVS/SP MVS/XA Open Class
OpenEdition Operating System/2 Operating System/400
OS OPEN OS/2 OS/390
OS/400 PROFS PS/2
QMF RACF RETAIN
S/370 S/390 SAA
SOM SOMobjects SP
SQL/DS System/370 System/390
System Object Model Systems Application

Architecture
VisualAge

VM/ESA VSE/ESA VTAM
3090 3890 400

xii OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks
of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

 Notices xiii

xiv OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

About This Book

This book gives you guidance on how to use IBM Open Class Library, the
comprehensive library of C++ classes that are provided with OS/390 C/C++. IBM
Open Class Library consists of the following groups of classes, described
individually as “class libraries” in this book:

¹ The Complex Mathematics Class Library
¹ The I/O Stream Class Library
¹ The Collection Class Library
¹ The Application Support Class Library

The book is divided into parts, beginning with an overview of IBM Open Class
Library, and followed by a part for each of the class libraries listed above.

IBM OS/390 C/C++ and Related Publications
This section summarizes the content of the IBM OS/390 C/C++ publications and
shows where to find related information in other publications.

 Copyright IBM Corp. 1996, 1998 xv

Table 1 (Page 1 of 3). OS/390 C/C++ Publications

Book Title and Number Key Sections/Chapters in the Book

 OS/390 C/C++ Programming Guide,
SC09-2362

Guidance information for:

¹ C/C++ input and output
¹ Debugging OS/390 C programs that use input/output
¹ Using linkage specifications in C++
¹ Combining C and assembler
¹ Creating and using DLLs
¹ Using threads in an OS/390 UNIX application

 ¹ Reentrancy
¹ Using the decimal data type in C
¹ Handling exceptions, error conditions, and signals

 ¹ Optimizing code
¹ Optimizing your C/C++ code with Interprocedural Analysis
¹ Network communications under OS/390 OpenEdition
¹ Interprocess communications using OS/390 UNIX services
¹ Structuring a program that uses C++ templates
¹ Using environment variables
¹ Using System Programming C facilities
¹ Library functions for the System Programming C facilities
¹ Using runtime user exits
¹ Using the OS/390 C multitasking facility
¹ Using other IBM products with OS/390 C/C++ (CICS*, CSP,

DWS, DB2*, GDDM*, IMS*, ISPF, QMF*)
¹ Direct-to-SOM support under OS/390 C/C++
¹ Internationalization: locales and character sets, code set

conversion utilities, mapping variant characters
¹ POSIX character set
¹ Code point mappings
¹ Locales supplied with OS/390 C/C++
¹ Charmap files supplied with OS/390 C/C++
¹ Examples of charmap and locale definition source files
¹ Converting code from code character set IBM-1047
¹ Using built-in functions
¹ Programming considerations for OS/390 UNIX C/C++

 OS/390 C/C++ User’s Guide,
SC09-2361

Guidance information for:

¹ OS/390 C/C++ examples
 ¹ Compiler options
¹ Binder options and control statements
¹ Specifying OS/390 Language Environment runtime options
¹ Compiling, IPA Linking, binding, and running OS/390 C/C++

programs
¹ Using precompiled headers
¹ Utilities (Object Library, DLL Rename, CXXFILT, DSECT

Conversion, Code Set and Locale, ar and make, BPXBATCH)
 ¹ Diagnosing problems
¹ Cataloged procedures and REXX EXECs supplied by IBM
¹ Error messages and return codes

xvi OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

Table 1 (Page 2 of 3). OS/390 C/C++ Publications

Book Title and Number Key Sections/Chapters in the Book

 OS/390 C/C++ Language Reference,
SC09-2360

Reference information for:

¹ The C and C++ Languages
¹ Lexical elements of OS/390 C and OS/390 C++
¹ Declarations, expressions and operators
¹ Implicit type conversions
¹ Functions and statements

 ¹ Preprocessor directives
¹ C++ classes, class members, and friends
¹ C++ overloading, special member functions, and inheritance
¹ C++ templates and exception handling
¹ OS/390 C and OS/390 C++ compatibility

 OS/390 C/C++ Run-Time Library Reference,
SC28-1663

Reference information for:

¹ C header files
¹ C Library functions

 OS/390 C Curses,
SC28-1907

Reference information for:

 ¹ Curses concepts
¹ Key data types
¹ General rules for characters, renditions, and window properties
¹ General rules of operations and operating modes
¹ Use of macros
¹ Restrictions on block-mode terminals
¹ Curses functional interface
¹ Contents of headers
¹ The terminfo database

 OS/390 C/C++ Compiler and Run-Time
Migration Guide,
SC09-2359

Guidance and reference information for:

¹ Common migration questions
¹ Application executable program compatibility
¹ Source program compatibility
¹ Input and output operations compatibility
¹ Class library migration considerations
¹ Changes between releases of OS/390
¹ C/370* V1 to V2 compiler changes
¹ Other migration considerations

OS/390 C/C++ Reference Summary,
SX09-1313

Summary tables for:

¹ Character set, trigraphs, digraphs, and keywords
¹ Escape sequences, storage classes
¹ Predefined and derived types, type qualifiers
¹ Operator precedence, redirection symbols
¹ fprintf format, type characters, and flag characters
¹ fscanf format and type characters

 ¹ __amrc structure
¹ Hardware exceptions and signals
¹ Compiler return codes

 ¹ Compiler options
 ¹ #pragma directives
 ¹ Library functions
 ¹ Utilities

 About This Book xvii

Table 1 (Page 3 of 3). OS/390 C/C++ Publications

Book Title and Number Key Sections/Chapters in the Book

 OS/390 C/C++ IBM Open Class Library
User’s Guide,
SC09-2363

Guidance information for:

¹ Using the Complex Mathematics Class Library: Review of
complex numbers, header files, constructing complex objects,
mathematical operators for complex, friend functions for
complex, handling complex mathematical errors

¹ Using the I/O Stream Class Library:
Introduction, getting started, advanced topics, and manipulators

¹ Using the Collection Class Library:
Overview, instantiating and using, Element and Key functions,
tailoring collection implementation, polymorphic use of
collections, support for notifications, exception handling, tutorials,
problem solving, compatibility with previous releases, thread
safety

¹ Using the Application Support Class Library:
Introduction, String classes, Exception and Trace classes, Date
and Time classes, controlling threads and protecting data, the
IBM Open Class* notification framework, Binary Coded Decimal
classes

 OS/390 C/C++ IBM Open Class Library
Reference,
SC09-2364

Reference information for:

¹ Complex Mathematics Class Library
¹ I/O Stream Class Library
¹ Collection Class Library
¹ Application Support Class Library

 OS/390 C/C++ SOM-Enabled Class Library
User’s Guide and Reference,
SC09-2366

Guidance and reference information for:

¹ C++ SOM (RRBC-enabled) versions of Collection and Application
Support Class Libraries

¹ Cross-language SOM version of the Collection Class Library

 Debug Tool User’s Guide and Reference,
SC09-2137

Guidance and reference information for:

¹ Preparing to debug programs
 ¹ Debugging programs
¹ Using Debug Tool in different environments

 ¹ Language-specific information
¹ Debug Tool reference

APAR and BOOKS files
(Shipped with Program materials)

Partitioned data set CBC.SCBCDOC on the product tape contains
the members, APAR and BOOKS, which provide additional
information for using the IBM OS/390 C/C++ licensed program,
including:

¹ Isolating reportable problems
 ¹ Keywords
¹ Preparing an Authorized Program Analysis Report (APAR)
¹ Problem identification worksheet
¹ Maintenance on OS/390
¹ Late changes to OS/390 C/C++ publications

Note: For complete and detailed information on linking and running with OS/390 Language Environment and using
the OS/390 Language Environment runtime options, refer to the OS/390 Language Environment Programming Guide,
SC28-1939. For complete and detailed information on using interlanguage calls, refer to OS/390 Language
Environment Writing Interlanguage Applications, SC28-1943.

xviii OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

The following table lists the OS/390 C/C++ and related publications that you are
most likely to need. Publications are grouped according to the tasks they describe.

Table 2 (Page 1 of 4). Publications by Task

Tasks Books

Planning, preparing, and migrating to OS/390 C/C++ OS/390 C/C++ Compiler and Run-Time Migration Guide,
SC09-2359

 OS/390 Language Environment Concepts Guide,
GC28-1945

 OS/390 Language Environment Customization,
SC28-1941

 OS/390 Planning for Installation, GC28-1726
OS/390 Task Atlas, available on the OS/390 Library
page on the World Wide Web
(http://www.s390.ibm.com/os390/bkserv)

Installing OS/390 Program Directory

 OS/390 Planning for Installation, GC28-1726

 OS/390 Language Environment Customization,
SC28-1941

Coding programs OS/390 C/C++ Run-Time Library Reference, SC28-1663

 OS/390 C/C++ Language Reference, SC09-2360

OS/390 C/C++ Reference Summary, SX09-1313

 OS/390 C/C++ Programming Guide, SC09-2362

 OS/390 Language Environment Concepts Guide,
GC28-1945

 OS/390 Language Environment Programming Guide,
SC28-1939

 OS/390 Language Environment Programming
Reference, SC28-1940

 OS/390 C/C++ IBM Open Class Library User’s Guide,
SC09-2363

 OS/390 C/C++ IBM Open Class Library Reference,
SC09-2364

 OS/390 C/C++ SOM-Enabled Class Library User’s
Guide and Reference, SC09-2366

 About This Book xix

Table 2 (Page 2 of 4). Publications by Task

Tasks Books

Coding and binding programs with interlanguage calls OS/390 C/C++ Programming Guide, SC09-2362

 OS/390 C/C++ Language Reference, SC09-2360

 OS/390 Language Environment Programming Guide,
SC28-1939

 OS/390 Language Environment Writing Interlanguage
Applications, SC28-1943

 DFSMS/MVS Program Management, SC28-1943

Compiling, binding, and running programs OS/390 C/C++ User’s Guide, SC09-2361

 OS/390 Language Environment Programming Guide,
SC28-1939

 OS/390 Language Environment Debugging Guide and
Run-Time Messages, SC28-1942

 DFSMS/MVS Program Management, SC26-4916

OS/390 Messages Database, available from the OS/390
Library page in the World Wide Web
(http://www.s390.ibm.com/os390/bkserv)

Compiling and binding applications in the OS/390
OpenEdition environment

 OS/390 C/C++ User’s Guide, SC09-2361

 OS/390 UNIX System Services User's Guide,
SC28-1891

 OS/390 UNIX System Services Command Reference,
SC28-1892

 DFSMS/MVS Program Management, SC26-4916

Compiling and binding SOM applications with OS/390
SOMobjects*

 OS/390 SOMobjects Programmer's Guide, GC28-1859

 OS/390 C/C++ Programming Guide, SC09-2362

 OS/390 C/C++ User’s Guide, SC09-2361

xx OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

Table 2 (Page 3 of 4). Publications by Task

Tasks Books

Debugging programs README file

 Debug Tool User’s Guide and Reference, SC09-2137

 OS/390 C/C++ User’s Guide, SC09-2361

 OS/390 C/C++ Programming Guide, SC09-2362

 OS/390 Language Environment Programming Guide,
SC28-1939

 OS/390 Language Environment Debugging Guide and
Run-Time Messages, SC28-1942

 OS/390 UNIX System Services Messages and Codes,
SC28-1908

 OS/390 UNIX System Services User's Guide,
SC28-1891

 OS/390 UNIX System Services Command Reference,
SC28-1892

 OS/390 UNIX System Services Programming Tools,
SC28-1904

Using shells and utilities in the OS/390 OpenEdition
environment

 OS/390 C/C++ User’s Guide, SC09-2361

 OS/390 UNIX System Services Command Reference,
SC28-1892

 OS/390 UNIX System Services Messages and Codes,
SC28-1908

Using sockets library functions in the OS/390
OpenEdition environment

 OS/390 C/C++ Run-Time Library Reference, SC28-1663

Porting a UNIX Application to OS/390 OS/390 UNIX System Services Porting Guide

This guide contains useful information about supported
header files and C functions, sockets in an OS/390 UNIX
environment, process management, compiler
optimization tips, and suggestions for improving the
application’s performance after it has been ported. The
Porting Guide is available as a PDF file which you can
download, or as web pages which you can browse, at
the following URL:
http://www.s390.ibm.com/unix/bpxa1por.html

Performing diagnosis and submitting an Authorized
Program Analysis Report (APAR)

 OS/390 C/C++ User’s Guide, SC09-2361

CBC.SCBCDOC(APAR) on OS/390 C/C++ product tape

Quick reference OS/390 C/C++ Reference Summary, SX09-1313

 About This Book xxi

Table 2 (Page 4 of 4). Publications by Task

Tasks Books

Multimedia Tutorial For a new way of learning C++ programming, you can
order the CD-ROM Experience C++: A Multimedia
Tutorial, SK2T-1158. This tutorial runs in DOS.

Note: For information on using the prelinker, see the appendix on prelinking and linking OS/390 C/C++ programs in
the OS/390 C/C++ User’s Guide. As of Release 4, this appendix contains information that was previously in the
chapter on prelinking and linking OS/390 C/C++ programs in the OS/390 C/C++ User’s Guide. It also contains
prelinker information that was previously in the OS/390 C/C++ Programming Guide.

 Hardcopy Books
You can purchase OS/390 C/C++ books one at a time, or in a set. The following
OS/390 C/C++ books are available in hardcopy:

¹ OS/390 C/C++ Run-Time Library Reference, SC28-1663

¹ OS/390 C/C++ User’s Guide, SC09-2361

¹ OS/390 C/C++ Programming Guide, SC09-2362

¹ OS/390 C/C++ Reference Summary, SX09-1313

¹ OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363

¹ OS/390 C Curses, SC28-1907

¹ OS/390 C/C++ Compiler and Run-Time Migration Guide, SC09-2359

¹ Debug Tool User’s Guide and Reference, SC09-2137

These books can be purchased singly or as part of a set. The OS/390 C/C++
Compiler and Run-Time Migration Guide, SC09-2359 is provided at no charge.
The remaining books are included in feature code 8009.

 Softcopy Books
All of the OS/390 C/C++ publications (except for the OS/390 C/C++ Reference
Summary) are available in softcopy book format. The books are available on a
tape accompanying the OS/390 product, and also on a CD-ROM called the IBM
Online Library Omnibus Edition: OS/390 Collection, SK2T-6700.

To read the softcopy books, the BookManager* Read (Program 5684-062,
5695-046) licensed program must be available on your operating system.
BookManager Read provides access to online information as an alternative to hard
copy documents. You can read, search, make notes, and select sections of text to
print.

Also available are BookManager Read/DOS (Program 73F6-022) for the DOS
operating system, and BookManager Read/2 (Program 73F6-023) for the OS/2
operating system. With these products, you can download online books to your
workstation and read them.

xxii OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

With BookManager Read installed on your system, you can enter the command
BOOKMGR to start BookManager and display a list of books available to you. If
you know the name of the book that you want to view, you can use the OPEN
command to open the book directly.

Note: If your workstation does not have graphics capability, BookManager Read
cannot correctly display some characters, such as arrows and brackets.

You can also browse the books on the World Wide Web, through "The Library" link
on the OS/390 home page. The URL for this page is:

http://www.s390.ibm.com/os390/index.html

 Softcopy Examples
Most of the larger examples in the following books are available in
machine-readable form:

¹ OS/390 C/C++ Language Reference, SC09-2360
¹ OS/390 C/C++ User’s Guide, SC09-2361
¹ OS/390 C/C++ Programming Guide, SC09-2362
¹ OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363
¹ OS/390 C/C++ IBM Open Class Library Reference, SC09-2364
¹ OS/390 C/C++ SOM-Enabled Class Library User’s Guide and Reference,

SC09-2366

In the following books, a label on an example indicates that the example is
distributed in softcopy. The label is the name of a member in the data ses
CBC.SCBCSAM or CBC.SCLBSAM. The labels have the form CBCxyyy or CLBxyyy, where
x refers to a publication:

¹ R and X refer to the OS/390 C/C++ Language Reference, SC09-2360
¹ G refers to the OS/390 C/C++ Programming Guide, SC09-2362
¹ U refers to the OS/390 C/C++ User’s Guide, SC09-2361
¹ A refers to the OS/390 C/C++ IBM Open Class Library User’s Guide,

SC09-2363

Examples labelled as CBCxyyy appear in the OS/390 C/C++ Language Reference,
the OS/390 C/C++ Programming Guide, and the OS/390 C/C++ User’s Guide.
Examples labelled as CLBxyyy appear in the OS/390 C/C++ IBM Open Class
Library User’s Guide.

An exception applies to the example names for the Collection Class Library, which
do not follow a naming convention. These examples are in this book and in the
OS/390 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

OS/390 C/C++ on the World Wide Web
Additional information on OS/390 C/C++ is available on the World Wide Web. The
URL for the OS/390 C/C++ home page is:

http://www.software.ibm.com/ad/c390/

This page contains late-breaking information about the OS/390 C/C++ product,
including the compiler, the class libraries, and utilities. It also contains a tutorial on
the source level interactive debugger. There are links to other useful information,

 About This Book xxiii

such as the OS/390 C/C++ information library and the libraries of other OS/390
elements that are available on the Web. The OS/390 C/C++ home page also
contains information on active Beta programs, code samples that you can
download, the C/370 product newsletters, and links to other related Web sites.

 C/C++ News...
IBM also publishes the C/370 Compiler Newsletter. This free newsletter keeps
subscribers up to date on the latest product releases, provides coding hints and
tips, questions and answers, and news about C/370 products and IBM OS/390
C/C++.

To take advantage of this free publication, send your name, full mailing address,
and phone number, in one of these ways:

¹ Send a message electronically to the following network ID :

 – Internet: inetc370@vnet.ibm.com
 – IBMMAIL: ibmmail(caibmrxz)

¹ Mail your request to:

EDITOR, C/370 Compiler Newsletter
IBM Canada Ltd. Laboratory
9/604/895/TOR
895 Don Mills Road
NORTH YORK ONTARIO CANADA M3C 1W3

xxiv OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

About IBM OS/390 C/C ++

The C/C++ feature of the IBM OS/390 licensed program provides support for C and
C++ application development on the OS/390 platform. The C/C++ feature is based
on the C/C++ for MVS/ESA* product.

IBM OS/390 C/C++ includes:

¹ A C compiler (referred to as the OS/390 C compiler)
¹ A C++ compiler (referred to as the OS/390 C++ compiler)
¹ A set of C++ class libraries
¹ Application Support Class and Collection Class Library source
¹ A mainframe interactive Debug Tool (optional)
¹ A set of utilities for C/C++ application development

IBM offers the C language on other platforms, such as the AIX*, IBM Operating
System/2* (OS/2*), IBM Operating System/400* Version 3 (OS/400*), Sun Solaris,
VM/ESA*, VSE/ESA*, and Windows operating systems. The AIX, OS/2, OS/400,
Sun Solaris, and Windows operating systems also offer the C++ language.

Changes for Version 2 Release 6
OS/390 C/C++ has made the following changes for this release:

¹ Added support for the Institute of Electrical and Electronics Engineers (IEEE)
binary floating-point data type, in conformance with the IEEE 754 standard, as
applicable to the S/390* environment. For details on the OS/390 C/C++ support,
see the description of the FLOAT option in the OS/390 C/C++ User’s Guide. In
addition, two related sub-options have been introduced, ARCH(3) and TUNE(3).
The two sub-options support the new G5 processor architecture, and IEEE
binary floating-point data. Refer to the ARCHITECTURE and TUNE compiler options
in the OS/390 C/C++ User’s Guide for details.

Complete IEEE binary floating-point support for OS/390 and its elements
requires that you apply small programming enhancements (SPEs) to OS/390
V2R6.0, and to specific releases of some software. These SPEs are delivered
as program temporary fixes (PTFs). Consult your System Programmer to
ensure that the SPE PTFs you require for IEEE binary floating-point support, as
documented in the OS/390 Planning for Installation publication, are applied to
your system. The OS/390 Planning for Installation publication documents the
complete software requirements for IEEE binary floating-point support on
OS/390.

¹ Improved the performance of the Binary Coded Decimal (BCD) class library,
and its compatibility with the decimal data type in C, and other S/390
languages. For details, see Using the C++ Decimal Data Type in the OS/390
C/C++ Programming Guide.

¹ Added support for the long long integer data type. For more details, see the
sections on integer declarations in the OS/390 C/C++ Language Reference.
The run-time library, including functions such as printf() and scanf(), does
not support the long long data type at this time.

¹ Added a new compiler option, PORT, that enables you to increase the syntax
checking for the #pragma pack directive in your code. This option is helpful

 Copyright IBM Corp. 1996, 1998 xxv

when porting code that contains #pragma pack directives or packed data from
other platforms. For more information on the PORT option, see the OS/390
C/C++ User’s Guide.

¹ Added a new compiler option, FASTTEMPINC, that enables you to improve your
compilation time for C++ class templates if you use a large number of recursive
templates in an application. For more information on the FASTTEMPINC option,
see the OS/390 C/C++ User’s Guide.

¹ Retroactive to OS/390 Version 1 Release 3, the IBM Open Class Library is
licensed with the base operating system. This enables applications to use this
library at run time without having to license the OS/390 C/C++ compiler
feature(s) or to use the DLL Rename Utility.

¹ The level of optimization you get when you specify the OPT(1), or OPT, compiler
option is the same as when you specify OPT(2). For more information on the
OPTIMIZATION option see the OS/390 C/C++ User’s Guide.

¹ The OS/390 C++ class library header files are now distributed in the
hierarchical file system (HFS) in directory /usr/lpp/ioclib/include.

¹ As part of the name change of OpenEdition* to OS/390 UNIX System Services,
occurrences of OpenEdition have been changed to OS/390 UNIX System
Services or its abbreviated name, OS/390 UNIX, throughout the OS/390 C/C++
information library. OpenEdition may continue to appear in messages, panel
text, and other code locations.

The C/C++ Compilers
The following sections describe the C and C++ languages and the OS/390 C/C++
compilers.

The C Language
The C language is a general purpose, versatile, and functional programming
language, which allows a programmer to create applications quckly and easily. C
provides high-level control statements and data types as do other structured
programming languages. It also provides many of the benefits of a low-level
language.

The C++ Language
The C++ language is based on the C language, but incorporates support for
object-oriented concepts. For a detailed description of the differences between
OS/390 C++ and OS/390 C, refer to the OS/390 C/C++ Language Reference.

The C++ language introduces classes, which are user-defined data types that may
contain data definitions and function definitions. You can use classes from
established class libraries, develop your own classes, or derive new classes from
existing classes by adding data descriptions and functions. New classes can inherit
properties from one or more classes. Not only do classes describe the data types
and functions available, but they can also hide (encapsulate) the implementation
details from user programs. An object is an instance of a class.

The C++ language also provides templates and other features that include access
control to data and functions, and better type checking and exception handling. It
also supports polymorphism and the overloading of operators.

xxvi OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

Common Features of the OS/390 C and C ++ Compilers
The C or C++ compilers offer many features to help your work:

 ¹ Optimization support.

– Algorithms to take advantage of S/390 architecture to get better
optimization for speed and use of computer resources through the
OPTIMIZE and IPA compile-time options.

– The OPTIMIZE compile-time option to instruct the compiler to optimize the
machine instructions it generates, to produce faster-running object code,
thereby optimizing application performance at run time.

– Interprocedural Analysis (IPA), to perform optimizations across compilation
units, thereby optimizing application performance at run time.

– The precompiled header facility, to save information from one compilation
unit for use in another or to reuse information when re-compiling the source
compilation unit, thereby improving performance at compile time.

¹ DLLs (dynamic link libraries) to reduce application size, and dynamically link to
exported variables and functions at run time.

IBM OS/390 C/C++ provides support for generating DLLs in a way similar to the
way OS/2 generates DLLs. DLLs allow a function reference or a variable
reference in one executable to use a definition located in another executable at
run time. You can use both load-on-reference and load-on-demand DLLs.
When your program calls a DLL function, or references a DLL, IBM OS/390
C/C++ provides a load-on-reference DLL. Your application code explicitly
controls load-on-demand DLLs at the source level.

You can use DLLs to split applications into smaller modules and improve
system memory usage. DLLs also offer more flexibility for building, packaging,
and redistributing applications.

¹ Full program reentrancy.

With reentrancy, many users can simultaneously run a program. A reentrant
program uses less storage if it is stored in the LPA (link pack area) or ELPA
(extended link pack area) and simultaneously run by multiple users. It also
reduces processor I/O when the program starts up, and improves program
performance by reducing the transfer of data to auxiliary storage. OS/390 C
programmers can design programs that are naturally reentrant. For those
programs that are not naturally reentrant, C programmers can use constructed
reentrancy. To do this, compile programs with the RENT option and use the
program management binder supplied with OS/390, or the OS/390 Language
Environment Prelinker (prelinker) and program management binder. The
OS/390 C++ compiler always ensures that C++ programs are reentrant.

¹ Locale-based internationalization support derived from the IEEE POSIX
1003.2-1992 standard. Also derived from the X/Open CAE Specification,
System Interface Definitions, Issue 4 and Issue 4 Version 2. This allows
programmers to use locales to specify language/country characteristics for their
applications.

¹ The ability to call and be called by other languages such as assembler,
COBOL, PL/1, and Fortran, to enable programmers to integrate OS/390 C/C++
code with existing applications.

¹ Exploitation of OS/390 and OS/390 UNIX technology.

 About IBM OS/390 C/C++ xxvii

OS/390 UNIX is an IBM implementation of the open operating system
environment, as defined in the XPG4 and POSIX standards.

¹ When used with OS/390 UNIX and OS/390 Language Environment, support for
the following standards at the system level:

– A subset of the extended multibyte and wide character functions as defined
by the Programming Language C Amendment 1. This is ISO/IEC
9899:1990/Amendment 1:1994(E)

– ISO/IEC 9945-1:1990(E)/IEEE POSIX 1003.1-1990

– A subset of IEEE POSIX 1003.1a, Draft 6, July 1991

– IEEE Portable Operating System Interface (POSIX) Part 2, P1003.2

– A subset of IEEE POSIX 1003.4a, Draft 6, February 1992 (the IEEE POSIX
committee has renumbered POSIX.4a to POSIX.1c)

– X/Open CAE Specification, System Interfaces and Headers, Issue 4
Version 2

– A subset of IEEE 754-1985 (R1990) IEEE Standard for Binary
Floating-Point Arithmetic (ANSI), as applicable to the S/390 environment.

– X/Open CAE Specification, Network Services, Issue 4

¹ Year 2000 support.

OS/390 C Compiler Specific Features
In addition to the features common to OS/390 C/C++, the OS/390 C compiler
provides you with the following capabilities:

¹ The ability to write portable code that conforms to the following standards:

– All elements of the ISO standard ISO/IEC 9899:1990 (E)

– ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)

– X/Open Specification Programming Language Issue 3, Common Usage C

 – FIPS-160

¹ System programming capabilities, which allow you to use OS/390 C in place of
assembler

¹ Additional optimization capabilities through the INLINE compile-time option

¹ Extensions of the standard definitions of the C language to provide
programmers with support for the OS/390 environment, such as fixed-point
(packed) decimal data support

Features That Are Specific to the OS/390 C ++ Compiler
In addition to the features common to OS/390 C/C++, the OS/390 C++ compiler
provides you with the following:

¹ An implementation based on the definition of the language that is contained in
the Draft Proposal International Standard for Information Systems–
Programming Language C++ (X3J16/92-00091). The OS/390 C++ compiler also
conforms to a subset of the C++ ANSI/ISO (Draft) Standard (X3J16/93-0062).

¹ System Object Model (SOM) support, through the SOM Interface Definition
Language (IDL) compiler available with OS/390 SOMobjects. You can use the
IDL compiler and associated emitters to create language-specific bindings that

xxviii OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

define the interface to a SOM object. This enables OS/390 C++ programs to
share SOM objects with other languages. In addition, SOM enables
release-to-release binary compatibility.

With Direct-to-SOM (DTS) support in the OS/390 C++ compiler, you can
generate SOM objects directly from C++ code. You do not need to create and
process the IDL first. You can write virtually the same code you do when
creating C++ objects.

Note: The OS/390 C++ compiler no longer supports IDL generation through
the IDL compile-time option. This option instructed the compiler to
generate IDL. Mixed-language or distributed object applications used
IDL. If you need IDL for your applications, you should now code it
yourself instead of generating it through the IDL compile option.

¹ C++ template support and exception handling consistent with VisualAge* C++
product implementations.

 Utilities
The OS/390 C/C++ compilers provide the following utilities:

¹ The Object Library Utility to update partitioned data set (PDS) libraries of object
modules and Interprocedural Analysis (IPA) object modules

¹ The DLL Rename Utility to make selected DLLs a unique component of the
applications with which they are packaged

¹ The CXXFILT Utility to map OS/390 C++ mangled names to the original source

¹ The localedef Utility to read the locale definition file and produce a locale object
that the locale-specific library functions can use

¹ The DSECT Conversion Utility to convert descriptive assembler DSECTs into
OS/390 C/C++ data structures

¹ The C/C++ Model Tool to provide online help for C/C++ #pragma directives and
runtime library functions. These functions are other than the C Curses
functions, and are at the level that is supplied in OS/390 Release 2

 Class Libraries
IBM OS/390 C/C++ provides a base set of class libraries, called C/C++ IBM Open
Class, which is consistent with that available in other members of the VisualAge
C++ product family. These class libraries are:

¹ The I/O Stream Class Library

The I/O Stream Class Library lets you perform input and output (I/O) operations
independent of physical I/O devices or data types that are used. You can code
sophisticated I/O statements easily and clearly, and define input and output for
your own data types. You can improve the maintainability of programs that use
input and output by using the I/O Stream Class Library.

¹ The Complex Mathematics Class Library

The Complex Mathematics Class Library lets you manipulate and perform
standard arithmetic on complex numbers. Scientific and technical fields use
complex numbers.

 About IBM OS/390 C/C++ xxix

¹ The Application Support Class Library

The Application Support Class Library provides the basic abstractions that are
needed during the creation of most C++ applications, including String, Date,
and Time.

The Application Support Class library is available in a C++ SOM version as well
as the regular C++ native version.

¹ The Collection Class Library

The Collection Class Library implements a wide variety of classical data
structures such as stack, tree, list, hash table, and so on. Most programs use
collections. You can develop programs without having to define every
collection. Programmers can start programming by using a high level of
abstraction, and later replace an abstract data type with the appropriate
concrete implementation. Each abstract data type has a common interface for
all of its implementations. The Collection Class Library provides programmers
with a consistent set of building blocks from which they can derive application
objects. The library design exploits features of the C++ language such as
exception handling and template support.

The Collection Class Library is available in a C++ SOM and a cross-language
SOM version, as well as the regular C++ native version.

All of the libraries that are described above are thread-safe, except the
cross-language SOM version of the Collection Class Library.

All of the libraries that are described above are available in both static and DLL
formats. OS/390 C/C++ packages the Application Support Class and Collection
Class libraries together in a single DLL. For compatibility, separate side-decks are
available for the Application Support Class and Collection Class libraries, in addition
to the side-deck available for the combined library.

Note: Retroactive to OS/390 Version 1 Release 3, the IBM Open Class Library is
licensed with the base operating system. This enables applications to use
this library at run time without having to license the OS/390 C/C++ compiler
feature(s) or to use the DLL Rename Utility.

Class Library Source
The Class Library Source consists of the following:

¹ Application Support Class Library source code

¹ Collection Class Library source code (C++ native and C++ SOM only)

¹ Instructions for building the Application Support Class and Collection Class
Libraries in C++ native (static and DLL) versions

¹ Instructions for building the Application Support Class and Collection Class
Libraries in C++ SOM (static and DLL) versions

¹ Class Library Language Environment message file source

¹ Instructions for building the Class Library Language Environment message files

xxx OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

The Debug Tool
IBM OS/390 C/C++ supports program development by using a mainframe
interactive Debug Tool. This optionally available tool allows you to debug
applications in their native host environment, such as CICS/ESA, IMS/ESA*, DB2,
and so on. The Debug Tool provides the following support and function:

 ¹ Step mode
 ¹ Breakpoints
 ¹ Monitor
 ¹ Frequency analysis
 ¹ Dynamic patching

You can record the debug session in a log file, and replay the session. You can
also use the Debug Tool to help capture test cases for future program validation or
to further isolate a problem within an application.

You can specify either data sets or hierarchical file system (HFS) files as source
files.

OS/390 Language Environment
IBM OS/390 C/C++ exploits the C/C++ runtime environment and library of runtime
services available with OS/390 Language Environment (formerly Language
Environment for MVS & VM, Language Environment/370 and LE/370).

OS/390 Language Environment consists of four language-specific runtime libraries,
and Base Routines and Common Services; see Figure 1. OS/390 Language
Environment establishes a common runtime environment and common runtime
services for language products, user programs, and other products.

C/C++
Language
Specific
Library

COBOL
Language
Specific
Library

PL/I
Language
Specific
Library

FORTRAN
Language
Specific
Library

Language Environment Base Routines and Common Services

Figure 1. Libraries in OS/390 Language Environment

The common execution environment is composed of data items and services that
are included in library routines available to an application that runs in the
environment. The OS/390 Language Environment provides a variety of services:

¹ Services that satisfy basic requirements common to most applications. These
include support for the initialization and termination of applications, allocation of
storage, interlanguage communication (ILC), and condition handling.

 About IBM OS/390 C/C++ xxxi

¹ Extended services that are often needed by applications. OS/390 C/C++
contains these functions within a library of callable routines, and include
interfaces to operating system functions and a variety of other commonly used
functions.

¹ Runtime options that help in the execution, performance, and diagnosis of your
application.

¹ Access to operating system services; OS/390 UNIX services are available to an
application programmer or program through the OS/390 C/C++ language
bindings.

¹ Access to language-specific library routines, such as the OS/390 C/C++ library
functions.

The Program Management Binder
The binder provided with OS/390 combines the object modules, load modules, and
program objects comprising an OS/390 application. It produces a single output
program object or load module that you can load for execution. The binder supports
all C and C++ code, provided that you store the output program in a PDSE
(Partitioned Data Set Extended) member or an HFS file.

If you cannot use a PDSE member or HFS file, and your program contains C++
code, or C code that is compiled with any of the RENT, LONGNAME, DLL or IPA
compile-time options, you must use the prelinker.

Using the binder without using the prelinker has the following advantages:

¹ Faster rebinds when recompiling and rebinding a few of your source files

¹ Rebinding at the single compile unit level of granularity (except when you use
the IPA compile-time option)

¹ Input of object modules, load modules, and program objects

¹ Improved long name support:

– Long names do not get converted into prelinker generated names
– Long names appear in the binder maps, enabling full cross-referencing
– Variables do not disappear after prelink
– Fewer steps in the process of producing your executable program

The prelinker provided with OS/390 Language Environment combines the object
modules comprising an OS/390 C/C++ application and produces a single object
module. You can link-edit the object module into a load module (which is stored in
a PDS), or bind it into a load module or a program object stored in a PDS, or a
PDSE or HFS file.

OS/390 UNIX System Services (OS/390 UNIX)
OS/390 UNIX provides capabilities under OS/390 to make it easier to implement or
port applications in an open, distributed environment. OS/390 UNIX Services are
available to OS/390 C/C++ application programs through the C/C++ language
bindings available with OS/390 Language Environment.

xxxii OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

Together, the OS/390 UNIX Services, OS/390 Language Environment, and OS/390
C/C++ compilers provide an application programming interface that supports
industry standards.

OS/390 UNIX provides support for both existing OS/390 applications and new
OS/390 UNIX applications:

¹ C programming language support as defined by ISO/ANSI C

¹ C++ programming language support

¹ C language bindings as defined in the IEEE 1003.1 and 1003.2 standards;
subsets of the draft 1003.1a and 1003.4a standards; X/Open CAE
Specification: System Interfaces and Headers, Issue 4, Version 2, which
provides standard interfaces for better source code portability with other
conforming systems; and X/Open CAE Specification, Network Services, Issue
4, which defines the X/Open UNIX descriptions of sockets and X/Open
Transport Interface (XTI)

¹ OS/390 UNIX Extensions that provide OS/390-specific support beyond the
defined standards

¹ The OS/390 UNIX Shell and Utilities feature, which provides:

– A shell, based on the Korn Shell and compatible with the Bourne Shell

– Tools and utilities that conform to the X/Open Single UNIX Specification,
also known as X/Open Portability Guide (XPG) Version 4, Issue 2, and
provide OS/390 support. The following utilities are included:

ar Creates and maintains library archives

BPXBATCH Allows you to submit batch jobs that run shell commands,
scripts, or OS/390 C/C++ executable files in HFS files from
a shell session

c89 Compiles, assembles, and binds OS/390 UNIX C
applications

gencat Merges the message text source files Messagefile (usually
*.msg) into a formatted message Catalogfile (usually *.cat)

lex Automatically writes large parts of a lexical analyzer based
on a description that is supplied by the programmer

make Helps you manage projects containing a set of
interdependent files, such as a program with many OS/390
C/C++ source and object files, keeping all such files up to
date with one another

yacc Allows you to write compilers and other programs that
parse input according to strict grammar rules

– Support for other utilities such as:

c++ Compiles, assembles, and binds OS/390 UNIX C++
applications

mkcatdefs Preprocesses a message source file for input to the gencat
utility

runcat Invokes mkcatdefs and pipes the message catalog source
data (the output from mkcatdefs) to gencat

 About IBM OS/390 C/C++ xxxiii

dspcat Displays all or part of a message catalog

dspmsg Displays a selected message from a message catalog

¹ The OS/390 UNIX Debugger feature, which provides the dbx interactive
symbolic debugger for OS/390 UNIX applications

¹ OS/390 UNIX, which provides access to a hierarchical file system (HFS), with
support for the POSIX.1 and XPG4 standards

¹ OS/390 C/C++ I/O routines, which support using HFS files, standard OS/390
data sets, or a mixture of both

¹ Application threads (with support for a subset of POSIX.4a)

¹ Support for OS/390 C/C++ DLLs

OS/390 UNIX offers program portability across multivendor operating systems, with
support for POSIX.1, POSIX.1a (draft 6), POSIX.2, POSIX.4a (draft 6), and
XPG4.2.

To application developers who have worked with other UNIX environments, the
OS/390 UNIX Shell and Utilities are a familiar environment for C/C++ application
development. If you are familiar with existing MVS development environments, you
may find that the OS/390 UNIX environment can enhance your productivity. Refer
to the OS/390 UNIX System Services User's Guide for more information on the
Shell and Utilities.

OS/390 C/C++ Applications with OS/390 UNIX C/C ++ Functions
Most OS/390 UNIX C functions are available at all times. However, to use some
OS/390 UNIX C functions, you must run an OS/390 C/C++ program on a system
where the OS/390 UNIX kernel is available and active. In some situations, you
must also specify the POSIX(ON) runtime option. This is required for the POSIX.4a
threading functions, and the system and signal handling functions where the
behavior is different between POSIX/XPG4 and ANSI. Refer to the OS/390 C/C++
Run-Time Library Reference for more information about requirements for each
function.

You can invoke an OS/390 C/C++ program that uses OS/390 UNIX C functions
using the following methods:

¹ Directly from the OS/390 UNIX Shell.

¹ From another program, or from the OS/390 UNIX Shell, using one of the exec
family of functions, or the BPXBATCH utility from TSO or MVS batch.

¹ Using the POSIX system() call.

¹ Directly through TSO or MVS batch without the use of the intermediate
BPXBATCH utility. In some cases, you may require the POSIX(ON) runtime
option.

xxxiv OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

Input and Output
The C/C++ runtime library that supports the OS/390 C/C++ compiler supports
different input and output (I/O) interfaces, file types, and access methods. The C++
I/O Stream Class Library provides additional support.

 I/O Interfaces
The C/C++ runtime library supports the following I/O interfaces:

C Stream I/O
This is the default and the ANSI-defined I/O method.
This method processes all input and output by
character.

Record I/O
The library can also process your input and output by
record. A record is a set of data that is treated as a
unit. It can also process VSAM data sets by record.
Record I/O is an OS/390 C/C++ extension to the ANSI
standard.

TCP/IP Sockets I/O
OS/390 UNIX provides support for an enhanced version
of an industry-accepted protocol for client/server
communication that is known as sockets. A set of C
language functions provides support for OS/390 UNIX
sockets. OS/390 UNIX sockets correspond closely to
the sockets that are used by UNIX applications that use
the Berkeley Software Distribution (BSD) 4.3 standard
(also known as OE sockets). The slightly different
interface of the X/Open CAE Specification, Networking
Services, Issue 4, is supplied as an additional choice.
This interface is known as X/Open Sockets.

The OS/390 UNIX socket application program interface
(API) provides support for both UNIX domain sockets
and Internet domain sockets. UNIX domain sockets, or
local sockets, allow interprocess communication within
OS/390 independent of TCP/IP. Local sockets behave
like traditional UNIX sockets and allow processes to
communicate with one another on a single system. With
Internet sockets, application programs can
communicate with others in the network using TCP/IP.

In addition, the C++ I/O Stream Library supports formatted I/O in C++. You can
code sophisticated I/O statements easily and clearly, and define input and output
for your own data types. This helps improve the maintainability of programs that
use input and output.

 About IBM OS/390 C/C++ xxxv

 File Types
In addition to conventional files, such as sequential files and partitioned data sets,
the C/C++ runtime library supports the following file types:

Virtual Storage Access Method (VSAM) Data Sets
OS/390 C/C++ has native support for three types of
VSAM data organization:

¹ Key-sequenced data sets (KSDS). Use KSDS to
access a record through a key within the record. A
key is one or more consecutive characters that are
taken from a data record that identifies the record.

¹ Entry-sequenced data sets (ESDS). Use ESDS to
access data in the order it was created (or in the
reverse order).

¹ Relative-record data sets (RRDS). Use RRDS for
data in which each item has a particular number
(for example, a telephone system with a record
associated with each number).

For more information on how to perform I/O operations
on these VSAM file types, see the OS/390 C/C++
Programming Guide.

Hierarchical File System Files
When you are running under MVS, TSO (batch and
interactive), or IMS environments, OS/390 C/C++
recognizes a Hierarchical File System (HFS) file. The
name specified on the fopen() or freopen() call has to
conform to certain rules (described in the OS/390
C/C++ Programming Guide). You can create regular
HFS files, special character HFS files, or FIFO HFS
files. You can also create links or directories.

Memory Files
Memory files are temporary files that reside in memory.
For improved performance, you can direct input and
output to memory files rather than to devices. Since
memory files reside in main storage and only exist
while the program is executing, you primarily use them
as work files. You can access memory files across load
modules through calls to non-POSIX system() and C
fetch(); they exist for the life of the root program.
Standard streams can be redirected to memory files on
a non-POSIX system() call using command line
redirection.

Hiperspace* Expanded Storage
Large memory files can be placed in Hiperspace
expanded storage to free up some of your home
address space for other uses. Hiperspace expanded
storage or high performance space is a range of up to
2 gigabytes of contiguous virtual storage space. A
program can use this storage as a buffer
(1 gigabyte = 230 bytes).

xxxvi OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

Additional I/O Features
IBM OS/390 C/C++ provides additional I/O support through the following features:

¹ User error handling for serious I/O failures (SIGIOERR)

¹ Improved sequential data access performance through enablement of the
DFSMS/MVS support for 31-bit sequential data buffers and sequential data
striping on extended format data sets

¹ Full support of PDS/Es on OS/390 — including support for multiple members
opened for write

¹ Overlapped I/O support under OS/390 (NCP, BUFNO)

¹ Multibyte character I/O functions

¹ Fixed-point (packed) decimal data type support in formatted I/O functions

¹ Support for multiple volume data sets that span more than one volume of
DASD or tape

¹ Support for Generation Data Group I/O

The System Programming C Facility
The System Programming C (SP C) facility allows you to build applications that
require no dynamic loading of OS/390 Language Environment libraries. It also
allows you to tailor your application to better utilize the low-level services available
on your operating system. SP C offers a number of advantages:

¹ You can develop applications that you can execute in a customized
environment rather than with OS/390 Language Environment services. Note
that if you do not use OS/390 Language Environment services, only some
built-in functions and a limited set of C/C++ runtime library functions are
available to you.

¹ You can substitute the OS/390 C language in place of assembler language
when writing system exit routines, by using the interfaces that are provided by
SP C.

¹ SP C lets you develop applications featuring a user-controlled environment, in
which an OS/390 C environment is created once and used repeatedly for C
function execution from other languages.

¹ You can utilize co-routines, by using a two-stack model to write application
service routines. In this model, the application calls on the service routine to
perform services independently of the user. The application is then suspended
when control is returned to the user application.

Interaction with Other IBM Products
When you use OS/390 C/C++, you can write programs that utilize the power of
other IBM products and subsystems:

¹ Cross System Product (CSP)

Cross System Product/Application Development (CSP/AD) is an application
generator that provides ways to interactively define, test, and generate
application programs to improve productivity in application development. Cross

 About IBM OS/390 C/C++ xxxvii

System Product/Application Execution (CSP/AE) takes the generated program
and executes it in a production environment.

Note: You cannot compile CSP applications with the OS/390 C++ compiler.
However, your OS/390 C++ program can use interlanguage calls (ILC)
to call OS/390 C programs that access CSP.

¹ Customer Information Control System (CICS)

You can use the CICS/ESA Command-Level Interface to write C/C++
application programs. The CICS Command-Level Interface provides data, job,
and task management facilities that are normally provided by the operating
system.

Note: Code preprocessed with CICS/ESA versions prior to V4 R1 is not
supported for OS/390 C++ applications. OS/390 C++ code preprocessed
on CICS/ESA V4 R1 cannot run under CICS/ESA V3 R3.

¹ DATABASE 2 (DB2)

DB2 programs manage data that is stored in relational data bases. The IBM
DATABASE 2 licensed program runs on OS/390.

You can access the data by using a structured set of queries that are written in
Structured Query Language (SQL). The DB2 program uses SQL statements
that are embedded in the program. The SQL translator (DB2 preprocessor)
translates the embedded SQL into host language statements that perform the
requested functions. The OS/390 C/C++ compilers compile the output of the
SQL translator. The DB2 program processes a request, and processing returns
to the application.

¹ Data Window Services (DWS)

The Data Window Services (DWS) part of the Callable Services Library allows
your OS/390 C or OS/390 C++ program to manipulate temporary data objects
that are known as TEMPSPACE and VSAM linear data sets.

¹ Information Management System (IMS)

The Information Management System/Enterprise Systems Architecture
(IMS/ESA) product provides support for hierarchical databases.

¹ Interactive System Productivity Facility (ISPF)

OS/390 C/C++ provides access to the Interactive System Productivity Facility
(ISPF) Dialog Management Services. A dialog is the interaction between a
person and a computer. The dialog interface contains display, variable,
message, and dialog services as well as other facilities that are used to write
interactive applications.

¹ Graphical Data Display Manager (GDDM)

GDDM provides a comprehensive set of functions to display and print
applications most effectively:

– A windowing system that the user can tailor to display selected information

– Support for presentation and keyboard interaction

– Comprehensive graphics support

– Fonts — including support for double-byte character set (DBCS)

– Business image support

xxxviii OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

– Saving and restoring graphics pictures

– Support for many types of display terminals, printers, and plotters

¹ Query Management Facility (QMF)

OS/390 C supports the Query Management Facility (QMF), a query and report
writing facility, which allows you to write applications through a callable
interface. You can create applications to perform a variety of tasks, such as
data entry, query building, administration aids, and report analysis.

Additional Features of OS/390 C/C ++

Feature Description

Multibyte Character
Support

OS/390 C/C++ supports multibyte characters for those national languages such as
Japanese whose characters cannot be represented by a single byte.

Wide Character Support Multibyte characters can be normalized by OS/390 C library functions and encoded in
units of one length. These normalized characters are called wide characters.
Conversions between multibyte and wide characters can be performed by string
conversion functions such as wcstombs(), mbstowcs(), wcsrtombs(), and mbsrtowcs(),
as well as the family of wide-character I/O functions. Wide-character data can be
represented by the wchar_t data type.

Extended Precision
Floating-Point Numbers

OS/390 C/C++ provides three S/370 floating-point number data types: single precision
(32 bits), declared as float; double precision (64 bits), declared as double; and
extended precision (128 bits), declared as long double.

Extended precision floating-point numbers give greater accuracy to mathematical
calculations.

As of Release 6, OS/390 C/C++ also supports IEEE 754 floating-point representation.
By default, float, double, and long double values are represented in IBM S/390
floating point format. However, the IEEE 754 floating-point representation is used if
you specify the FLOAT(IEEE754) compile option. For details on this support, see the
description of the FLOAT option in the OS/390 C/C++ User’s Guide.

Command Line Redirection You can redirect the standard streams stdin, stderr, and stdout from the command
line or when calling programs using the system() function.

National Language Support OS/390 C/C++ provides message text in either American English or Japanese. You
can dynamically switch between the two languages.

Locale Definition Support OS/390 C/C++ provides a locale definition utility that supports the creation of separate
files of internationalization data, or locales. Locales can be used at run time to
customize the behavior of an application to national language, culture, and coded
character set (code page) requirements. Locale-sensitive library functions, such as
isdigit(), use this information.

Coded Character Set
(Code page) Support

The OS/390 C/C++ compiler can compile C/C++ source written in different EBCDIC
code pages. In addition, the iconv utility converts data or source from one code page
to another.

Selected Built-in Library
Functions

Selected library functions, such as string and character functions, are built into the
compiler to improve performance execution. Built-in functions are compiled into the
executable, and no calls to the library are generated.

Multitasking Facility (MTF) Multitasking is a mode of operation where your program performs two or more tasks at
the same time. OS/390 C provides a set of library functions that perform multitasking.
These functions are known as the Multitasking Facility (MTF). MTF uses the
multitasking capabilities of OS/390 to allow a single OS/390 C application program to
use more than one processor of a multiprocessing system simultaneously.

 About IBM OS/390 C/C++ xxxix

Feature Description

Packed Structures and
Unions

OS/390 C provides support for packed structures and unions. Structures and unions
may be packed to reduce the storage requirements of a OS/390 C program.

Fixed-point (Packed)
Decimal Data

OS/390 C supports fixed-point (packed) decimal as a native data type for use in
business applications. The packed data type is similar to the COBOL data type COMP-3
or the PL/I data type FIXED DEC, with up to 31 digits of precision.

The Application Support Class Library provides the Binary Coded Decimal Class for
C++ programs.

Long Name Support For portability, external names can be mixed case and up to 1024 characters in
length. For C++, the limit applies to the mangled version of the name.

System Calls You can call commands or executable modules using the system() function under
OS/390, OS/390 UNIX, and TSO. You can also use the system() function to call
EXECs on OS/390 and TSO, or Shell scripts using OS/390 UNIX.

Exploitation of ESA Support for OS/390, IMS/ESA, Hiperspace expanded storage, and CICS/ESA allows
you to exploit the features of the ESA.

Exploitation of hardware Use the ARCHITECTURE compiler option to select the minimum level of machine
architecture on which your program will run. ARCH(3) enables support for IEEE 754
Binary Floating-Point instructions. ARCH(2) instructs the compiler to generate faster
instruction sequences available only on newer machines.

Use the TUNE compiler option to optimize your application f selected machine
architecture. TUNE(3) optimizes your application for the new G5 processor. TUNE(2)
optimizes your application for other architectures. For information on which machines
and architectures support the above options, refer to the ARCHITECTURE and TUNE
compiler information in the OS/390 C/C++ User’s Guide.

 Suggested Reading
The following is a sample of some publications that are generally available. It is
not an exhaustive list. Other publications may be available in your locality.

The Annotated C++ Reference Manual by Margaret A. Ellis and Bjarne
Stroustrup, Addison-Wesley Publishing Company.

The C++ Programming Language (Second Edition) by Bjarne Stroustrup,
Addison-Wesley Publishing Company.

C++ Primer (Second Edition) by Stanley B. Lippman, Addison-Wesley
Publishing Company.

These books contain explanations of data structures that may help you understand
the data structures in the Collection Classes:

Data Structures and Algorithms by Aho, Hopcroft, and Ullman, Addison-Wesley
Publishing Company.

The Art of Computer Programming, Vol. 3: Sorting and Searching, D.E. Knuth,
Addison-Wesley Publishing Company.

C++ Components and Algorithms by Scott Robert Ladd, M&T Publishing Inc.

A Systematic Catalogue of Reusable Abstract Data Types by Juergen Uhl and
Hans Albrecht Schmit, Springer Varlag.

xl OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Class Library Hierarchies

Chapter 1. Introduction to IBM Open Class Library

This book describes IBM Open Class Library, a comprehensive set of C++ class
libraries you can use to develop applications:

¹ The Complex Mathematics Class Library provides you with the facilities to
manipulate complex numbers and perform standard mathematical operations
on them.

¹ The I/O Stream Class Library gives you the facilities to deal with many varieties
of input and output. You can derive classes from I/O Stream classes to
customize the input and output facilities for your own particular needs.

¹ The Collection Class Library provides a set of commonly used abstract data
types that you can use to build collections. Collections can have properties
such as sorted or unsorted, ordered or unordered, unique-element or
multiple-element.

¹ The Application Support Class Library provides a set of classes that let you
manipulate string, date, time, and timestamp information, create binary coded
decimal objects, handle notifications, and trace exceptions. Thread and

| resource locking support is available in an OS/390 Unix System Services
| environment.

History of IBM Open Class Library
The UNIX** System Laboratories C++ Language System Release 3.0 included
Complex Mathematics, I/O Stream, and Task Libraries. (Earlier releases of this
product are known as the ATT** C++ Language System.) In the UNIX System
Laboratories product, the class library that corresponds to the I/O Stream Library is
called the Iostream Library. Prior to Release 2.0 of the ATT C++ Language System,
a class library called the Stream Library provided input and output facilities. The
I/O Stream Library includes obsolete functions, described in this book, to provide
compatibility with the Stream Library.

The Collection Class Library was developed by IBM, as a set of classes for the
original C Set ++ for OS/2 product. The classes of the Collection Class Library are
exploited by the User Interface Class Library.

The Application Support Classes were developed by IBM, originally as part of the
User Interface Class Library on C Set ++ for OS/2.

Hierarchies of the Class Libraries
The following figures show the class hierarchy of the class libraries that make up
IBM Open Class. Some of these figures are repeated in the parts that describe
specific libraries.

No figure is shown for the Complex Mathematics Library, because the only two
classes involved, complex and c_exception, are not related by inheritance.

 Copyright IBM Corp. 1996, 1998 1

 Class Library Hierarchies

The following Application Support classes are not shown because they do not
derive from any class and do not have any subclasses:

 ¹ IExceptionLocation
 ¹ IMessageText
 ¹ IStringEnum
 ¹ IException::TraceFn

| ¹ IBinaryCodedDecimal
| ¹ IDecimalUtil

ios

streambuf

istream

strstreambuf

istream_
withassign

ostream_
withassign

stdiostream

stdiobuf

istrstream ostrstream

ostream

fstream

filebuf

ifstream ofstream

iostream

iostream_
withassign

strstream

Figure 2. I/O Stream Library Hierarchy

2 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Class Library Hierarchies

Collection

Key
Collection

Equality Key
Collection

Key Sorted
Collection

Equality
Collection

Equality
Key Sorted
Collection

Key Sorted
Set

Key Sorted
Bag

Stack

Sorted Map

Sorted Relation

DequeuePriority
Queue

Key Set Map Set

Key Bag Relation Bag

Sorted Set

Sorted Bag

Queue

Equality
Sequence

Sequence

Heap Tree

Sorted
Collection

Equality
Sorted

Collection

Sequential
Collection

Ordered
Collection

Figure 3. Collection Class Library Hierarchy. Abstract classes have a grey background. Concrete classes have a
black background. Restricted access classes have a white background. Dotted lines show a “based-on” relationship,
not an actual derivation.

 Chapter 1. Introduction to IBM Open Class Library 3

 Class Library Hierarchies

ITimeStamp

IObserver
List

IVBase

INotifier

IException

ITime

IObserver::
Cursor

IDBCSBuffer

IAssertion
Failure

ICLib
ErrorInfo

IInvalid
Parameter

IGUI
ErrorInfo

ISystem
ErrorInfo

IXLib
ErrorInfo

IOutOfSystem
Resource

IOutOfWindow
Resource

IStringTest
MemberFn

IOutOf
Memory

IString

I0String

IDate

IObserver

IBuffer

IAccess
Error

IErrorInfo

IDeviceError

IStringParser

IStandard
Notifier

IInvalid
Request

IBase

IStringParser::
Skip

IResource
Exhausted

ITrace IStringTest

decimalProxy decimalResult

decimalBase

decimal

| Figure 4. Application Support Class Hierarchy. Some class names have been split into two lines to fit in their boxes.
| Note that IGUIErrorInfo, IXLibErrorInfo, and IOutOfSystemResource are not supported on OS/390 C/C++. The
| classes IDecimalUtil, decimalBase, decimalProxy, and decimalResult are meant for internal use of the Application
| Support Classes. Do not use them directly.

This release includes three types of class libraries:

 ¹ C++ native
¹ C++ SOM, which provides release-to-release binary compatibility (RRBC).
¹ Cross-language SOM, which provides RRBC and cross-language support.

The I/O Stream and Complex Class Libraries are available in C++ native versions
only.

The Application Support Class Library is available in:

4 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 ¹ C++ native
 ¹ C++ SOM

The Collection Class Library is available in:

 ¹ C++ native
 ¹ C++ SOM
 ¹ Cross-language SOM

All of these class libraries are available in both static and DLL forms.

The C++ native versions of the libraries are documented in this book and the
OS/390 C/C++ IBM Open Class Library Reference.

You use the C++ SOM class libraries the same way as the C++ native versions,
except that you compile and link them differently. Instructions for compiling and
linking the C++ SOM class libraries can be found in the OS/390 C/C++
SOM-Enabled Class Library User's Guide and Reference; for guidance and
reference information on these libraries, see this book and the OS/390 C/C++ IBM
Open Class Library Reference.

All information for the cross-language SOM Collection Class Library is included in
the OS/390 C/C++ SOM-Enabled Class Library User's Guide and Reference.

| Coding with Class Libraries under OS/390 UNIX System Services
| If you use the class libraries in applications that run under OS/390 UNIX System
| Services, the following restrictions apply:

¹ These class libraries are not safe to use with respect to asynchronous signals.
In particular, this means:

– Do not invoke these classes from a signal handler during asynchronous
signal handling.

– Do not call longjmp() or siglongjmp() from a signal handler during
asynchronous signal handling. If you do, the class library behavior is
undefined.

If you don't observe these restrictions, the subsequent behavior of any of these
classes is undefined. For simplicity, avoid invoking these classes from any
signal handler.

¹ Do not call fork() in user code that has been invoked from class library code
(for example, in an override of IStringTest::test from the Application Support
Class library or in an implementation of allElementsDo from the Collection
Class library).

Compiling Programs that Use IBM Open Class Library
If your source code includes the IBM-supplied class library header files, you must
use the SEARCH compiler option to identify the relevant data sets. Using the SYSLIB
DDname may result in compilation errors.

The IBM-supplied cataloged procedures, REXX EXECs and panels include the
standard header file data sets and the class library header file data sets on the
default SEARCH.

 Chapter 1. Introduction to IBM Open Class Library 5

Your search path should look like:

 SEARCH ('CEE.SCEEH.+','CBC.SCLBH.+')

This will provide access to the following data sets:

¹ CEE.SCEEH.H (standard header files)
¹ CBC.SCLBH.H (class library header files)
¹ CBC.SCLBH.C (class library files)
¹ CBC.SCLBH.INL (class library files)
¹ CBC.SCLBH.HPP (application support class library headers)

Note: Do not use the class library source data sets (CBC.SCLDH.*) unless you are
using your own libraries built from the source in CBC.ASCSRC or CBC.CCLSRC. If you
are, then the class library source data sets must be specified first in the search
order.

Binding with IBM Open Class Library
The IBM-supplied catalog procedures links the C++ DLL versions of IBM Open
Class Library by default. The binder input definition side-decks are in data set
CBC.SCLBSID, members COMPLEX, IOSTREAM, and ASCCOLL. If you want to statically
bind the Open Class object code instead, you can override the BIND.SYSLIB
concatenation to include the CBC.SCLBCPP data set, and override the BIND.SYSIN
concatenation to exclude the CBC.SCLBSID members.

The DLLs are in data set CBC.SCLBDLL members COMPLEX (Complex Mathematics
Class Library), IOSTREAM (I/O Stream Class Library), and ASCCOLL (Collection Class
Library and Application Support Class Library). This data set must be available at
run time as it contains the class library messaging modules, as well as the DLLs.

The CEE.SCEERUN data set must also be available at run time. These data sets can
be in the system libraries, your JOBLIB statement or your STEPLIB statement.

Note: Your application cannot use multiple copies of an IBM Open Class library.
If your application consists of multiple modules (for example, a main module and a
DLL) that use the same class library, make sure that all your modules link
dynamically to the class library. Otherwise, the class library will be linked in
multiple times, and there will be multiple copies in use by your application. The use
of multiple copies of a class library within a single application is not supported, and
can have unexpected results.

See the OS/390 C/C++ User's Guide for more information on compiling and binding
options. For information on compiling and binding with the C++ SOM Library, see
the OS/390 C/C++ SOM-Enabled Class Library User’s Guide and Reference.

 Migration Notes
The Collection Class Library and the Application Support Class Library DLLs and
side-decks have been merged in OS/390 C/C++ V1R3M0. The combined DLL and
side-deck is ASCCOLL. This single side-deck and DLL should be used for all new
applications.

Side-decks with the names APPSUPP (Application Support Class Library entry points
only) and COLLECT (Collection Class Library entry points only) are supplied for
migration purposes only. These side-decks should only be used in circumstances
where a name collision exists between your application code and one of the

6 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Thread Safety and the IBM Open Class Library

libraries. For example, the application uses the Application Support Class Library
and contains a function with the same name as one in the Collection Class Library.
In this example, you must prelink with the APPSUPP side-deck only to allow the
duplicate name to be resolved in the application code. The combined DLL,
ASCCOLL, will still be used.

DLLs with the names APPSUPP and COLLECT are provided for applications linked with
previous releases of OS/390 C/C++. These DLLs are equivalent to ASCCOLL.

Thread Safety and the IBM Open Class Library
A thread is an independent, lightweight control activity within a computer process.
In a multithreaded application, many threads typically exist within a single process
and all share the same address space.

Thread safety for an application or function is the ability of that application or
function to run in a multithreaded environment. An application or function that is
not thread safe is not guaranteed to run correctly in a multithreaded environment,
even if it does not itself directly employ multithreading. However, a thread safe
application or function does not relieve programmers of the responsibility to
properly manage their own resources.

Why Thread Safety?
Global instances of IBM Open Class Library classes often result in global data
structures that are shared among all threads in a process. In a multithreaded
environment, unrestricted access to these global data structures can result in
unpredictable behavior. To avoid problems, you need to ensure that access to
global data structures or resources is serialized so that no two threads can access
the resources simultaneously. This is accomplished by protecting the resources
under a lock.

Levels of Thread Safety
From an application viewpoint, there are three levels of thread safety:

Level 0 No safety. It is only safe to instantiate a given class on a single thread.

Level 1 Class safety. It is safe to instantiate a given class on multiple threads.
This implies that constructors are safe, global class data is implicitly
serialized, and instances are safe if they are not shared across threads.
With Level 1 thread safety, programmers are required to define the
critical regions within their programs.

While it is generally safe to instantiate a given class on different threads,
sharing a specific object across threads requires explicit program
serialization and coordination.

As a comparison, consider fundamental types such as int and float.
For these types, it is safe to define different variables of a given type on
multiple threads, but sharing a given variable across threads also
requires explicit programmer serialization and coordination.

Level 2 Instance safety. It is safe to use a given instance on separate threads.
This implies Level 1 thread safety with the added feature that instance
data is implicitly serialized. Explicit programmer serialization or
coordination is not required.

 Chapter 1. Introduction to IBM Open Class Library 7

 Thread Safety and the IBM Open Class Library

In general, the IBM Open Class Library is at Level 1 thread safety. The notable
exceptions are the I/O Stream and Collection Class libraries. The I/O Stream
Library is at Level 2 thread safety. Simultaneous use of cout << ... from multiple
threads can be accomplished without programmer serialization. The Collection
Class Library, while at Level 1 thread safety, provides an assist for explicit
programmer serialization in the form of a Guard class. Information about Collection
Class Library thread safety and the Guard class is found in Chapter 13, “Thread
Safety and the Collection Classes” on page 139.

8 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

Part 1. Complex Mathematics Class Library

This part provides a review of complex arithmetic and describes the complex and
c_exception classes.

Chapter 2. Using the Complex Mathematics Classes 11
Review of Complex Numbers . 11
Header Files and Constants for complex and c_exception 12
Constructing complex Objects . 12
Complex Mathematics Input and Output . 13
Mathematical Operators for complex . 14
Friend Functions for complex . 16
Using the c_exception Class to Handle Complex Mathematics Errors 19
Errors Handled Outside of the Complex Mathematics Library 20
An Example of Using the Complex Mathematics Library 20

 Copyright IBM Corp. 1996, 1998 9

10 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Complex Numbers Review

Chapter 2. Using the Complex Mathematics Classes

This chapter reviews the concept of complex numbers, and then describes complex,
the class you use to manipulate complex numbers, and c_exception, the class you
use to handle errors created by the functions and operations in the complex class.

Note: The c_exception class is not related to the C++ exception handling
mechanism that uses the try , catch , and throw statements.

Review of Complex Numbers
A complex number is made up of two parts: a real part and an imaginary part. A
complex number can be represented by an ordered pair (a,b), where a is the
value of the real part of the number and b is the value of the imaginary part. If
(a,b) and (c,d) are complex numbers, then the following statements are true:

¹ (a,b) + (c,d) = (a+c,b+d)

¹ (a,b) - (c,d) = (a-c,b-d)

¹ (a,b) * (c,d) = (ac-bd,ad+bc)

¹ (a,b) / (c,d) = ((ac+bd) / (c²+d²), (bc-ad) / (c²+d²))

¹ The conjugate of a complex number (a,b) is (a,-b)

¹ The absolute value or magnitude of a complex number (a,b) is the positive
square root of the value a² + b²

¹ The polar representation of (a,b) is (r,theta), where r is the distance from
the origin to the point (a,b) in the complex plane, and theta is the angle from
the real axis to the vector (a,b) in the complex plane. The angle theta can be
positive or negative. Figure 5 illustrates the polar representation (r,theta) of
the complex number (a,b).

imaginary axis

angle theta

real axis

complex (a,b) = polar (r, theta)

(a, b) r

Figure 5. Polar Representation of Complex Number (a,b)

 Copyright IBM Corp. 1996, 1998 11

 Constructing complex Objects

Header Files and Constants for complex and c_exception
You must include the following statement in any file that uses the complex or
c_exception classes:

 #include <complex.h>

This file must be included before any use of the Complex Mathematics Library.

Constants Defined in complex.h
The following table lists the mathematical constants that the Complex Mathematics
Library defines (if they have not been previously defined):

Table 3. Constants Defined in complex.h

Constant Name Description

M_E The constant e

M_LOG2E The logarithm of e to the base of 2

M_LOG10E The logarithm of e to the base of 10

M_LN2 The natural logarithm of 2

M_LN10 The natural logarithm of 10

M_PI π

M_PI_2 π / 2

M_PI_4 π / 4

M_1_PI 1 / π

M_2_PI 2 / π

M_2_SQRTPI 2 divided by the square root of π

M_SQRT2 The square root of 2

M_SQRT1_2 The square root of 1 / 2

Constructing complex Objects
You can use the complex constructor to construct initialized or uninitialized complex
objects or arrays of complex objects. The following example shows different ways
of creating and initializing complex objects:

complex comp1; // Initialized to (0, 0)
complex comp2(3.14); // Initialized to (3.14, 0)
complex comp3(3.14,2.72); // Initialized to (3.14, 2.72)

 complex comparr1[3]={
1.0, // Initialized to (1.0, 0)

 complex(2.0,-2.0), // (2.0, -2.0)
 3.0 // (3.0, 0)
 };
 complex comparr2[3]={

complex(1.0,1.0), // Initialized to (1.0, 1.0)
 2.0, // (2.0, 0)
 complex(3.0,-3.0) // (3.0, -3.0)
 };
 complex comparr3[3]={

1.0, // Initialized to (1.0, 0)
 complex(M_PI_4,M_SQRT2), // (0.785..., 1.414...)
 M_SQRT1_2 // (0.707..., 0)
 };

12 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 complex Input and Output

Complex Mathematics Input and Output
The complex class defines input and output operators for I/O Stream Library input
and output. See Part 2, “The I/O Stream Class Library” on page 23 for more
in-depth information on using the I/O Stream Library. Complex numbers are written
to the output stream in the format (real,imag). Complex numbers are read from
the input stream in one of two formats: (real,imag) or real. The following
example shows you how to use the complex input and output operators, and
provides some sample input and the resulting output.

 CLB3ACOM
// An example of complex input and output

#include <complex.h> // required for use of Complex Mathematics Library
#include <iostream.h> // required for use of I/O Stream input and output

void main() {
complex a[3]={1.0, 2.0, complex(3.0,-3.0)};

 complex b[3];
 complex c[3];
 complex d;

// read input for all of arrays b and c
// (you must specify each element individually)
cout << "Enter three complex values separated by spaces:\n";
cin >> b[0] >> b[1] >> b[2];

cout << "Enter three more complex values:\n";
cin >> c[2] >> c[0] >> c[1];

// read input for scalar d
cout << "Enter one more complex value:\n";
cin >> d;
// Note that you cannot use the above notation for arrays.
// For example, cin >> a; is incorrect because a is a complex array.

// display each array of three complex numbers, then the complex scalar
cout << "Here are some elements of arrays a, b, and c:\n"

<< a[2] << '\n'
<< b[0] << b[1] << b[2] << '\n'
<< c[1] << '\n'
<< "Here is scalar d: "
<< d << '\n'

// cout << a produces an address, not a list of array elements:
<< "Here is the address of array a:\n"

 << a
<< endl; // endl flushes the output stream

 }

This example produces the output shown below in regular type, given the input
shown in bold. Notice that you can insert white space within a complex number,
between the brackets, numbers, and comma. However, you cannot insert white
space within the real or imaginary part of the number. The address displayed may
be different, or in a different format, than the address shown, depending on the
operating system, hardware, and other factors.

Enter three complex values separated by spaces:
38 (12.2,3.14159) (1712,-33)
Enter three more complex values:
(17.1234 , 1234.17) (27, 12) (-33 ,0)
Enter one more complex value:

 17
Here are some elements of arrays a, b, and c:
(3, -3)
(38, 0)(12.2, 3.14159)(1712, -33)
(-33, 0)

 Chapter 2. Using the Complex Mathematics Classes 13

 Mathematical Operators for complex

Here is scalar d: (17, 0)
Here is the address of array a:

 0x2ff7f9b8

Mathematical Operators for complex
The complex class defines a set of mathematical operators with the same
precedence as the corresponding real operators. With these operators, you can
code expressions on complex numbers such as the expressions shown in the
example below. In the example, for each complex scalar x, the comments showing
the results of operations use xr to denote the scalar's real part and xi to denote the
scalar's imaginary part.

 CLB3AMTO
 // Using the complex mathematical operators

 #include <complex.h>
 #include <iostream.h>

 complex a,b,c,d,e,f,g;

void main() {
cout << "Enter six complex numbers, separated by spaces:\n";
cin >> b >> c >> d >> e >> f >> g;

// assignment, multiplication, addition
a=b*c+d; // a=((br*cr)-(bi*ci)+dr , (br*ci)+(bi*cr)+di)

 // division
a=b/d; // a=((br*dr)+(bi*di) / ((br*br)+(bi*bi),

// (bi*dr)-(br*di) / ((br*br)+(bi*bi))

 // subtraction
a=b-f; // a=((br-fr), (bi-fi))

// equality, multiplication assignment
if (a==f) c*=e; // same as c=c*e;

// inequality, addition assignment
if (b!=f) d+=g; // same as d=d+g;

cout << "Here are the seven numbers after calculations:\n"
<< "a=" << a << '\n'
<< "b=" << b << '\n'
<< "c=" << c << '\n'
<< "d=" << d << '\n'
<< "e=" << e << '\n'
<< "f=" << f << '\n'
<< "g=" << g << endl;

 }

This example produces the output shown below in regular type, given the input
shown in bold:

Enter six complex numbers, separated by spaces:
(1.14,2.28) (2.24,4.48) (1.17,12.18)
(4.4444444,5.12341) (12,7) 5
Here are the seven numbers after calculations:
a=(-10.86, -4.72)
b=(1.14, 2.28)
c=(2.24, 4.48)
d=(6.17, 12.18)
e=(4.44444, 5.12341)
f=(12, 7)
g=(5, 0)

14 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Mathematical Operators for complex

Note that there are no increment or decrement operators for complex numbers.

Equality and Inequality Operators Test for Absolute Equality
The equality and inequality operators test for an exact equality between the real
parts of two numbers, and between their complex parts. Because both components
are double values, two numbers may be “equal” within a certain tolerance, but
unequal as far as these operators are concerned. If you want an equality or
inequality operator that can test for an absolute difference within a certain tolerance
between the two pairs of corresponding components, you should define your own
equality functions rather than use the equality and inequality operators of the
complex class. The functions is_equal and is_not_equal in the following example
provide a reliable comparison between two complex values:

 CLB3AEQU
// Testing complex values for equality within a certain tolerance

 #include <complex.h>
#include <iostream.h> // for output
#include <iomanip.h> // for use of setw() manipulator

int is_equal(const complex &a, const complex &b,
const double tol=0.0001)

 {
return (abs(real(a) - real(b)) < tol &&

abs(imag(a) - imag(b)) < tol);
 }

int is_not_equal(const complex &a, const complex &b,
const double tol=0.0001)

 {
return !is_equal(a, b, tol);

 }

 void main()
 {

complex c[4] = { complex(1.0, 2.0),
 complex(1.0, 2.0),
 complex(3.0, 4.0),
 complex(1.0000163,1.999903581) };

cout << "Comparison of array elements c[0] to c[3]\n"
<< "== means identical,\n!= means unequal,\n"
<< " ˜ means equal within tolerance of 0.0001.\n\n"
<< setw(10) << "Element"

 << setw(6) << 0
 << setw(6) << 1
 << setw(6) << 2
 << setw(6) << 3
 << endl;

for (int i=0;i<4;i++) {
cout << setw(10) << i;
for (int j=0;j<4;j++) {

if (c[i]==c[j]) cout << setw(6) << "==";
else if (is_equal(c[i],c[j])) cout << setw(6) << "˜";

else if (is_not_equal(c[i],c[j])) cout << setw(6) << "!=";
else cout << setw(6) << "???";

 }
cout << endl;

 }
 }

 Chapter 2. Using the Complex Mathematics Classes 15

 Friend Functions for complex

This example produces the following output:

Comparison of array elements c[0] to c[3]
== means identical,
!= means unequal,
 ˜ means equal within tolerance of 0.0001.

Element 0 1 2 3
0 == == != ˜
1 == == != ˜
2 != != == !=
3 ˜ ˜ != ==

Assignment Operators Do Not Produce an lvalue
The complex mathematical assignment operators (+=, -=, *=, /=) do not produce a
value that can be used in an expression. The following code, for example,
produces a compile-time error:

complex x, y, z; // valid declaration
x = (y += z); // invalid assignment causes a

// compile-time error

Friend Functions for complex
The complex class defines a set of mathematical, trigonometric, magnitude, and
conversion functions as friend functions of complex objects. Because these
functions are friend functions rather than member functions, you cannot use the dot
or arrow operators. For example:

 complex a,b,*c;
a=exp(b); // correct - exp() is a friend function of complex

 a=b.exp(); // error - exp() is not a member function of complex
a=c->exp(); // error - exp() is not a member function of complex

 }

Mathematical Functions for complex
The complex class defines four mathematical functions as friend functions of
complex objects. The functions, described in detail in the OS/390 C/C++ IBM Open
Class Library Reference, are:

¹ exp - Exponent
¹ log - Logarithm
¹ pow - Power
¹ sqrt - Square Root

The following example shows uses of these mathematical functions:

 CLB3AMTH
// Using the complex mathematical functions

 #include <complex.h>
 #include <iostream.h>

void main() {
complex a, b;

 int i;
 double f;
 //

// prompt the user for an argument for calls to
// exp(), log(), and sqrt()

 //
cout << "Enter a complex value\n";
cin >> a;

16 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Friend Functions for complex

cout << "The value of exp() for " << a << " is: " << exp(a)
<< "\nThe natural logarithm of " << a << " is: " << log(a)
<< "\nThe square root of " << a << " is: " << sqrt(a) << "\n\n";

 //
// prompt the user for arguments for calls to pow()

 //
cout << "Enter 2 complex values (a and b), an integer (i),"

<< " and a floating point value (f)\n";
cin >> a >> b >> i >> f;
cout << "a is " << a << ", b is " << b << ", i is " << i

<< ", f is " << f << '\n'
<< "The value of f**a is: " << pow(f, a) << '\n'
<< "The value of a**i is: " << pow(a, i) << '\n'
<< "The value of a**f is: " << pow(a, f) << '\n'
<< "The value of a**b is: " << pow(a, b) << endl;

 }

This example produces the output shown below in regular type, given the input
shown in bold:

Enter a complex value
(3.7,4.2)
The value of exp() for (3.7, 4.2) is: (-19.8297, -35.2529)
The natural logarithm of (3.7, 4.2) is: (1.72229, 0.848605)
The square root of (3.7, 4.2) is: (2.15608, 0.973992)

Enter 2 complex values (a and b), an integer (i), and a floating point value (f)
(2.6,9.39) (3.16,1.16) -7 33.16237
a is (2.6, 9.39), b is (3.16, 1.16), i is -7, f is 33.1624
The value of f**a is: (972.681, 8935.53)
The value of a**i is: (-1.13873e-07, -3.77441e-08)
The value of a**f is: (4.05451e+32, -4.60496e+32)
The value of a**b is: (262.846, 132.782)

Trigonometric Functions for complex
The complex class defines four trigonometric functions as friend functions of
complex objects. The functions, described in detail in the OS/390 C/C++ IBM Open
Class Library Reference, are:

¹ cos - Cosine
¹ cosh - Hyperbolic cosine
¹ sin - Sine
¹ sinh - Hyperbolic sine

The following example shows how you can use some of the complex trigonometric
functions:

 CLB3ATRG
// Complex Mathematics Library trigonometric functions

 #include <complex.h>
 #include <iostream.h>

void main() {
complex a = (M_PI, M_PI_2); // a = (pi,pi/2)
// display the values of cos(), cosh(), sin(), and sinh()
// for (pi,pi/2)

cout << "The value of cos() for (pi,pi/2) is: " << cos(a) << '\n'
<< "The value of cosh() for (pi,pi/2) is: " << cosh(a) << '\n'
<< "The value of sin() for (pi,pi/2) is: " << sin(a) << '\n'
<< "The value of sinh() for (pi,pi/2) is: " << sinh(a) << endl;

 }

 Chapter 2. Using the Complex Mathematics Classes 17

 Friend Functions for complex

This program produces the following output:

The value of cos() for (pi,pi/2) is: (6.12323e-17, 0)
The value of cosh() for (pi,pi/2) is: (2.50918, 0)
The value of sin() for (pi,pi/2) is: (1, -0)
The value of sinh() for (pi,pi/2) is: (2.3013, 0)

Magnitude Functions for complex
The magnitude functions for complex are:

¹ abs - Absolute value
¹ norm - Square magnitude

See the OS/390 C/C++ IBM Open Class Library Reference for further details on
these functions.

Conversion Functions for complex
The conversion functions in the Complex Mathematics Library allow you to convert
between the polar and standard complex representations of a value and to extract
the real and imaginary parts of a complex value.

The complex class provides the following conversion functions as friend functions of
complex objects:

¹ arg - Angle in radians
¹ conj - Conjugation
¹ polar - Polar to complex
¹ real - Extract real part
¹ imag - Extract imaginary part

The following program shows how you can use the complex conversion functions:

 CLB3ACNV
// Using the complex conversion functions

 #include <complex.h>
 #include <iostream.h>

void main() {
 complex a;

// For a value supplied by the user, display the real part,
// the imaginary part, and the polar representation.
cout << "Enter a complex value" << endl;
cin >> a;
cout << "The real part of this value is " << real(a) << endl;
cout << "The imaginary part of this value is " << imag(a) << endl;
cout << "The polar representation of this value is "

<< "(" << abs(a) << "," << arg(a) << ")" << endl;
 }

This example produces the output shown below in regular type, given the input
shown in bold:

Enter a complex value
(175,162)
The real part of this value is 175
The imaginary part of this value is 162
The polar representation of this value is (238.472,0.746842)

18 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Using the c_exception Class

Using the c_exception Class to Handle Complex Mathematics Errors
Note: The c_exception class is not related to the C++ exception handling
mechanism that uses the try , catch , and throw statements.

The c_exception class lets you handle errors that are created by the functions and
operations in the complex class. When the Complex Mathematics Library detects
an error in a complex operation or function, it invokes complex_error(). This friend
function of c_exception has a c_exception object as its argument. When the
function is invoked, the c_exception object contains data members that define the
function name, arguments, and return value of the function that caused the error,
as well as the type of error that has occurred. The data members are:

complex arg1; // First argument of the error-causing function
complex arg2; // Second argument of the error-causing function
char* name; // Name of the error-causing function
complex retval; // Value returned by default definition of complex_error
int type; // The type of error that has occurred.

If you do not define your own complex_error function, complex_error sets the
complex return value and the errno error number as defined in Table 4 in the
OS/390 C/C++ IBM Open Class Library Reference.

Defining a Customized complex_error Function
You can either use the default version of complex_error() or define your own
version of the function. In the following example, complex_error() is redefined:

 CLB3ACER
//Redefinition of the complex_error function

 #include <iostream.h>
 #include <complex.h>
 #include <float.h>

int complex_error(c_exception &c)
 {

cout << "================" << endl;
cout << " Exception " << endl;
cout << "type = " << c.type << endl;
cout << "name = " << c.name << endl;
cout << "arg1 = " << c.arg1 << endl;
cout << "arg2 = " << c.arg2 << endl;
cout << "retval = " << c.retval << endl;
cout << "================" << endl;

 return 0;
 }

 void main()
 {
 complex c1(DBL_MAX,0);
 complex result;

result = exp(c1);
cout << "exp" << c1 << "= " << result << endl;

 }

 Chapter 2. Using the Complex Mathematics Classes 19

 Complex Mathematics Library Example

This example produces the following output:

================
 Exception
type = 3
name = exp
arg1 = (7.23701e+75, 0)
arg2 = (0, 0)
retval = (7.23701e+75, -7.23701e+75)
================
exp(7.23701e+75, 0)= (7.23701e+75, 7.23701e+75)

If the redefinition of complex_error() in the above code is commented out, the
default definition of complex_error() is used, and the program produces the
following output:

exp(7.23701e+75, 0) = (7.23701e+75, -7.23701e+75)

Compiling a Program that Uses a Customized complex_error
Function
If you define your own version of complex_error, you must ensure that the name of
the header file that contains your version of complex_error is included in your
source file when you compile your program.

Errors Handled Outside of the Complex Mathematics Library
There are some cases where member functions of the Complex Mathematics
Library call functions in the math library. These calls can cause underflow and
overflow conditions that are handled by the matherr() function that is declared in
the math.h header file. For example, the overflow conditions that are caused by the
following calls are handled by matherr():

 ¹ exp(complex(DBL_MAX, DBL_MAX))
¹ pow(complex(DBL_MAX, DBL_MAX), INT_MAX)

 ¹ norm(complex(DBL_MAX, DBL_MAX))

DBL_MAX is the maximum valid double value, and is defined in float.h. INT_MAX is
the maximum int value, and is defined in limits.h.

If you do not want the default error-handling defined by matherr(), you should
define your own version of matherr().

An Example of Using the Complex Mathematics Library
The following example shows how you can use the Complex Mathematics Library
to calculate the roots of a complex number. For every positive integer n, each
complex number z has exactly n distinct nth roots. Suppose that in the complex
plane the angle between the real axis and point z is θ, and the distance between
the origin and the point z is r. Then z has the polar form (r, θ), and the n roots
of z have the values:

20 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Complex Mathematics Library Example

 σ
 σ·ω
 σ·ω2

 σ·ω3

 .
 .
 .
 σ·ωn-1

where ω is a complex number with the value:

ω = (cos(2π/n), sin(2π/n))

and σ is a complex number with the value:

σ = r1/n (cos(θ/n), sin(θ/n))

The following code includes two functions, get_omega() and get_sigma(), to
calculate the values of ω and σ. The user is prompted for the complex value z and
the value of n. After the values of ω and σ have been calculated, the n roots of z
are calculated and printed.

 CLB3AROT
// Calculating the roots of a complex number

 #include <iostream.h>
 #include <complex.h>
 #include <math.h>

// Function to calculate the value of omega for a given value of n

complex get_omega(double n) {
complex omega = complex(cos((2.0*M_PI)/n), sin((2.0*M_PI)/n));

 return omega;
 }

 //
// function to calculate the value of sigma for a given value of
// n and a given complex value

 //
complex get_sigma(complex comp_val, double n) {

double rn, r, theta;
 complex sigma;

r = abs(comp_val);
theta = arg(comp_val);
rn = pow(r,(1.0/n));
sigma = rn * complex(cos(theta/n),sin(theta/n));

 return sigma;
 }

void main() {
 double n;

complex input, omega, sigma;
 //

// prompt the user for a complex number
 //

cout << "Please enter a complex number: ";
cin >> input;

 //
// prompt the user for the value of n

 //
cout << "What root would you like of this number? ";
cin >> n;

 Chapter 2. Using the Complex Mathematics Classes 21

 Complex Mathematics Library Example

 //
// calculate the value of omega

 //
omega = get_omega(n);
cout << "Here is omega " << omega << endl;

 //
// calculate the value of sigma

 //
sigma = get_sigma(input,n);
cout << "Here is sigma " << sigma << '\n'

<< "Here are the " << n << " roots of " << input << endl;
for (int i = 0; i < n ; i++) {

cout << sigma*(pow(omega,i)) << endl;
 }
 }

This example produces the output shown below in regular type, given the input
shown in bold:

Please enter a complex number: (-7, 24)
What root would you like of this number? 2
Here is omega (-1, 1.22465e-16)
Here is sigma (3, 4)
Here are the 2 roots of (-7, 24)
(3, 4)
(-3, -4)

22 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

Part 2. The I/O Stream Class Library

This part describes the I/O Stream Class Library, which you can use to perform a
wide range of input and output operations in your C++ programs.

Chapter 3. Introduction to the I/O Stream Classes 25
The I/O Stream Classes and stdio.h . 25
Overview of the I/O Stream Classes . 25
The I/O Stream Class Hierarchy . 26
The I/O Stream Header Files . 28
Predefined Streams . 28
Anonymous Streams . 29
Stream Buffers . 30
Format State Flags . 32
Thread Safety . 32

Chapter 4. Getting Started with the I/O Stream Library 35
Receiving Input from Standard Input . 35
Displaying Output on Standard Output or Standard Error 38
Flushing Output Streams with endl and flush . 40
Parsing Multiple Inputs . 41
Opening a File for Input and Reading from the File 42
Opening a File for Output and Writing to the File 45

Chapter 5. Advanced I/O Stream Topics . 47
Associating a File with a Standard Input or Output Stream 47
Using filebuf Functions to Move Through a File 48
Defining an Input Operator for a Class Type . 50
Defining an Output Operator for a Class Type 52
Correcting Input Stream Errors . 54
Changing the Formatting of Stream Output . 56
Defining Your Own Format State Flags . 61
Using the strstream Classes for String Manipulation 63

Chapter 6. Manipulators . 65
Introduction to Manipulators . 65
Simple Manipulators and Parameterized Manipulators 65
Creating Simple Manipulators for Your Own Types 66
Creating Parameterized Manipulators for Your Own Types 67

 Copyright IBM Corp. 1996, 1998 23

24 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 I/O Stream Overview

Chapter 3. Introduction to the I/O Stream Classes

This chapter describes the overall structure of the I/O Stream Classes. These
classes provide you with the facilities to deal with many varieties of input and
output.

The I/O Stream Classes and stdio.h
In both C++ and C, input and output are described in terms of sequences of
characters, or streams. The I/O Stream Classes provide the same facilities in C++
that stdio.h provides in C, but it also has the following advantages over stdio.h:

¹ The input or extraction (>>) operator and the output or insertion (<<) operator
are typesafe. They are also easy to use.

¹ I/O streams are thread safe. You can use them in multi-threaded applications.
¹ You can define input and output for your own types or classes by overloading

the input and output operators. This gives you a uniform way of performing
input and output for different types of data.

¹ The input and output operators are more efficient than scanf() and printf(),
the analogous C functions defined in stdio.h. Both scanf() and printf() take
format strings as arguments, and these format strings have to be parsed at run
time. This parsing can be time-consuming. The bindings for the I/O Stream
output and input operators are performed at compile time, with no need for
format strings. This can improve the readability of input and output in your
programs, and potentially the performance as well.

Overview of the I/O Stream Classes
The I/O Stream Classes provide the standard input and output capabilities for C++.
In C++, input and output are described in terms of streams. The processing of
these streams is done at two levels. The first level treats the data as sequences of
characters; the second level treats it as a series of values of a particular type.

There are two primary base classes for the I/O Stream Classes:

1. The streambuf class and the classes derived from it (strstreambuf, stdiobuf,
and filebuf) implement the stream buffers. Stream buffers act as temporary
repositories for characters that are coming from the ultimate producers of input
or are being sent to the ultimate consumers of output. See “Stream Buffers” on
page 30 for more details.

2. The ios class maintains formatting and error-state information for these
streams. The classes derived from ios implement the formatting of these
streams. This formatting involves converting sequences of characters from the
stream buffer into values of a particular type and converting values of a
particular type into their external display format.

The I/O Stream Classes predefine streams for standard input, standard output, and
standard error. See “Predefined Streams” on page 28 for more details on the
predefined streams. If you want to open your own streams for input or output, you
must create an object of an appropriate I/O Stream class. The iostream
constructor takes as an argument a pointer to a streambuf object. This object is

 Copyright IBM Corp. 1996, 1998 25

 I/O Stream Class Hierarchy

associated with the device, file, or array of bytes in memory that is going to be the
ultimate producer of input or the ultimate consumer of output.

Combining Input and Output of Different Types
The I/O Stream Classes overload the input (>>) and output (<<) operators for the
built-in types. As a result, you can combine input or output of values with different
types in a single statement without having to state the type of the values. For
example, you can code an output statement such as:

<< aFloat << " " << aDouble << "\n" << aString << endl;

without needing to provide type or formatting information for each output.

Input and Output for User-Defined Classes
You can overload the input and output operators for the classes that you create
yourself. Once you have overloaded the input and output operators for a class, you
can perform input and output operations on objects of that class in the same way
that you would perform input and output on char, int, double, and the other built-in
types.

See “Defining an Input Operator for a Class Type” on page 50 and “Defining an
Output Operator for a Class Type” on page 52 for information on how to define
class-type input and output operators.

The I/O Stream Class Hierarchy
The I/O Stream Classes have two base classes, streambuf and ios, that
correspond to the two levels of processing described in “Overview of the I/O
Stream Classes” on page 25:

¹ The streambuf class implements stream buffers. See “Stream Buffers” on
page 30 for information on how and why to use stream buffers. streambuf is
the base class for the following classes:

 – strstreambuf
 – stdiobuf
 – filebuf

¹ The ios class maintains formatting and error state information for streams.
Streams are implemented as objects of the following classes that are derived
from ios:

 – stdiostream
 – istream
 – ostream

The classes that are derived from ios are themselves base classes:

¹ istream is the input stream class. It implements stream buffer input, or input
operations. The following classes are derived from istream:

 – istrstream
 – ifstream
 – istream_withassign
 – iostream

26 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 I/O Stream Class Hierarchy

¹ ostream is the output stream class. It implements stream buffer output, or
output operations. The following classes are derived from ostream:

 – ostrstream
 – ofstream
 – ostream_withassign
 – iostream

¹ iostream is the class that combines istream and ostream to implement input
and output to stream buffers. The following classes are derived from iostream:

 – strstream
 – iostream_withassign
 – fstream

Note: The I/O Stream Classes also define other classes, including fstreambase
and strstreambase. These classes are meant for the internal use of the I/O Stream
Classes. Do not use them directly.

ios

streambuf

istream

strstreambuf

istream_
withassign

ostream_
withassign

stdiostream

stdiobuf

istrstream ostrstream

ostream

fstream

filebuf

ifstream ofstream

iostream

iostream_
withassign

strstream

Figure 6. I/O Stream Class Hierarchy

Figure 6 shows the relationship between the two base classes, ios and streambuf,
and their derived classes. In the figure, for any two classes connected by a line,
the class at the lower level is derived from the class at the higher level.

 Chapter 3. Introduction to the I/O Stream Classes 27

 Predefined Streams

The I/O Stream Header Files
To use an I/O Stream class, you must include the appropriate header files for that
class. The following lists the I/O Stream header files and the classes that they
cover:

¹ iostream.h contains declarations for the basic classes:

 – streambuf
 – ios
 – istream
 – istream_withassign
 – ostream
 – ostream_withassign
 – iostream
 – iostream_withassign

¹ fstream.h contains declarations for the classes that deal with files:

 – filebuf
 – ifstream
 – ofstream
 – fstream

¹ stdiostream.h contains declarations for stdiobuf and stdiostream, the classes
that specialize streambuf and ios, respectively, to use the FILE structures
defined in the C header file stdio.h.

¹ strstream.h contains declarations for the classes that deal with character
strings. The first “str” in each of these names stands for “string”:

 – istrstream
 – ostrstream
 – strstream
 – strstreambuf

¹ iomanip.h contains declarations for the parameterized manipulators.
Manipulators are values that you can insert into streams or extract from
streams to affect or query the behavior of the streams.

¹ stream.h is used for compatibility with earlier versions of the I/O Stream
Classes. It includes iostream.h, fstream.h, stdiostream.h, and iomanip.h,
along with some definitions needed for compatibility with the ATT C++ Language
System Release 1.2. Only use this header file with existing code; do not use it
with new C++ code.

Note: If you use the obsolete function form() declared in stream.h, there is a
limit to the size of the format specifier. If you call form() with a format specifier
string longer than this limit, a runtime message will be generated and the
program will terminate.

 Predefined Streams
In addition to giving you the facilities to define your own streams for input and
output, the I/O Stream Classes also provide the following predefined streams:

¹ cin is the standard input stream.

¹ cout is the standard output stream.

28 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Anonymous Streams

¹ cerr is the standard error stream. Output to this stream is unit-buffered.
Characters sent to this stream are flushed after each output operation.

¹ clog is also an error stream, but unlike the output to cerr, the output to clog is
stream-buffered. Characters sent to this stream are flushed only when the
stream becomes full or when it is explicitly flushed.

The predefined streams cin, cerr, and clog are tied to cout. As a result, if you
use cin, cerr, or clog, cout is flushed. That is, the contents of cout are sent to
their ultimate consumer. See “tie” in the OS/390 C/C++ IBM Open Class Library
Reference for more details on tying streams together.

 Anonymous Streams
An anonymous stream is a stream that is created as a temporary object. Because
it is a temporary object, an anonymous stream requires a const type modifier and
is not a modifiable lvalue. Unlike the ATT C++ Language System Release 2.1, the
OS/390 C++ compiler does not allow a non-const reference argument to be
matched with a temporary object. User-defined input and output operators usually
accept a non-const reference (such as a reference to an istream or ostream
object) as an argument. Such an argument cannot be initialized by an anonymous
stream, and thus an attempt to use an anonymous stream as an argument to a
user-defined input or output operator will usually result in a compile-time error.

In the following example, three methods of writing a character to and reading it
from a file are shown:

1. This method uses anonymous streams with the built-in char type. This
compiles and runs successfully.

2. This method uses anonymous streams with a class that has a char as its only
data member, and that has input and output operators defined for it. This
produces a compilation error if you define anon when you compile. Otherwise,
this part of the program is not compiled.

3. This method uses named streams to write a class object to and read it from a
file. This compiles and runs successfully.

 CLB3ANON
// Using anonymous streams

 #include <fstream.h>

class MyClass { public: char a; };

istream& operator >> (istream& aStream, MyClass mc)
{ return aStream >> mc.a; }

ostream& operator << (ostream& aStream, MyClass mc)
{ return aStream << mc.a; }

void main() {
 char a='a';
 MyClass b,c;

b.a = 'b';
c.a = 'c';

// .1/. Use an anonymous stream with a built-in type; this works
fstream("file1.abc",ios::out) << a << endl; // write to the file
fstream("file1.abc",ios::in) >> a; // read from the file
cout << a << endl; // show what was in the file

 Chapter 3. Introduction to the I/O Stream Classes 29

 Stream Buffers

 #ifdef anon
// .2/. Use an anonymous stream with a class type
// This produces compilation errors if "anon" is defined:

fstream("file1.abc",ios::out) << b << endl; // write to the file
fstream("file1.abc",ios::in) >> b; // read from the file
cout << b << endl; // show what was in the file

 #endif

// .3/. Use a named stream with a class type; this works
fstream File2("file2.abc",ios::o ut); // define and open the file
File2 << c << endl; // write to the file
File2.close(); // close the file
File2.open("file2.abc",ios::in); // reopen for input
File2 >> c; // read from the file
cout << c << endl; // show what was in the file

 }

If you compile the program with anon defined, compilation fails with messages that
resemble the following:

Call does not match any argument list for "ostream::operator<<".
Call does not match any argument list for "istream::operator>>".

If you compile without anon defined, the letters 'a' and 'c' are written to standard
output.

 Stream Buffers
One of the most important concepts in the I/O Stream Classes is the stream buffer.
The streambuf class implements some of the member functions that define stream
buffers, but other specialized member functions are left to the classes that are
derived from streambuf: strstreambuf, stdiobuf, and filebuf.

Note: The ATT and UNIX System Laboratories C++ Language System
documentation use the terms reserve area and buffer instead of stream buffer.

What Does a Stream Buffer Do?
A stream buffer acts as a buffer between the ultimate producer (the source of data)
or ultimate consumer (the target of data) and the member functions of the classes
derived from ios that format this raw data. The ultimate producer can be a file, a
device, or an array of bytes in memory. The ultimate consumer can also be a file,
a device, or an array of bytes in memory.

Why Use a Stream Buffer?
The main reason for using stream buffers on OS/390 C/C++ is to ensure optimal
portability.

How Is a Stream Buffer Implemented?
A stream buffer is implemented as an array of bytes. For each stream buffer,
pointers are defined that point to elements in this array to define the get area, or
the space that is available to accept bytes from the ultimate producer, and the put
area, or the space that is available to store bytes that are on their way to the
ultimate consumer.

A stream buffer does not necessarily have separate get and put areas. A stream
buffer that is used for input, such as one that is attached to an istream object, has

30 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Stream Buffers

a get area. A stream buffer that is used for output, such as one that is attached to
an ostream object, has a put area. A stream buffer that is used for both input and
output, such as one that is attached to an iostream object, has both a get area
and a put area. In stream buffers implemented by the filebuf class that are
specialized to use files as an ultimate producer or ultimate consumer, the get and
put areas overlap.

The following member functions of the streambuf class return pointers to
boundaries of areas in a stream buffer:

¹ base() returns a pointer to the beginning of the stream buffer.
¹ eback() returns a pointer to the beginning of the space available for putback.

Characters that are putback are returned to the get area of the stream buffer.
¹ gptr() returns the get pointer, a pointer to the beginning of the get area. The

space between gptr() and egptr() has been filled by the ultimate producer.
These characters are waiting to be extracted from the stream buffer. The
space between eback() and gptr() is available for putback.

¹ egptr() returns a pointer to the end of the get area.
¹ pbase() returns a pointer to the beginning of the space available for the put

area.
¹ pptr() returns the put pointer, a pointer to the beginning of the put area. The

space between pbase() and pptr() is filled with bytes that are waiting to be
sent to the ultimate consumer. The space between pptr() and epptr() is
available to accept characters from the application program that are on their
way to the ultimate consumer.

¹ epptr() returns a pointer to the end of the put area.
¹ ebuf() returns a pointer to the end of the stream buffer.

Note: In the actual implementation of stream buffers, the pointers returned by
these functions point at char values. In the abstract concept of stream buffers, on
the other hand, these pointers point to the boundary between char values. To
establish a correspondence between the abstract concept and the actual
implementation, you should think of the pointers as pointing to the boundary just
before the character that they actually point at.

Figure 7 on page 32 shows how the pointers returned by these functions delineate
the stream buffer.

 Chapter 3. Introduction to the I/O Stream Classes 31

 Thread Safety

Stream Buffer

get area put area

base() eback() gptr() egptr() pbase() pptr() epptr() ebuf()

Ultimate Producer Ultimate Consumer

Figure 7. The Structure of Stream Buffers

Format State Flags
The ios class defines an enumeration of format state flags that you can use to
affect the formatting of data in I/O streams. The following list shows the formatting
features and the format flags that control them:

¹ Whitespace and padding: ios::skipws, ios::left, ios::right, ios::internal
¹ Base conversion: ios::dec, ios::hex, ios::oct, ios::showbase

 ¹ Integral formatting: ios::showpos
¹ Floating-point formatting: ios::fixed, ios::scientific, ios::showpoint
¹ Uppercase and lowercase: ios::uppercase

 ¹ Buffer flushing: ios::stdio, ios::unitbuf

For examples of how to use these format state flags, see “Changing the Formatting
of Stream Output” on page 56. For descriptions of individual format state flags,
see “Format State Flags” in the OS/390 C/C++ IBM Open Class Library Reference.

 Thread Safety
The I/O Stream Class Library provides thread safety at the object level. This
means that it is safe to have multiple threads manipulate the same object.

The I/O Stream Class Library provides streaming operators for the built in C++
types. With object level thread safety, the output from one streaming operator will
be streamed in entirety before the next. However, in a multi-threaded environment,
there is no guarantee that the output from one streaming operator on the same
thread will appear immediately after the output from the preceding streaming
operator.

For example, given the following scenario, either result may occur:

32 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Thread Safety

Scenario:

thread 1: cout << anInt1 << aString1;
thread 2: cout << anInt2 << aString2;

Result:

Desired: anInt1 aString1 anInt2 aString2
Possible: anInt1 anInt2 aString2 aString1

If order of output from separate threads is important, then explicit programmer
serialization is required. For more information, see Chapter 22, “Controlling
Threads and Protecting Data” on page 231.

| Note: To run in a multi-threaded environment, the OS/390 UNIX kernel must be
available and active.

 Chapter 3. Introduction to the I/O Stream Classes 33

 Thread Safety

34 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Receiving Input

Chapter 4. Getting Started with the I/O Stream Library

This chapter identifies common input and output tasks you may want to perform in
C++ programs, and shows how you can accomplish these tasks using the I/O
Stream Library. The tasks are:

¹ Receiving input from standard input
¹ Displaying output on standard output or standard error
¹ Flushing an output stream with the endl and flush manipulators
¹ Parsing multiple inputs
¹ Opening a file for input and reading from the file
¹ Opening a file for output and writing to the file.

If a task you need help with is not listed here, you may find it in Chapter 5,
“Advanced I/O Stream Topics” on page 47.

Note: You can compile and run coding examples in this chapter that appear
outside of any function, by placing them inside a main() function and using
#include <...> to include necessary header files. Where the header file to include
is not indicated, include iostream.h.

Receiving Input from Standard Input
When you include the iostream.h header file in a program, four streams are
automatically defined for I/O use: cin, cout, cerr, and clog. The cin stream is
the standard input stream. Input to cin comes from the C standard input stream,
stdin, unless cin has been redirected by the user. The remaining streams can be
used for output, and their use is described in “Displaying Output on Standard
Output or Standard Error” on page 38.

You can receive standard input using the predefined input stream and the input
operator (operator>>) for the type being read. In the following example, an integer
is read from the input stream into a variable:

 int i;
cin >> i;

An input operator must exist for the type being read in. The I/O Stream Library
defines input operators for all C++ built-in types. For types you define yourself, you
need to provide your own input operators. See “Defining an Input Operator for a
Class Type” on page 50 for details on how to do this. If you attempt to read input
into a variable and no input operator is defined for the type of that variable, the
compiler displays an error message with text similar to the following:

Call does not match any argument list for "istream::operator>>".

Multiple Variables in an Input Statement
You can receive input from a stream into a succession of variables with a single
input statement, by repeating the input operator (>>) after each input, and then
specifying the next variable to read in. You can combine variables of multiple types
in an input statement, without having to specify the types of those variables in the
input statement: For example:

 Copyright IBM Corp. 1996, 1998 35

 Receiving Input

 int i,j,k;
 float l,m;

cin >> i >> j >> k >> l >> m;

The above syntax provides identical results to the following multiple input
statements:

 int i,j,k;
 float l,m;

cin >> i;
cin >> j;
cin >> k;
cin >> l;
cin >> m;

If you want to enhance the readability of your source code, break the single input
statement up with white space, instead of separating it into multiple input
statements:

 int i,j,k;
 float l,m;

cin >> i
 >> j
 >> k
 >> l
 >> m;

 String Input
If you want to read input into a character array (a string), you should declare the
character array using array notation, with a length large enough to hold the largest
string being entered. If you declare the character array using pointer notation, you
must allocate storage to the pointer, for example by using new or malloc. The
following example shows a correct and an incorrect way of placing input in a
character array:

 char goodText[40];
 char* badText;

cin >> goodText; // works as long as input is less than 40 chars
cin >> badText; // may cause a runtime error because no storage

// is allocated to *badText

In the above example, the input to badText can be made to work by inserting the
following code before the input:

 badText=new char[40];

This guideline applies to input to any pointer-to-type. Storage must be allocated to
the pointer before input occurs.

White Space in String Input
The input operator uses white space to delineate items in the input stream,
including strings. If you want an entire line of input to be read in as a single string,
you should use the getline() function of istream:

36 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Receiving Input

 CLB3AGET
// String input using operator << and getline()

 #include <iostream.h>

void main() {
char text1[100], text2[100];

// prompt and get input for text arrays
cout << "Enter two words:\n";
cin >> text1 >> text2;

// display the text arrays
cout << "<" << text1 << ">\n"

<< "<" << text2 << ">\n"
<< "Enter two lines of text:\n";

// ignore the next character if it is a newline
if (cin.peek()=='\n') cin.ignore(1,'\n');

// get a line of text into array text1
cin.getline(text1, sizeof(text1), '\n');

// get a line of text into array text2
cin.getline(text2, sizeof(text2), '\n');

// display the text arrays
cout << "<" << text1 << ">\n"

<< "<" << text2 << ">" << endl;
 }

The first argument of getline() is a pointer to the character array in which to store
the input. The second argument specifies the maximum number of bytes of input
to read. The third argument is the delimiter, which the library uses to determine
when the string input is complete. If you do not specify a delimiter, the default is
the new-line character.

Here are two samples of the input and output from this program. Input is shown in
bold type, and output is shown in regular type:

Enter two words:
Word1 Word2
<Word1>
<Word2>
Enter two lines of text:
First line of text
Second line of text
<First line of text>
<Second line of text>

For the above input, the program works as expected. For the input in the sample
below, the first input statement reads two white-space-delimited words from the first
line. The check for a new-line character does not find one at the next position
(because the next character in the input stream is the space following “happens”),
so the first getline() call reads in the remainder of the first line of input. The
second line of input is read by the second getline() call, and the program ends
before any further input can be read.

Enter two words:
What happens if I enter more words than it asks for?
<What>
<happens>
Enter two lines of text:
I suppose it will skip over the extra ones
< if I enter more words than it asks for?>
<I suppose it will skip over the extra ones>

 Chapter 4. Getting Started with the I/O Stream Library 37

 Displaying Output

Incorrect Input and the Error State of the Input Stream
When your program requests input through the input operator and the input
provided is incorrect or of the wrong type, the error state may be set in the input
stream and further input from that input stream may fail. One runtime symptom of
such a failure is that your program's prompts for further input display without
pausing for the input. See “Correcting Input Stream Errors” on page 54 for details
on how to detect and correct input stream errors.

Using Input Streams Other Than cin
You can use the same techniques for input from other input streams as for input
from cin. The only difference is that, for other input streams, your program must
define the stream. For information on how to define an input stream attached to a
file, see “Opening a File for Input and Reading from the File” on page 42.
Assuming you have defined a stream attached to a file opened for input, and have
called that stream myin, you can read into that stream from the file by specifying
that stream's name instead of cin:

// assume the input file is associated with stream myin
 int a,b;

myin >> a >> b;

Displaying Output on Standard Output or Standard Error
The I/O Stream library predefines three output streams as well as the cin input
stream described in “Receiving Input from Standard Input” on page 35. The
standard output stream is cout, and the remaining streams, cerr and clog, are
standard error streams. Output to cout goes to the C standard output stream,
stdout, unless cout has been redirected. Output to cerr and clog goes to the C
standard error stream, stderr, unless cerr or clog has been redirected.

cerr and clog are really two streams that write to the same output device; the
difference between them is that cerr flushes its contents to the output device after
each output, while clog must be explicitly flushed.

You can print to one of the predefined output streams by using the predefined
stream's name and the output operator (operator<<), followed by the value to print:

 #include <iostream.h>
void main(int argc, char* argv[]) {

if (argc==1) cout << "Good day!" << endl;
else cerr << "I don't know what to do with "

<< argv[1] << endl;
 }

If you name the compiled program myprog, the following inputs will produce the
following output to standard output or standard error:

Invocation Output

myprog Good day!
(to standard output)

myprog hello there I don't know what to do with hello
(to standard error)

38 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Displaying Output

An output operator must exist for any type being output. The I/O Stream Library
defines output operators for all C++ built-in types. For types you define yourself,
you need to provide your own output operators. See “Defining an Output Operator
for a Class Type” on page 52 for details on how to do this. If you attempt to place
the contents of a variable into an output stream and no output operator is defined
for the type of that variable, the compiler displays an error message with text
similar to the following:

Call does not match any argument list for "ostream::operator<<".

Multiple Variables in an Output Statement
You can place a succession of variables into an output stream with a single output
statement, by repeating the output operator (<<) after each output, and then
specifying the next variable to output. You can combine variables of multiple types
in an output statement, without having to specify the types of those variables in the
output statement. For example:

 int i,j,k;
 float l,m;
 // ...

cout << i << j << k << l << m;

The above syntax provides identical results to the following multiple output
statements:

 int i,j,k;
 float l,m;

cout << i;
cout << j;
cout << k;
cout << l;
cout << m;

If you want to enhance the readability of your source code, break the single output
statement up with white space, instead of separating it into multiple output
statements:

 int i,j,k;
 float l,m;

cout << i
 << j
 << k
 << l
 << m;

Using Output Streams Other Than cout, cerr, and clog
You can use the same techniques for output to other output streams as for output
to the predefined output streams. The only difference is that, for other output
streams, your program must define the stream. For information on how to define
an output stream attached to a file, see “Opening a File for Output and Writing to
the File” on page 45. Assuming you have defined a stream attached to a file
opened for output, and have called that stream myout, you can write to that file
through its stream, by specifying the stream's name instead of cout, cerr or clog:

// assume the output file is associated with stream myout
 int a,b;

myout << a << b;

 Chapter 4. Getting Started with the I/O Stream Library 39

 Flushing Output Streams

“Opening a File for Output and Writing to the File” on page 45 provides information
on all operations required to perform basic file output, including opening, writing to,
and closing output files.

Flushing Output Streams with endl and flush
Output streams must be flushed for their contents to be written to the output device.
Consider the following:

cout << "This first calculation may take a very long time\n";
 firstVeryLongCalc();

cout << "This second calculation may take even longer\n";
 secondVeryLongCalc();

cout << "All done!";

If the functions called in this excerpt do not themselves perform input or output to
the standard I/O streams, the first message will be written to the cout buffer before
firstVeryLongCalc() is called. The second message will be written before
secondVeryLongCalc() is called, but the buffer may not be flushed (written out to
the physical output device) until an implicit or explicit flush operation occurs. As a
result, the above program displays its messages about expected delays after the
delays have already occurred. If you want the output to be displayed before each
function call, you must flush the output stream.

A stream is flushed implicitly in the following situations:

¹ The predefined streams cout and clog are flushed when input is requested
from the predefined input stream (cin).

¹ The predefined stream cerr is flushed after each output operation.
¹ An output stream that is unit-buffered is flushed after each output operation. A

unit-buffered stream is a stream that has ios::unitbuf set. See “Buffer
Flushing” in the OS/390 C/C++ IBM Open Class Library Reference for further
details.

¹ An output stream is flushed whenever the flush() member function is applied
to it. This includes cases where the flush or endl manipulators are written to
the output stream. See “Placing endl or flush in an Output Stream” on
page 41.

¹ The program terminates.

The above example can be corrected so that output appears before each
calculation begins, as follows:

cout << "This first calculation may take a very long time\n";
 cout.flush();
 firstVeryLongCalc();

cout << "This second calculation may take even longer\n";
 cout.flush();
 secondVeryLongCalc();

cout << "All done!"
 cout.flush();

40 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Parsing Multiple Inputs

Placing endl or flush in an Output Stream
The endl and flush manipulators give you a simple way to flush an output stream:

cout << "This first calculation may take a very long time" << endl;
 firstVeryLongCalc();

cout << "This second calculation may take even longer" << endl;
 secondVeryLongCalc();

cout << "All done!" << flush;

Placing the flush manipulator in an output stream is equivalent to calling flush()
for that output stream. When you place endl in an output stream, it is equivalent to
placing a new-line character in the stream, and then calling flush().

Avoid using endl where the new-line character is required but buffer flushing is not,
because endl has a much higher overhead than using the new-line character. For
example:

cout << "Employee ID: " << emp.id << endl
<< "Name: " << emp.name << endl
<< "Job Category: " << emp.jobc << endl
<< "Hire date: " << emp.hire << endl;

is not as efficient as:

cout << "Employee ID: " << emp.id
<< "\nName: " << emp.name
<< "\nJob Category: " << emp.jobc
<< "\nHire date: " << emp.hire << endl;

You can include the new-line character as the start of the character string that
immediately follows the location where the endl manipulator would have been
placed, or as a separate character enclosed in single quotation marks:

cout << "Salary: " << emp.pay << '\n'
<< "Next raise: " << emp.elig_raise << endl;

Flushing a stream generally involves a high overhead. If you are concerned about
performance, only flush a stream when necessary.

Parsing Multiple Inputs
The I/O Stream Library input streams determine when to stop reading input into a
variable based on the type of variable being read and the contents of the stream.
The easiest way to understand how input is parsed is to write a simple program
such as the following, and run it several times with different inputs.

 #include <iostream.h>
void main() {

 int a,b,c;
cin >> a >> b >> c;
cout << "a: <" << a << ">\n"

<< "b: <" << b << ">\n"
<< "c: <" << c << '>' << endl;

 }

The following table shows sample inputs and outputs, and explains the outputs. In
the “Input” column, <\n> represents a new-line character in the input stream.

 Chapter 4. Getting Started with the I/O Stream Library 41

 File Input

See “White Space in String Input” on page 36 for information on how the input
operator interprets white space in the input stream during string input.

Input Output Remarks

123<\n> No output. a has been assigned the value 123,
but the program is still waiting on input for b and
c.

1<\n> ,br 2<\n>
3<\n>

a: <1>
b: <2>
c: <3>

White space (in this case, new-line characters) is
used to delimit different input variables.

1 2 3<\n> a: <1>
b: <2>
c: <3>

White space (in this case, spaces) is used to
delimit different input variables. There can be
any amount of white space between inputs.

123,456,789<\n> a: <123>
b:
<-559038737>
c:
<-559038737>

Characters are read into int a up to the first
character that is not acceptable input for an
integer (the comma). Characters are read into
int b where input for a left off (the comma).
Because a comma is not one of the allowable
characters for integer input, ios::failbit is set,
and all further input fails until ios::failbit is
cleared. See “Correcting Input Stream Errors” on
page 54 for details on how to clear an input
stream.

1.2 2.3<\n>
3.4<\n>

a: <1>
b:
<-559038737>
c:
<-559038737>

As with the previous example, characters are
read into a until the first character is encountered
that is not acceptable input for an integer (in this
case, the period). The next input of an int
causes ios::failbit to be set, and so both it
and the third input result in errors.

Opening a File for Input and Reading from the File
Use the following steps to open a file for input and to read from the file. The steps
are described in detail in the subsections that follow the steps.

1. Construct an fstream or ifstream object to be associated with the file. The file
can be opened during construction of the object, or later.

Note: OS/390 C/C++ provides overloads of the fstream and ifstream
constructors and their open() functions, which allow you to specify file attributes
such as lrecl and recfm. See the sections on these constructors and
functions in the OS/390 C/C++ IBM Open Class Library Reference for further
information.

2. Use the name of the fstream or ifstream object and the input operator or other
input functions of the istream class, to read the input.

3. Close the file by calling the close() member function or by implicitly or explicitly
destroying the fstream or ifstream object.

42 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 File Input

Constructing an fstream or ifstream Object for Input
You can open a file for input in one of two ways:

¹ Construct an fstream or ifstream object for the file, and call open() on the
object:

 #include <fstream.h>
void main() {

 fstream infile1;
 ifstream infile2;
 infile1.open("myfile.dat",ios::in);
 infile2.open("myfile.dat");
 // ...
 }

¹ Specify the file during construction, so that open() is called automatically:

 #include <fstream.h>
void main() {

 fstream infile1("myfile.dat",ios::in);
 ifstream infile2("myfile.dat");
 // ...
 }

The only difference between opening the file as an fstream or ifstream object is
that, if you open the file as an fstream object, you must specify the input mode
(ios::in). If you open it as an ifstream object, it is implicitly opened in input
mode. The advantage of using ifstream rather than fstream to open an input file
is that, if you attempt to apply the output operator to an ifstream object, this error
will be caught during compilation. If you attempt to apply the output operator to an
fstream object, the error is not caught during compilation, and may pass unnoticed
at runtime.

The advantage of using fstream rather than ifstream is that you can use the same
object for both input and output. For example:

 CLB3AFST
// Using fstream to read from and write to a file

 #include <fstream.h>
void main() {

 char q[40];
fstream myfile("test.x",ios::in); // open the file for input
myfile >> q; // input from myfile into q
myfile.close(); // close the file
myfile.open("test.x",ios::app); // reopen the file for

 output
myfile << q << endl; // output from q to myfile
myfile.close(); // close the file

 }

This example opens the same file first for input and later for output. It reads in a
character string during input, and writes that character string to the end of the same
file during output. If the contents of the file text.x before the program is run are:

barbers often shave

the file contains the following after the program is run:

barbers often shave
 barbers

Note that you can use the same fstream object to access different files in
sequence. In the above example, myfile.open("test.C",ios::app) could have

 Chapter 4. Getting Started with the I/O Stream Library 43

 File Input

read myfile.open("test.out",ios::app) and the program would still have
compiled and run, although the end result would be that the first string of test.C
would be appended to test.out instead of to test.C itself.

Reading Input from a File
The statement myfile >> a in the above example reads input into a from the
myfile stream. Input from an fstream or ifstream object resembles input from the
standard input stream cin, in all respects except that the input is a file rather than
standard input, and you use the fstream object name instead of cin. The two
following programs produce the same output when provided with a given set of
input. In the case of stdin.C, the input comes from the standard input device. In
the case of filein.C, the input comes from the file file.in:

In both examples, the program reads the following, in sequence:

 1. Three integers
2. A whitespace-delimited string
3. A string that is delimited either by a new-line character or by a maximum length

of 39 characters
4. A whitespace-delimited string.

Note that, when you define an input operator for a class type, this input operator is
available both to the predefined input stream cin and to any input streams you
define, such as myfile in the above example.

For more information on defining your own input operators, see “Defining an Input
Operator for a Class Type” on page 50.

For more details on reading input from a stream, see “Receiving Input from
Standard Input” on page 35. All techniques for reading input from the standard
input stream can be used to read input from a file, providing your code is changed
so that the cin object is replaced with the name of the fstream object associated
with the input file.

stdin.C filein.C

#include <iostream.h>

void main() {
 int ia,ib,ic;
 char ca[40],cb[40],cc[40];

// cin is predefined
cin >> ia >> ib >> ic

 >> ca;
 cin.getline(cb,sizeof(cb),'\n');

cin >> cc;
// no need to close cin
cout << ia << ca

<< ib << cb
<< ic << cc << endl;

 }

#include <fstream.h>

void main() {
 int ia,ib,ic;
 char ca[40],cb[40],cc[40];
 fstream myfile("file.in",ios::in);

myfile >> ia >> ib >> ic
 >> ca;
 myfile.getline(cb,sizeof(cb),'\n');

myfile >> cc;
 myfile.close();

cout << ia << ca
<< ib << cb
<< ic << cc << endl;

 }

44 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 File Output

Opening a File for Output and Writing to the File
The description of using a file as the input stream in “Opening a File for Input and
Reading from the File” on page 42 provides the basis for explanations in this
section. You may want to read that section first if you have not already done so.

To open a file for output, use the following steps:

1. Declare an fstream or ofstream object to associate with the file, and open it
either when the object is constructed, or later:

 #include <fstream.h>
void main() {

 fstream file1("file1.out",ios::app);
 ofstream file2("file2.out");
 ofstream file3;
 file3.open("file3.out");
 }

You must specify one or more open modes when you open the file, unless you
declare the object as an ofstream object. Open modes are described in “open”
in the OS/390 C/C++ IBM Open Class Library Reference. The advantage of
accessing an output file as an ofstream object rather than as an fstream object
is that the compiler can flag input operations to that object as errors.

Note: OS/390 C/C++ provides overloads of the fstream and ifstream
constructors and their open() functions, which allow you to specify file attributes
such as lrecl and recfm. See the sections on these constructors and
functions in the OS/390 C/C++ IBM Open Class Library Reference for further
information.

2. Use the output operator or ostream member functions to perform output to the
file.

3. Close the file using the close() member function of fstream.

When you define an output operator for a class type, this output operator is
available both to the predefined output streams and to any output streams you
define. For more information on defining your own output operators, see “Defining
an Output Operator for a Class Type” on page 52.

 Chapter 4. Getting Started with the I/O Stream Library 45

 File Output

46 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Associating a File with Stdin or Stdout

Chapter 5. Advanced I/O Stream Topics

This chapter builds on the information in Chapter 4, “Getting Started with the I/O
Stream Library” on page 35, and shows you how to use the I/O Stream Classes to
accomplish these more advanced tasks:

¹ Associating a file with a standard input or output stream
¹ Using filebuf functions to move through a file
¹ Defining an input operator for a class type
¹ Defining an output operator for a class type
¹ Correcting input stream errors
¹ Changing the formatting of stream output
¹ Defining your own format state flags
¹ Using the strstream classes to accept input from and to send output to

character arrays (strings).

If a task you need help with is not listed here, you may find it in Chapter 4, “Getting
Started with the I/O Stream Library” on page 35.

Associating a File with a Standard Input or Output Stream
The iostream_withassign class lets you associate a stream object with one of the
predefined streams cin , cout , cerr , and clog . You can do this, for example, to
write programs that accept input from a file if a file is specified, or from standard
input if no file is specified.

The following program is a simple filter that reads input from a file into a character
array, and writes the array out to a second file. If only one file is specified on the
command line, the output is sent to standard output. If no file is specified, the input
is taken from standard input. The program uses the iostream_withassign
assignment operator to assign an ifstream or ofstream object to one of the
predefined streams.

 CLB3AFLT
// Generic I/O Stream filter, invoked as follows:
// filter [infile [outfile]]

 #include <iostream.h>
 #include <fstream.h>

void main(int argc, char* argv[])
 {
 ifstream* infile;
 ofstream* outfile;

char inputline[4096]; // used to read input lines
int sinl=sizeof(inputline);// used by getline() function
if (argc>1) { // if at least an input file was specified

infile = new ifstream(argv[1]); // try opening it
if (infile->good()) // if it opens successfully

cin = *infile; // assign input file to cin

if (argc>2) { // if an output file was also specified
outfile = new ofstream(argv[2]); // try opening it
if (outfile->good()) // if it opens successfully

cout = *outfile; // assign output file to cout
 }
 }

 cin.getline(inputline,
sizeof(inputline),'\n'); // get first line

 Copyright IBM Corp. 1996, 1998 47

 Moving Through Files with filebuf

while (cin.good()) { // while input is good
 //

// Insert any line-by-line filtering here
 //

cout << inputline << endl; // write line
cin.getline(inputline,sinl,'\n'); // get next line (sinl specifies
} // max chars to read)

if (argc>1) { // if input file was used
infile->close(); // then close it
if (argc>2) { // if output file was used

outfile->close(); // then close it
 }
 }
 }

You can use this example as a starting point for writing a text filter that scans a file
line by line, makes changes to certain lines, and writes all lines to an output file.

Using filebuf Functions to Move Through a File
In a program that receives input from an fstream object (a file), you can associate
the fstream object with a filebuf object, and then use the filebuf object to move
the get or put pointer forward or backward in the file. You can also use filebuf
member functions to determine the length of the file.

To associate an fstream object with a filebuf object, you must first construct the
fstream object and open it. You then use the rdbuf() member function of the
fstream class to obtain the address of the file's filebuf object. Using this filebuf
object, you can move through the file or determine the file's length with the
seekpos() and seekoff() functions. For example:

 CLB3AFIL
// Using the filebuf class to move through a file

#include <fstream.h> // for use of fstream classes
#include <iostream.h> // not really needed since fstream includes it
#include <stdlib.h> // for use of exit() function

void main() {
// declare a streampos object to keep track of the position in filebuf

 streampos Position;

// declare a streamoff object to set stream offsets
// (for use by seekoff and seekpos)

 streamoff Offset=0;

// declare an fstream object and open its file for input
 fstream InputFile("algonq.uin",ios::in);

// check that input was successful, exit if not
if (!InputFile) {

cerr << "Could not open algonq.uin! Exiting...\n";
 exit(-1);
 }

// associate the fstream object with a filebuf pointer
 filebuf *InputBuffer=InputFile.rdbuf();

// read the first line, and display it
 char LineOfFile[128];
 InputFile.getline(LineOfFile,sizeof(LineOfFile),'\n');

cout << LineOfFile << endl;

48 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Moving Through Files with filebuf

// Now skip forward 100 bytes and display another line
 Offset=100;
 Position=InputBuffer->seekoff(Offset,ios::cur,ios::in);
 InputFile.getline(LineOfFile,sizeof(LineOfFile),'\n');

cout << "At position " << Position << ":\n"
<< LineOfFile << endl;

// Now skip back 50 bytes and display another line
 Offset=-50;
 Position=InputBuffer->seekoff(Offset,ios::cur,ios::in);

// ios::cur refers to current position in buffer
 InputFile.getline(LineOfFile,sizeof(LineOfFile),'\n');

cout << "At position " << Position << ":\n"
<< LineOfFile << endl;

// Now go to position 137 and display to the end of its line
 Position=137;
 InputBuffer->seekpos(Position,ios::in);
 InputFile.getline(LineOfFile,sizeof(LineOfFile),'\n');

cout << "At position " << Position << ":\n"
<< LineOfFile << endl;

// Now close the file and end the program
 InputFile.close();
 }

If the file algonq.uin contains the following text:

The trip begins on Round Lake.
We proceed through a marshy portage,
and soon find ourselves in a river whose water is the color of ink.

A heron flies off in the distance.
Frogs croak cautiously alongside the canoes.
We can feel the sun's heat glaring at us from grassy shores.

the output of the example program is:

The trip begins on Round Lake.
At position 131:
ink.
At position 86:
elves in a river whose water is the color of ink.
At position 137:
A heron flies off in the distance.

The following example shows how you can use both encoded and relative byte
offsets to move through a file. Note that encoded offsets are specific to OS/390
C/C++ and programs that use them may not be portable to other VisualAge C++
(formerly C Set ++) compilers.

 CLB3ATSE
// Example of using encoded and relative byte offsets
// in seeking through a file
#include <iomanip.h>
#include <fstream.h>

main() {
fstream fs("tseek.data", ios::out); // create tseek.data
filebuf* fb = fs.rdbuf();

 streamoff off[5];
int pos[5] = {0, 30, 42, 197, 0};

 Chapter 5. Advanced I/O Stream Topics 49

 Defining Your Own Input Operator

for (int i = 0, j = 0; i < 200; ++i) {
if (i == pos[j])

off[j++] = (*fb).seekoff(0L, ios::cur, ios::out);
fs << setw(4) << i;
if (i % 13 == 0 || i % 17 == 0) fs << endl;

 }
 fs.close();

cout << "Open the file in text mode, reposition using encoded\n"
<< "offsets obtained from previous calls to seekoff()" << endl;

 fs.open("tseek.data", ios::in);
fb = fs.rdbuf();

// Exchange off[2] and off[3] so last seek will be backwards
off[4] = off[2]; off[2] = off[3]; off[3] = off[4];
pos[4] = pos[2]; pos[2] = pos[3]; pos[3] = pos[4];

for (j = 0; j < 4; ++j) {
(*fb).seekoff(off[j], ios::beg, ios::in);
fs >> i;
cout << "data at pos" << dec << setfill(' ') << setw(4) << pos[j]

<< " is \"" << setw(4) << i << "\" (encoded offset was 0x"
<< hex << setfill('0') << setw(8) << off[j] << ")" << endl;

if (i != pos[j]) return 37 + 10*j;
 }
 fs.close();
 cout.fill(' ');
 cout.setf(ios::dec, ios::basefield);

cout << "\nOpen the file in binary byteseek mode, reposition using\n"
<< "byte offsets calculated by the user program" << endl;

fs.open("tseek.data", "byteseek", ios::in|ios::binary);
fb = fs.rdbuf();

for (j = 0; j < 4; ++j) {
off[j] = (*fb).seekoff(4*pos[j], ios::beg, ios::in);
fs >> i;
cout << "data at pos" << setw(4) << pos[j] << " is \"" << setw(4) << i

<< "\" (byte offset was " << setw(10) << off[j] << ")" << endl;
if (i != pos[j]) return 77 + 10*j;

 }
}

Defining an Input Operator for a Class Type
An input operator is predefined for all built-in C++ types. If you create a class type
and want to read input from a file or the standard input device into objects of that
class type, you need to define an input operator for that class's type. You define
an istream input operator that has the class type as its second argument. For
example:

 myclass.h
 #include <iostream.h>

class PhoneNumber {
 public:
 int AreaCode;
 int Exchange;
 int Local;

// Copy Constructor:
PhoneNumber(int ac, int ex, int lc) :

AreaCode(ac), Exchange(ex), Local(lc) {}
//... Other member functions

 };

50 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Defining Your Own Input Operator

istream& operator>> (istream& aStream, PhoneNumber& aPhoneNum) {
int tmpAreaCode, tmpExchange, tmpLocal;
aStream >> tmpAreaCode >> tmpExchange >> tmpLocal;
aPhoneNum=PhoneNumber(tmpAreaCode, tmpExchange, tmpLocal);

 return aStream;
 }

The input operator must have the following characteristics:

¹ Its return type must be a reference to an istream.
¹ Its first argument must be a reference to an istream. This argument must be

used as the function's return value.
¹ Its second argument must be a reference to the class type for which the

operator is being defined.

You can define the code performing the actual input any way you like. In the
above example, input is accomplished for the class type by requesting input from
the istream object for all data members of the class type, and then invoking the
copy constructor for the class type. This is a typical format for a user-defined input
operator.

Using the cin Stream in a Class Input Operator
Be careful not to use the cin stream as the input stream when you define an input
operator for a class type, unless this is what you really want to do. In the example
above, if the line:

aStream >> tmpAreaCode >> tmpExchange >> tmpLocal;

is rewritten as:

cin >> tmpAreaCode >> tmpExchange >> tmpLocal;

the input operator functions identically when you use statements in your main
program such as cin >> myNumber. However, if the stream requesting input is not
the predefined stream cin, then redefining an input operator to read from cin will
produce unexpected results. Consider how the following code's behavior changes
depending on whether cin or aStream is used as the stream in the input statement
within the input operator defined above:

 #include <iostream.h>
 #include <fstream.h>
 #include "myclass.h"

void main() {
 PhoneNumber addressBook[40];
 fstream infile("address.txt",ios::in);

for (int i=0;i<40;i++)
infile >> addressBook[i]; // does this read from "address.txt"

// or from standard input?
 //...
 }

In the original example, the definition of the input operator causes the program to
read input from the provided istream object (in this case, the fstream object
infile). The input is therefore read from a file. In the example that uses cin
explicitly within the input operator, the input that is supposedly coming from infile
according to the input statement infile >> addressBook[i] actually comes from
the predefined stream cin.

 Chapter 5. Advanced I/O Stream Topics 51

 Defining Your Own Output Operator

Displaying Prompts in Input Operator Code
You can display prompts for individual data members of a class type within the
input operator definition for that type. For example, you could redefine the
PhoneNumber input operator shown above as:

istream& operator>> (istream& aStream, PhoneNumber& aPhoneNum) {
int tmpAreaCode, tmpExchange, tmpLocal;
cout << "Enter area code: ";
aStream >> tmpAreaCode;
cout << "Enter exchange: ";
aStream >> tmpExchange;
cout << "Enter local: ";
aStream >> tmpLocal;
aPhoneNum=PhoneNumber(tmpAreaCode, tmpExchange, tmpLocal);

 return aStream;
 }

You may be tempted to do this when you anticipate that the source of all input for
objects of a class will be the standard input stream cin. Avoid this practice
wherever possible, because a program using your class may later attempt to read
input into an object of your class from a different stream (for example, an fstream
object attached to a file). In such cases, the prompts are still written to cout even
though input from cin is not consumed by the input operation. Such an interface
does not prevent programs from using your class, but the unnecessary prompts
may puzzle end users.

Defining an Output Operator for a Class Type
An output operator is predefined for all built-in C++ types. If you create a class type
and want to write output of that class type to a file or to any of the predefined
output streams, you need to define an output operator for that class's type. You
define an ostream output operator that has the class type as its second argument.
For example:

 // myclass.h
 #include <iostream.h>

class PhoneNumber {
 public:
 int AreaCode;
 int Exchange;
 int Local;

// Copy Constructor:
PhoneNumber(int ac, int ex, int lc) :

AreaCode(ac), Exchange(ex), Local(lc) {}
//... Other member functions

 };

ostream& operator<< (ostream& aStream, PhoneNumber aPhoneNum) {
aStream << "(" << aPhoneNum.AreaCode << ") "

<< aPhoneNum.Exchange << "-"
<< aPhoneNum.Local << '\n';

 return aStream;
 }

The output operator must have the following characteristics:

¹ Its return type should be a reference to an ostream.
¹ Its first argument must be a reference to an ostream. This argument must be

used as the function's return value.
¹ Its second argument must be of the class type for which the operator is being

defined.

52 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Defining Your Own Output Operator

You can define the code performing the actual output any way you like. In the
above example, output is accomplished for the class type by placing in the output
stream all data members of the class, along with parentheses around the area
code, a space before the exchange, and a hyphen between the exchange and the
local.

Class Output Operators and the Format State
You should consider checking the state of applicable format flags for any stream
you perform output to in a class output operator. At the very least, if you change
the format state in your class output operator, before your operator returns it should
reset the format state to what it was on entry to the operator. For example, if you
design an output operator to always write floating-point numbers at a given
precision, you should save the precision in a temporary on entry to your operator,
then change the precision and do your output, and reset the precision before
returning.

The ios::x_width setting determines the field width for output. Because
ios::x_width is reset after each insertion into an output stream (including insertions
within class output operators you define), you may want to check the setting of
ios::x_width and duplicate it for each output your operator performs. Consider the
following example, in which class Coord_3D defines a three-dimensional co-ordinate
system. If the function requesting output sets the stream's width to a given value
before the output operator for Coord_3D is invoked, the output operator applies that
width to each of the three co-ordinates being output. (Note that it lets the width
reset after the third output so that, from the client code's perspective, ios::x_width
is reset by the output operation, as it would be for built-in types such as float .)

 CLB3AOUT
// Setting the output width in a class output operator

 #include <iostream.h>
 #include <iomanip.h>

class Coord_3D {
 public:
 double X,Y,Z;

Coord_3D(double x, double y, double z) : X(x), Y(y), Z(z) {}
 };

ostream& operator << (ostream& aStream, Coord_3D coord) {
 int startingWidth=aStream.width();

aStream << coord.X
 #ifndef NOSETW

<< setw(startingWidth) // set width again
 #endif
 << coord.Y
 #ifndef NOSETW

<< setw(startingWidth) // set width again
 #endif
 << coord.Z;
 return aStream;
 }

void main() {
 Coord_3D MyCoord(38.162168,1773.59,17293.12);

cout << setw(17) << MyCoord << '\n'
<< setw(11) << MyCoord << endl;

 }

 Chapter 5. Advanced I/O Stream Topics 53

 Correcting Input Stream Errors

If you add #define NOSETW to prevent the two lines containing setw() in the output
operator definition from being compiled, the program produces the output shown
below. Notice that only the first data member of class Coord_3D is formatted to the
desired width.

 38.16221773.5917293.1
 38.16221773.5917293.1

If you do not comment out the lines containing setw(), all three data members are
formatted to the desired width, as shown below:

 38.1622 1773.59 17293.1
 38.1622 1773.59 17293.1

See “Changing the Formatting of Stream Output” on page 56 for more information
on the format state and how to change it within output operators and in client code.

Correcting Input Stream Errors
When an input statement is requesting input of one type, and erroneous input or
input of another type is provided, the error state of the input stream is set to
ios::badbit and ios::failbit, and further input operations may not work properly.
For example, the following code repeatedly displays the text: Enter an integer
value: if the first input provided is a string whose initial characters do not form an
integer value:

 #include <iostream.h>
void main() {

 int i=-1;
while (i<=0) {

cout << "Enter an integer value: " ;
cin >> i;

 }
cout << "The value was " << i << endl;

 }

This program loops indefinitely, given an input such as ABC12, because the
erroneous input causes the error state to be set in the stream, but does not clear
the error state or advance the get pointer in the stream beyond the erroneous
characters. Each time the input operator is called for an int (as in the while loop
above), the same characters are read in.

To clear an input stream and repeat an attempt at input you must add code to do
the following:

1. Clear the stream's error state.
2. Remove the erroneous characters from the stream.
3. Attempt the input again.

You can determine whether the stream's error state has been set in one of the
following ways:

¹ By calling fail() for the stream (shown in the example below)
¹ By calling bad(), oef(), good(), or rdstate().
¹ By using the void* type conversion operator (for example, if (cin)).
¹ By using operator! operator (shown in the comment in the example below)

All of these methods are described in Chapter 5, “ios Class” on page 31 OS/390
C/C++ IBM Open Class Library Reference.

54 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Correcting Input Stream Errors

You can clear the error state by calling clear(), and you can remove the erroneous
characters using ignore(). The example above could be improved, using these
suggestions, as follows:

 #include <iostream.h>
void main() {

 int i=-1;
while (i==-1) {

cout << "Enter an integer value: ";
cin >> i;
while (cin.fail()) { // could also be "while (!cin) {"

 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Please try again: ";
cin >> i;

 }
 }

cout << "The value was " << i << endl;
 }

The ignore() member function with the arguments shown above removes
characters from the input stream until the total number of characters removed
equals 1000, or until the new-line character is encountered, or until EOF is reached.
This example produces the output shown below in regular type, given the input
shown in bold:

Enter an integer value:
 ABC12

Please try again:
 12ABC

The value was 12

Note that, for the second attempt at input, the error state is set after the input of 12,
so the call to cin.fail() after the corrected input returns false. If another integer
input were requested after the while loop ends, the error state would be set and
that input would fail.

When you define an input operator of class type, you can build error-checking code
into your definition. If you do so, you do not have to check for error-causing input
every time you use the input operator for objects of your class type. Consider the
class definition for the PhoneNumber data type shown in “myclass.h” on page 50,
and the following input operator definition:

istream& operator>> (istream& aStream, PhoneNumber& aPhoneNum) {
int AreaCode, Exchange, Local;
aStream >> AreaCode;
while (aStream.fail()) eatNonInts(aStream,AreaCode);

aStream >> Exchange;
while (aStream.fail()) eatNonInts(aStream,Exchange);

aStream >> Local;
while (aStream.fail()) eatNonInts(aStream,Local);

aPhoneNum=PhoneNumber(AreaCode, Exchange, Local);
 return aStream;
 }

The eatNonInts() function in this example should be defined to ignore all
characters in the input stream until the next integer character is encountered, and
then to read the next integer value into the variable provided as its second
argument. The function could be defined as follows:

 Chapter 5. Advanced I/O Stream Topics 55

 Formatting Your Output

void eatNonInts(istream& aStream, int& anInt) {
 char someChar;
 aStream.clear();

while (someChar=aStream.peek(), !isdigit(someChar))
 aStream.get(someChar);

aStream >> anInt;
 }

Now whenever input is requested for a PhoneNumber object and the provided input
contains nonnumeric data, this data is skipped over. Note that this is only a
primitive error-handling mechanism; if the input provided is 416 555 2p45 instead of
416 555 2045, the characters p45 will be ignored and the local is set to 2 rather
than 2045. A more complete example would check each input for the correct
number of digits.

Changing the Formatting of Stream Output
The I/O Stream Classes let you define how output should be formatted on a
stream-by-stream basis within your program. Most formatting applies to numeric
data: what base integers should be written to the output stream in, how many digits
of precision floating-point numbers should have, whether they should appear in
scientific or fixed-point format. Other formatting applies to any of the built-in types,
and to your own types if you design your class output operators to check the format
state of a stream to determine what formatting action to take. (See “Defining an
Output Operator for a Class Type” on page 52 for suggestions on checking the
format state in user-defined output operators.)

This section describes a number of techniques you can use to change the way data
is written to output streams. One common characteristic of most of the methods
described (other than the method of changing the output field's width) is that each
format state setting applies to its output stream until it is explicitly cleared, or is
overridden by a mutually exclusive format state. This differs from the C printf()
family of output functions, in which each printf() statement must define its
formatting information individually.

ios Methods and Manipulators
For some of the format flags defined for the ios class, you can set or clear them
using an ios function and a flag name, or by using a manipulator. (Manipulators
are described in more detail in Chapter 6, “Manipulators” on page 65). With
manipulators you can place the change to a stream's state within a list of outputs
for that stream. The following example shows two ways of changing the base of an
output stream from decimal to octal. The first, which is more difficult to read, uses
the setf() function to set the basefield field in the format state to octal. The
second way uses a manipulator, oct, within the output statement, to accomplish the
same thing.

 #include <iostream.h>
void main() {

 int a=9;
 cout.setf(ios::oct,ios::basefield);

cout << a << endl;
// assume format state gets changed here, so we must change it back

cout << oct << a << endl;
 }

Note that you do not need to qualify a manipulator, provided you do not create a
variable or function of the same name as the manipulator. If a variable oct were

56 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Formatting Your Output

declared at the start of the above example, cout << oct ... would write the
variable oct to standard output. cout << ios::oct ... would change the format
state.

Using setf, unsetf, and flags
There are two versions of the setf() function of ios. One version takes a single
long value newset as an argument. Its effect is to set any flags set in newset,
without affecting other flags. This version is useful for setting flags that are not
mutually exclusive with other flags (for example, ios::uppercase). The other
version takes two long values as arguments. The first argument determines what
flags to set, and the second argument determines which groups of flags to clear
before any flags are set. The second argument lets you clear a group of flags
before setting one of that group. The second argument is useful for flags that are
mutually exclusive. If you try to change the base field of the cout output stream
using cout.setf(ios::oct);, setf() sets ios::oct but it does not clear ios::dec if
it is set, so that integers continue to be written to cout in decimal notation.
However, if you use cout.setf(ios::oct,ios::basefield);, all bits in basefield
are cleared (oct, dec, and hex) before oct is set, so that integers are then written to
cout in octal notation.

To clear format state flags, you can use the unsetf() function, which takes a single
argument indicating which flags to clear.

To set the format state to a particular combination of flags (without regard for the
pre-existing format state), you can use the flags(long flagset) member function
of ios. The value of flagset determines the resulting values of all the flags of the
format state.

The following example demonstrates the use of flags(), setf(), and unsetf().
The main() function changes the flags as follows:

1. The original settings of the format state flags are determined using flags().
These settings are saved in the variable originalFlags.

2. ios::fixed is set, and all other flags are cleared, using flags(ios::fixed).

3. ios::adjustfield is set to ios::right, without affecting other fields, using
setf(ios::right).

4. ios::floatfield is set to ios::scientific, and ios::adjustfield is set to
ios::left, without affecting other fields. The call to setf() is
setf(ios::scientific | ios::left, ios::floatfield|ios::adjustfield).

5. The original format state is restored by calling flags() with an argument of
originalFlags, which contains the format state determined in step 1.

The function showFlags() determines and displays the current flag settings. It
obtains the value of the settings using flags(), and then excludes ios::oct from
the result before displaying the result in octal. This exclusion is done to display the
result in octal without causing the octal setting for ios::basefield to show up in
the program's output.

 Chapter 5. Advanced I/O Stream Topics 57

 Formatting Your Output

 CLB3ASTF
//Using flags(), flags(long), setf(long), and setf(long,long)

 #include <iostream.h>

void showFlags() {
// save altered flag settings, but clear ios::oct from them

long flagSettings = cout.flags() & (˜ios::oct) ;
// display those flag settings in octal

cout << oct << flagSettings << endl;
 }

void main () {
// get and display current flag settings using flags()

cout << "flags(): ";
long originalFlags = cout.flags();

 showFlags();

// change format state using flags(long)
cout << "flags(ios::fixed): ";

 cout.flags(ios::fixed);
 showFlags();

// change adjust field using setf(long)
cout << "setf(ios::right): ";

 cout.setf(ios::right);
 showFlags();

// change floatfield using setf(long, long)
cout << "setf(ios::scientific | ios::left,\n"

<< "ios::floatfield | ios::adjustfield): ";
cout.setf(ios::scientific | ios::left,ios::floatfield |ios::adjustfield);

 showFlags();

// reset to original setting
cout << "flags(originalFlags): ";

 cout.flags(originalFlags);
 showFlags();
 }

This example produces the following output:

flags(): 21
flags(ios::fixed): 10000
setf(ios::right): 10004
setf(ios::scientific | ios::left,
ios::floatfield | ios::adjustfield): 4002
flags(originalFlags): 21

Note:

If you specify conflicting flags, the results are unpredictable. For example,
the results will be unpredictable if you set both ios::left and ios::right
in the format state of iosobj. You should set only one flag in each of the
following sets:

¹ ios::left, ios::right, ios::internal
¹ ios::dec, ios::oct, ios::hex

 ¹ ios::scientific, ios::fixed.

58 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Formatting Your Output

Changing the Notation of Floating-Point Values
You can change the notation and precision of floating-point values to match your
program's output requirements. To change the precision with which floating-point
values are written to output streams, use ios::precision(). By default, an output
stream writes float and double values using six significant digits. The following
example changes the precision for the cout predefined stream to 17:

 cout.precision(17);

You can also change between scientific and fixed notations for floating-point values.
Use the two-parameter version of the setf() member function of ios to set the
appropriate notation. The first argument indicates the flag to be set. The second
argument indicates the field of flags the change applies to. For example, to change
the notation of an output stream called File6, use:

 File6.setf(ios::scientific,ios::floatfield);

This statement clears the settings of the ios::floatfield field and then sets it to
ios::scientific.

The ios::uppercase format state variable affects whether the “e” used in
scientific-notation floating-point values is in uppercase or lowercase. By default, it
is in lowercase. To change the setting to uppercase for an output stream called
TaskQueue, use:

 TaskQueue.setf(ios::uppercase);

The following example shows the effect on floating-point output of changes made to
an output stream using ios format state flags and the precision member function:

 CLB3AFLO
// How format state flags and precision() affect output

 #include <iostream.h>

void main() {
 double a=3.14159265358979323846;
 double b;
 long originalFlags=cout.flags();
 int originalPrecision=cout.precision();

for (double exp=1.;exp<1.0E+25;exp*=100000000.) {
cout << "Printing new value for b:\n";
b=a*exp; // Initialize b to a larger magnitude of a

// Now print b in a number of ways:
// In fixed decimal notation

 cout.setf(ios::fixed,ios::floatfield);
cout << " " << b << '\n';
// In scientific notation

 cout.setf(ios::scientific,ios::floatfield);
cout << " " <<b << '\n';
// Change the exponent from lower to uppercase

 cout.setf(ios::uppercase);
cout << " " <<b << '\n';
// With 12 digits of precision, scientific notation

 cout.precision(12);
cout << " " <<b << '\n';
// Same precision, fixed notation

 cout.setf(ios::fixed,ios::floatfield);
// Now set everything back to defaults

 cout.flags(originalFlags);
 cout.precision(originalPrecision);
 }
 }

 Chapter 5. Advanced I/O Stream Topics 59

 Formatting Your Output

The output from this program is:

Printing new value for b:
 3.141593
 3.141593e+00
 3.141593E+00
 3.141592653590E+00
Printing new value for b:
 314159265.358979
 3.141593e+08
 3.141593E+08
 3.141592653590E+08
Printing new value for b:
 31415926535897932.000000
 3.141593e+16
 3.141593E+16
 3.141592653590E+16
Printing new value for b:
 3141592653589792800000000.000000
 3.141593e+24
 3.141593E+24
 3.141592653590E+24

Changing the Base of Integral Values
For output of integral values, you can choose decimal, hexadecimal, or octal
notation. You can either use setf() to set the appropriate ios flag, or you can
place the appropriate parameterized manipulator in the output stream. The
following example shows both methods:

 CLB3ABAS
//Showing the base of integer values

 #include <iostream.h>
 #include <iomanip.h>

void main() {
 int a=148;

cout.setf(ios::showbase); // show the base of all integral output:
// leading 0x means hexadecimal,
// leading 01 to 07 means octal,
// leading 1 to 9 means decimal

 cout.setf(ios::oct,ios::basefield);
// change format state to octal

cout << a << '\n';
 cout.setf(ios::dec,ios::basefield);

// change format state to decimal
cout << a << '\n';

 cout.setf(ios::hex,ios::basefield);
// change format state to hexadecimal

cout << a << '\n';
cout << oct << a << '\n'; // Parameterized manipulators clear the
cout << dec << a << '\n'; // basefield, then set the appropriate
cout << hex << a << '\n'; // flag within basefield.

 }

The ios::showbase flag determines whether numbers in octal or hexadecimal
notation are written to the output stream with a leading “0” or “0x,” respectively. You
can set ios::showbase where you intend to use the output as input to an I/O
Stream input stream later on. If you do not set ios::showbase and you try to use
the output as input to another stream, octal values and those hexadecimal values
that do not contain the digits a-f will be interpreted as decimal values.
Hexadecimal values that do contain any of the digits a-f will cause an input stream
error.

60 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Defining Your Own Format State Flags

Setting the Width and Justification of Output Fields
For built-in types, the output operator does not write any leading or trailing spaces
around values being written to an output stream unless you explicitly set the field
width of the output stream using the width() member function of ios or the setw()
parameterized manipulator. Both width() and setw() have only a short-term effect
on output. As soon as a value is written to the output stream, the field width is
reset so that once again no leading or trailing spaces are inserted. If you want
leading or trailing blanks to appear on successively written values, you can use the
setw() manipulator within the output statement. For example:

 #include <iostream.h>
#include <iomanip.h> // required for use of setw()
void main() {

 int i=-5,j=7,k=-9;
cout << setw(5) << i << setw(5) << j << setw(5) << k << endl;

 }

You can also specify how values should be formatted within their fields. If the
current width setting is greater than the number of characters required for the
output, you can choose between right justification (the default), left justification, or,
for numeric values, internal justification (the sign, if any, is left-justified, while the
value is right-justified). For example, the output statement above could be replaced
with:

cout << setw(5) << i; // -5
 cout.setf(ios::left,ios::adjustfield);

cout << setw(5) << j; // 7
 cout.setf(ios::internal,ios::adjustfield);

cout << setw(5) << k << endl; // -9

The following shows two lines of output, the first from the original example, and the
second after the output statement has been modified to use the field justification
shown above:

 -5 7 -9
 -57 - 9

Defining Your Own Format State Flags
If you have defined your own input or output operator for a class type, you may
want to offer some flexibility in how you handle input or output of instances of that
class. The I/O Stream Classes let you define stream-specific flags that you can
then use with the format state member functions such as setf() and unsetf().
You can then code checks for these flags in the input and output operators you
write for your class types, and determine how to handle input and output according
to the settings of those flags.

For example, suppose you develop a program that processes customer names and
addresses. In the original program, the postal code for each customer is written to
the output file before the country name. However, because of postal regulations,
you are instructed to change the record order so that the postal code appears after
the country name. The following example shows a program that translates from the
old file format to the new file format, or from the new file format to the old.

The program checks the input file for an exclamation mark as the first byte. If one
is found, the input file is in the new format, and the output file should be in the old
format. Otherwise the reverse is true. Once the program knows which file should
be in which format, it requests a free flag from each file's stream object. It reads in

 Chapter 5. Advanced I/O Stream Topics 61

 Defining Your Own Format State Flags

and writes out each record, and closes the file. The input and output operators for
the class check the format state for the defined flag, and order their output
accordingly.

 CLB3ABIT
// Defining your own format flags

 #include <fstream.h>
 #include <stdlib.h>

 long InFileFormat=0;
 long OutFileFormat=0;

class CustRecord {
 public:
 int Number;
 char Name[48];
 char Phone[16];
 char Street[128];
 char City[64];
 char Country[64];
 char PostCode[10];
 };

ostream& operator<<(ostream &os, CustRecord &cust) {
os << cust.Number << '\n'

 << cust.Name << '\n'
 << cust.Phone << '\n'

<< cust.Street << '\n'
 << cust.City << '\n';

if (os.flags() & OutFileFormat) // New file format
os << cust.Country << '\n'

<< cust.PostCode << endl;
else // Old file format

os << cust.PostCode << '\n'
<< cust.Country << endl;

 return os;
 }

istream& operator>>(istream &is, CustRecord &cust) {
is >> cust.Number;
is.ignore(1000,'\n'); // Ignore anything up to and including new line

 is.getline(cust.Name,48);
 is.getline(cust.Phone,16);
 is.getline(cust.Street,128);
 is.getline(cust.City,64);

if (is.flags() & InFileFormat) { // New file format!
 is.getline(cust.Country,64);
 is.getline(cust.PostCode,10);
 }
 else {
 is.getline(cust.PostCode,10);
 is.getline(cust.Country,64);
 }
 return is;
 }

void main(int argc, char* argv[]) {
if (argc!=3) { // Requires two parameters

cerr << "Specify an input file and an output file\n";
 exit(1);
 }
 ifstream InFile(argv[1]);
 ofstream OutFile(argv[2],ios::out);

InFileFormat = InFile.bitalloc(); // Allocate flags for
OutFileFormat = OutFile.bitalloc(); // each fstream

62 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 String Manipulation Using strstream

if (InFileFormat==0 || // Exit if no flag could
OutFileFormat==0) { // be allocated
cerr << "Could not allocate a user-defined format flag.\n";

 exit(2);
 }

if (InFile.peek()=='!') { // '!' means new format
InFile.setf(InFileFormat); // Input file is in new format
OutFile.unsetf(OutFileFormat); // Output file is in old format
InFile.get(); // Clear that first byte

 }
else { // Otherwise, write '!' to

OutFile << '!'; // the output file, set the
OutFile.setf(OutFileFormat); // output stream's flag, and
InFile.unsetf(InFileFormat); // clear the input stream's

 } // flag

 CustRecord record;
while (InFile.peek()!=EOF) { // Now read the input file

InFile >> record; // records and write them
OutFile << record; // to the output file,

 }

InFile.close(); // Close both files
 OutFile.close();
 }

The following table shows sample input and output for the program. If you take the
output from one run of the program and use it as input in a subsequent run, the
output from the later run is the same as the input from the preceding one.

Note that, in this example, a simpler implementation could have been to define a
global variable that describes the desired form of output. The problem with such an
approach is that later on, if the program is enhanced to support input from or output
to a number of different streams simultaneously, all output streams would have to
be in the same state (as far as the user-defined format variable is concerned), and
all input streams would have to be in the same state. By making the user-defined
format flag part of the format state of a stream, you allow formatting to be
determined on a stream-by-stream basis.

Input File Output File
3848
John Smith
4163341234
35 Baby Point Road
Toronto
M6S 2G2
Canada
1255
Jean Martin
0418375882
48 bis Ave. du Belloy
Le Vesinet
78110
France

!3848
John Smith
4163341234
35 Baby Point Road
Toronto
Canada
M6S 2G2
1255
Jean Martin
0418375882
48 bis Ave. du Belloy
Le Vesinet
France
78110

Using the strstream Classes for String Manipulation
You can use the strstream classes to perform formatted input and output to arrays
of characters in memory. If you create formatted strings using these classes, your
code will be less error-prone than if you use the sprintf() function to create
formatted arrays of characters.

Note: For new applications, you may want to consider using the Application
Support class IString, rather than strstream, to handle strings. The IString class

 Chapter 5. Advanced I/O Stream Topics 63

 String Manipulation Using strstream

provides a much broader range of string-handling capabilities than strstream,
including the ability to use mathematical operators such as + (to concatenate two
strings), = (to copy one string to another), and == (to compare two strings for
equality). See Chapter 19, “String Classes” on page 199 for further information.

You can use the strstream classes to retrieve formatted data from strings and to
write formatted data out to strings. This capability can be useful in situations such
as the following:

¹ Your application needs to send formatted data to an external function that will
display, store, or print the formatted data. In such cases, your application,
rather than the external function, formats the data.

¹ Your application generates a sequence of formatted outputs, and requires the
ability to change earlier outputs as later outputs are determined and placed in
the stream, before all outputs are sent to an output device.

¹ Your application needs to parse the environment string or another string
already in memory, as if that string were formatted input.

You can read input from an strstream, or write output to it, using the same I/O
operators as for other streams. You can also write a string to a stream, then read
that string as a series of formatted inputs. In the following example, the function
add() is called with a string argument containing representations of a series of
numeric values. The add() function writes this string to a two-way strstream
object, then reads double values from that stream, and sums them, until the stream
is empty. add() then writes the result to an ostrstream, and returns
OutputStream.str(), which is a pointer to the character string contained in the
output stream. This character string is then sent to cout by main().

 CLB3ASAD
// Using the strstream classes to parse an argument list

 #include <strstream.h>
 char* add(char*);

void main() {
cout << add("1 27 32.12 518") << endl;

 }

char* add(char* addString) {
 double value=0,sum=0;
 strstream TwoWayStream;
 ostrstream OutputStream;

TwoWayStream << addString << endl;
for (;;) {

TwoWayStream >> value;
if (TwoWayStream) sum+=value;

 else break;
 }

OutputStream << "The sum is: " << sum << "." << ends;
 return OutputStream.str();
 }

This program produces the following output:

The sum is: 578.12.

64 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Simple and Parameterized Manipulators

 Chapter 6. Manipulators

This chapter introduces manipulators. Manipulators let you change the format state
of streams, using the same syntax you use to insert or extract values from those
streams.

Introduction to Manipulators
Manipulators provide a convenient way of changing the characteristics of an input
or output stream, using the same syntax that is used to insert or extract values.
With manipulators, you can embed a function call in an expression that contains a
series of insertions or extractions. Manipulators usually provide shortcuts for
sequences of iostream library operations. See “Simple Manipulators and
Parameterized Manipulators” for a description of the two kinds of manipulators.

The iomanip.h header file contains a definition for a macro IOMANIPdeclare().
IOMANIPdeclare() takes a type name as an argument and creates a series of
classes you can use to define manipulators for a given kind of stream. Calling the
macro IOMANIPdeclare() with a type as an argument creates a series of classes
that let you define manipulators for your own classes. If you call IOMANIPdeclare()
with the same argument more than once in a file, you will get a syntax error.

Simple Manipulators and Parameterized Manipulators
There are two kinds of manipulators:

¹ Simple manipulators do not take any arguments. The following classes have
built-in simple manipulators:

 – ios
 – istream
 – ostream

¹ Parameterized manipulators require one or more arguments. setfill (near
the bottom of the iomanip.h header file) is an example of a parameterized
manipulator. You can create your own parameterized manipulators and your
own simple manipulators.

The following example shows the uses of both simple and parameterized
manipulators. It defines a parameterized manipulator that prints the character <,
sets the format state of the output stream to right-justified, and sets the width to the
argument with which the manipulator was called. The next output is then
right-justified within the specified field width, after the <. The example also defines
a simple manipulator that inserts the character > into the output stream, and inserts
a new-line and flushes the stream by using the endl predefined simple manipulator.

 CLB3AMN2
// Using simple and parameterized manipulators

 #include <iostream.h>
 #include <iomanip.h>

 Copyright IBM Corp. 1996, 1998 65

 Creating Simple Manipulators

ostream& rjust(ostream& os, int n) { // Parameterized manipulator - set
os.setf(ios::right,ios::adjustfield); // format flags to right justify,
return os << '<' << setw(n); // then print '<', then set width
} // to manipulator's parameter.

OMANIP(int) rjust(int n) { return OMANIP(int)(rjust,n);}

ostream& endrj (ostream& os) { // Simple manipulator -- place the
return os << '>' << endl; // character '>' in stream, then
} // a newline character, and flush.

// Notice that, in this example, the simple manipulator uses a
// predefined simple manipulator (endl), while the parameterized
// manipulator uses a predefined parameterized manipulator (setw).

void main() {
cout << "Employee name:" << rjust(20) << "Sceeles, Darryn" << endrj

<< "Salary: " << rjust(20) << "$4.25/hour" << endrj
<< "Next raise: " << rjust(20) << "9/19/98" << endrj;

 }

This program produces the following output:

Employee name:< Sceeles, Darryn>
Salary: < $4.25/hour>
Next raise: < 9/19/98>

Creating Simple Manipulators for Your Own Types
The I/O Stream Library gives you the facilities to create simple manipulators for
your own types. Simple manipulators that manipulate istream objects are accepted
by the following input operators:

istream istream::operator>> (istream&, istream& (*f) (istream&));
istream istream::operator>> (istream&, ios&(*f) (ios&));

Simple manipulators that manipulate ostream objects are accepted by the following
output operators:

ostream ostream::operator<< (ostream&, ostream&(*f) (ostream&));
ostream ostream::operator<< (ostream&, ios&(*f) (ios&));

The definition of a simple manipulator depends on the type of object that it
modifies. The following table shows sample function definitions to modify istream,
ostream, and ios objects.

For example, if you want to define a simple manipulator line that inserts a line of
dashes into an ostream object, the definition could look like this:

ostream &line(ostream& os) {
return os << "\n--------------------------------"

 << "--------------------------------\n";
 }

Thus defined, the line manipulator could be used like this:

cout << line << "WARNING! POWER-OUT IS IMMINENT!" << line << flush;

Class of object Sample function definition

istream istream &fi(istream&){ /*...*/ }

ostream ostream &fo(ostream&){ /*...*/ }

ios ios &fios(ios&){ /*...*/ }

66 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Creating Parameterized Manipulators

This statement produces the following output:

--
WARNING! POWER-OUT IS IMMINENT!
--

Creating Parameterized Manipulators for Your Own Types
The I/O Stream Library gives you the facilities to create parameterized manipulators
for your own types. Follow these steps to create a parameterized manipulator that
takes an argument of a particular type tp:

1. Call the macro IOMANIPdeclare(tp). Note that tp must be a single identifier.
For example, if you want tp to be a reference to a long double value, use
typedef to make a single identifier to replace the two identifiers that make up
the type label long double:

typedef long double& LONGDBLREF

2. Determine the class of your manipulator. If you want to define the manipulator
as shown in “Example of Defining an APP Parameterized Manipulator” on
page 68, choose a class that has APP in its name (an APP class, also known as
an applicator). If you want to define the manipulator as shown in “Example of
Defining a MANIP Parameterized Manipulator” on page 68, choose a class that
has MANIP in its name (a MANIP class). Once you have determined which type
of class to use, the particular class that you choose depends on the type of
object that the manipulator is going to manipulate. The following table shows
the class of objects to be modified, and the corresponding manipulator classes.

3. Define a function f that takes an object of the class tp as an argument. The
definition of this function depends on the class you chose in step 2, and is
shown in the following table:

4. If you chose one of the APP classes in step 2, define the manipulator as shown
in “Example of Defining an APP Parameterized Manipulator” on page 68. If
you chose one of the MANIP classes in step 2, define the manipulator as shown
in “Example of Defining a MANIP Parameterized Manipulator” on page 68.
These two methods produce equivalent manipulators.

Class to be modified Manipulator class

istream IMANIP(tp) or IAPP(tp)

ostream OMANIP(tp) or OAPP(tp)

iostream IOMANIP(tp) or IOAPP(tp)

The ios part of istream objects or ostream
objects

SMANIP(tp) or SAPP(tp)

Class chosen Sample definition

IMANIP(tp) or IAPP(tp) istream &f(istream&, tp){/ *... */ }

OMANIP(tp) or OAPP(tp) ostream &f(ostream&, tp){/* ... */ }

IOMANIP(tp) or IOAPP(tp) iostream &f(iostream&, tp){/* ... */ }

SMANIP(tp) or SAPP(tp) ios &f(ios&, tp){/* ... */ }

 Chapter 6. Manipulators 67

 Creating Parameterized Manipulators

Note: Parameterized manipulators defined with IOMANIP or IOAPP are not
associative. This means that you cannot use such manipulators more than
once in a single output statement. See “Examples of Nonassociative
Parameterized Manipulators” on page 69 for more details.

Example of Defining an APP Parameterized Manipulator
In the following example, the macro IOMANIPdeclare is called with the user-defined
class my_class as an argument. One of the classes that is produced,
OAPP(my_class), is used to define the manipulator pre_print.

 CLB3AIOM
 // Creating and using parameterized manipulators

 #include <iomanip.h>

// declare class

class my_class {
 public:

char * s1;
const char c;
unsigned short ctr;
my_class(char *theme, const char suffix,

unsigned short times):
s1(theme), c(suffix), ctr(times) {}

 };

// print a character an indicated number of times
// followed by a string

ostream& produce_prefix(ostream& o, my_class mc) {
for (register i=mc.ctr; i; --i) o << mc.c ;
o << mc.s1;

 return o;
 }

 IOMANIPdeclare(my_class);

// define a manipulator for the class my_class

 OAPP(my_class) pre_print=produce_prefix;

void main() {
 my_class obj("Hello",'-',10);

cout << pre_print(obj) << endl;
 }

This program produces the following output:

----------Hello

Example of Defining a MANIP Parameterized Manipulator
In the following example, the macro IOMANIPdeclare is called with the user-defined
class my_class as an argument. One of the classes that is produced,
OMANIP(my_class), is used to define the manipulator pre_print().

#include <iostream.h>
#include <iomanip.h>

class my_class {
public:

char * s1;
const char c;
unsigned short ctr;

68 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Creating Parameterized Manipulators

my_class(char *theme, const char suffix,
unsigned short times):
s1(theme), c(suffix), ctr(times) {};

};

// print a character an indicated number of times
// followed by a string

ostream& produce_prefix(ostream& o, my_class mc) {
for (register int i=mc.ctr; i; --i) o << mc.c ;
o << mc.s1;

 return o;
}

IOMANIPdeclare(my_class);

// define a manipulator for the class my_class

OMANIP(my_class) pre_print(my_class mc) {
return OMANIP(my_class) (produce_prefix,mc);

}

void main()
{
 my_class obj("Hello",'-',10);

cout << pre_print(obj) << "\0" << endl;
}

This example produces the same output as the previous example.

Examples of Nonassociative Parameterized Manipulators
The following example demonstrates that parameterized manipulators defined with
IOMANIP or IOAPP are not associative. The parameterized manipulator mysetw() is
defined with IOMANIP. mysetw() can be applied once in any statement, but if it is
applied more than once, it causes a compile-time error. To avoid such an error,
put each application of mysetw into a separate statement.

 CLB3AMN1
// Nonassociative parameterized manipulators

 #include <iomanip.h>

iostream& f(iostream & io, int i) {
 io.width(i);
 return io;
 }

IOMANIP (int) mysetw(int i) {
return IOMANIP(int) (f,i);

 }

 iostream_withassign ioswa;

void main() {
ioswa = cout;
int i1 = 8, i2 = 14;

 //
// The following statement does not cause a compile-time

 // error.
 //

ioswa << mysetw(3) << i1 << endl;
 //

// The following statement causes a compile-time error
// because the manipulator mysetw is applied twice.

 //
ioswa << mysetw(3) << i1 << mysetw(5) << i2 << endl;

 Chapter 6. Manipulators 69

 Creating Parameterized Manipulators

 //
// The following statements are equivalent to the previous
// statement, but they do not cause a compile-time error.

 //
ioswa << mysetw(3) << i1;
ioswa << mysetw(5) << i2 << endl;

 }

70 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

Part 3. The Collection Class Library

Chapter 7. Overview of the Collection Class Library 73
Benefits of the Collection Class Library . 73
Concrete Classes Provided by the Library . 73
Types of Classes in the Collection Class Library 77
Flat Collections . 78
Restricted Access . 81
Trees . 82
Auxiliary Classes . 83
The Overall Implementation Structure . 83

Chapter 8. Instantiating and Using the Collection Classes 89
Instantiation and Object Definition . 89
Adding, Removing, and Replacing Elements . 90
Cursors . 93
Iterating over Collections . 96
Copying and Referencing Collections . 99
Bounded and Unbounded Collections . 100

Chapter 9. Element Functions and Key-Type Functions 101
Introduction to Element Functions and Key-Type Functions 101
Using Member Functions . 102
Using Separate Functions . 103
Using Element Operation Classes . 105
Functions for Derived Element Classes . 109
Using Smart Pointers . 111

Chapter 10. Tailoring a Collection Implementation 121
Introduction . 121
Replacing the Default Implementation . 121
The Based-On Concept . 122
Provided Implementation Variants . 122
Features of Provided Implementation Variants 123

Chapter 11. Polymorphism and the Collections 131
Introduction to Polymorphism . 131
Using the Abstract Class Hierarchy . 131
Adding and Overloading Member Functions . 132

Chapter 12. Support for Notifications . 135

Chapter 13. Thread Safety and the Collection Classes 139
Guard Objects . 139
Restrictions . 141

Chapter 14. Exception Handling . 143
Introduction to Exception Handling . 143
Precondition and Defined Behavior . 144
Levels of Exception Checking . 145
List of Exceptions . 145

 Copyright IBM Corp. 1996, 1998 71

The Hierarchy of Exceptions . 147

Chapter 15. Collection Class Library Tutorials 149
Preparing for the Lessons . 150
Lesson 1: Defining a Simple Collection of Integers 150
Lesson 2: Adding, Listing, and Removing Elements 153
Lesson 3: Changing the Element Type . 158
Lesson 4: Changing the Collection . 163
Lesson 5: Changing the Implementation Variant 171
Errors When Compiling or Running the Lessons 173
Other Tutorials . 173

Chapter 16. Solving Problems in the Collection Class Library 177
Cursor Usage . 177
Element Functions and Key-Type Functions . 178
Key Access Function - How to Return the Key (1) 179
Key Access Function - How to Return the Key (2) 180
Definition of Key-Type Functions . 180
Exception Tracing . 181
Declaration of Template Arguments and Element Functions (1) 181
Declaration of Template Arguments and Element Functions (2) 181
Declaration of Template Arguments and Element Functions (3) 182
Default Constructor . 182

Chapter 17. Compatibility Information . 185
Compatible Items . 185
Incompatible Items . 186

72 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Concrete Classes

Chapter 7. Overview of the Collection Class Library

A C++ collection is an abstract concept, or a C++ class implementing an abstract
concept, that allows you to manipulate objects in a group. Collections are used to
store and manage elements (or objects) of a user-defined type. Different
collections have different internal structures, and different access methods for
storage and retrieval of objects.

This chapter describes the types of concrete collections provided by the library,
introduces the classes that make up the Collection Class Library, and explains
some of the key concepts that are used to describe the Collection Class Library.

Benefits of the Collection Class Library
In addition to implementing the common abstract data types efficiently and reliably,
the Collection Class Library gives you the following benefits:

¹ A framework of properties to help you decide which abstract data type is
appropriate in a given situation

¹ A choice about how the abstract data type you have chosen is implemented by
the Collection Class Library

The Collection Class Library lets you choose the appropriate abstract data type for
a given situation by providing collection classes that are a complete, systematic,
and consistent combination of basic properties. These properties, which are
explained in “Flat Collections” on page 78, help you to select abstract data types
that are at the appropriate level of abstraction. In a particular application, for
example, you may have the choice between using a bag and a key sorted set. The
properties of these two collections will help you decide which one is more
appropriate.

Once you have chosen the appropriate abstract data type, the Collection Class
Library offers you a choice of implementations for it. Each abstract data type has a
common interface with all of its possible implementations. It is easy to replace one
implementation with another for performance reasons or if the requirements of your
application change.

Concrete Classes Provided by the Library
This section lists the concrete collections of the Collection Class Library, and
provides a verbal description of a potential application of each collection type.
These descriptions are also found in the individual class chapters in the Collection
Class Library section of the OS/390 C/C++ IBM Open Class Library Reference.
You can use these descriptions to understand the characteristics and behavior of
each concrete collection, and of the overall capabilities of the Collection Classes.

 Copyright IBM Corp. 1996, 1998 73

 Concrete Classes

 Bag
An example of using a bag is a program for entering observations on species of
plants and animals found in a river. Each time you spot a plant or animal in the
river, you enter the name of the species into the collection. If you spot a species
twice during an observation period, the species is added twice, because a bag
supports multiple elements. You can locate the name of a species that you have
observed, and you can determine the number of observations of that species, but
you cannot sort the collection by species, because a bag is an unordered
collection. If you want to sort the elements of a bag, use a sorted bag instead.

 Sorted Bag
An example of using a sorted bag is a program for entering observations on the
types of stones found in a riverbed. Each time you find a stone on the riverbed,
you enter the stone's mineral type into the collection. You can enter the same
mineral type for several stones, because a sorted bag supports multiple elements.
You can search for stones of a particular mineral type, and you can determine the
number of observations of stones of that type. You can also display the contents of
the collection, sorted by mineral type, if you want a complete list of observations
made to date.

 Key Bag
An example of using a key bag is a program that manages the distribution of
combination locks to members of a fitness club. The element key is the number
that is printed on the back of each combination lock. Each element also has data
members for the club member's name, member number, and so on. When you join
the club, you are given one of the available combination locks, and your name,
member number, and the number on the combination lock are entered into the
collection. Because a given number on a combination lock may appear on several
locks, the program allows the same lock number to be added to the collection
multiple times. When you return a lock because you are leaving the club, the
program finds the elements whose key matches your lock's serial number, and
deletes the matching element that has your name associated with it.

Key Sorted Bag
An example of using a key sorted bag is a program that maintains a list of families,
sorted by the number of family members in each family. The key is the number of
family members. You can add an element whose key is already in the collection
(because two families can have the same number of members), and you can
generate a list of families sorted by size. You cannot locate a family except by its
key, because a key sorted bag does not support element equality.

 Set
An example of a set is a program that creates a packing list for a box of free
samples to be sent to a warehouse customer. The program searches a database
of in-stock merchandise, and selects ten items at random whose price is below a
threshold level. Each item is then added to the set. The set does not allow an
item to be added if it is already present in the collection, ensuring that a customer
does not get two samples of a single product. The set is not sorted, and elements
of the set cannot be located by key.

74 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Concrete Classes

 Sorted Set
An example of using a sorted set is a program that tests numbers to see if they are
prime. Two complementary sorted sets are used, one for prime numbers, and one
for nonprime numbers. When you enter a number, the program first looks in the
set of nonprime numbers. If the value is found there, the number is nonprime. If
the value is not found there, the program looks in the set of prime numbers. If the
value is found there, the number is prime. Otherwise the program determines
whether the number is prime or nonprime, and places it in the appropriate sorted
set. The program can also display a list of prime or nonprime numbers, beginning
at the first prime or nonprime following a given value, because the numbers in a
sorted set are sorted from smallest to largest.

 Key Set
An example of using a key set is a program that allocates rooms to patrons
checking into a hotel. The room number serves as the element's key, and the
patron's name is a data member of the element. When you check in at the front
desk, the clerk pulls a room key from the board, and enters that key's number and
your name into the collection. When you return the key at check-out time, the
record for that key is removed from the collection. You cannot add an element to
the collection that is already present, because there is only one key for each room.

Key Sorted Set
An example of using a key sorted set is a program that keeps track of canceled
credit card numbers and the individuals to whom they are issued. Each card
number occurs only once, and the collection is sorted by card number. When a
merchant enters a customer's card number into a point-of-sale terminal, the
collection is checked to see if that card number is listed in the collection of
canceled cards.

 Map
An example of using a map is a program that translates integer values between the
ranges of 0 and 20 to their written equivalents, from their written forms to their
numeric forms. Two maps are created, one with the integer values as keys, one
with the written equivalents as keys. You can enter a number, and that number is
used as a key to locate the written equivalent. You can enter a written equivalent
of a number, and that text is used as a key to locate the value. A given key always
matches only one element. You cannot add an element with a key of 1 or “one” if
that element is already present in the collection.

 Sorted Map
An example of using a sorted map is a program that matches the names of rivers
and lakes to their coordinates on a topographical map. The river or lake name is
the key. You cannot add a lake or river to the collection if it is already present in
the collection. You can display a list of all lakes and rivers, sorted by their names,
and you can locate a given lake or river by its key, to determine its coordinates.

 Relation
An example of using a relation is a program that maintains a list of all your
relatives, with an individual's relationship to you as the key. You can add an aunt,
uncle, grandmother, daughter, father-in-law, and so on. You can add an aunt even
if an aunt is already in the collection, because you can have several relatives who
have the same relationship to you. (For unique relationships such as mother or
father, your program would have to check the collection to make sure it did not

 Chapter 7. Overview of the Collection Class Library 75

 Concrete Classes

already contain a family member with that key, before adding the family member.)
You can locate a member of the family, but the family members are not in any
particular order.

 Sorted Relation
An example of using a sorted relation is a program used by telephone operators to
provide directory assistance. The computerized directory is a sorted relation whose
key is the name of the individual or business associated with a telephone number.
When a caller requests the number of a given person or company, the operator
enters the name of that person or company to access the phone number. The
collection can have multiple identical keys, because two individuals or companies
might have the same name. The collection is sorted alphabetically, because once
a year it is used as the source material for a printed telephone directory.

 Sequence
An example of a sequence is a program that maintains a list of the words in a
paragraph. The order of the words is obviously important, and you can add or
remove words at a given position, but you cannot search for individual words
except by iterating through the collection and comparing each word to the word you
are searching for. You can add a word that is already present in the sequence,
because a given word may be used more than once in a paragraph.

 Equality Sequence
An example of using an equality sequence is a program that calculates, and places
in a collection, members of the Fibonacci series, which is a series of integers in
which each integer is equal to the sum of the two preceding integers. Multiple
elements of the same value are allowed. For example, the sequence begins with
two instances of the value 1. Element equality allows you to search for a given
element, for example 8, and find out what element follows it in the sequence.

 Heap
You can compare using a heap collection to managing the scrap metal entering a
scrapyard. Pieces of scrap are placed in the heap in an arbitrary location, and an
element can be added multiple times (for example, the rear left fender from a
particular kind of car). When a customer requests a certain amount of scrap,
elements are removed from the heap in an arbitrary order until the required amount
is reached. You cannot search for a specific piece of scrap except by examining
each piece of scrap in the heap and manually comparing it to the piece you are
looking for.

 Stack
An example of using a stack is a program that keeps track of daily tasks that you
have begun to work on but that have been interrupted. When you are working on a
task and something else comes up that is more urgent, you enter a description of
the interrupted task and where you stopped it into your program, and the task is
pushed onto the stack. Whenever you complete a task, you ask the program for
the most recently saved task that was interrupted. This task is popped off the
stack, and you resume your work where you left off. When you attempt to pop an
item off the stack and no item is available, you have completed all your tasks.

76 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Types of Collection Classes

 Queue
An example of using a queue is a program that processes requests for parts at the
cash sales desk of a warehouse. A request for a part is added to the queue when
the customer's order is taken, and is removed from the queue when an order picker
receives the order form for the part. Using a queue collection in such an
application ensures that all orders for parts are processed on a first-come,
first-served basis.

 Deque
An example of using a deque is a program for managing a lettuce warehouse.
Cases of lettuce arriving into the warehouse are registered at one end of the queue
(the “fresh” end) by the receiving department. The shipping department reads the
other end of the queue (the “old” end) to determine which case of lettuce to ship
next. However, if an order comes in for very fresh lettuce, which is sold at a
premium, the shipping department reads the “fresh” end of the queue to select the
freshest case of lettuce available.

 Priority Queue
An example of a priority queue is a program used to assign priorities to service
calls in a heating repair firm. When a customer calls with a problem, a record with
that person's name and the seriousness of the situation is placed in a priority
queue. When a service person becomes available, customers are chosen by the
program beginning with those whose situation is most severe. In this example, a
serious problem such as a nonfunctioning furnace would be indicated by a low
value for the priority, and a minor problem such as a noisy radiator would be
indicated by a high value for the priority.

Types of Classes in the Collection Class Library
The classes that make up the Collection Class Library are divided into three types:

Flat Collections
Flat collections include abstractions such as sequence, set, bag, and
map. Unlike trees, flat collections have no hierarchy of elements or
recursive structure.

See “Flat Collections” on page 78 for more information on flat
collections and their properties.

Trees
Trees are recursive collections of nodes, where each node holds an
element and has a given number of nodes as children.

See “Trees” on page 82 for more details on trees.

Auxiliary Classes
The auxiliary classes include classes for cursors, applicators, and simple
and managed pointers.

Cursors and applicators give you convenient methods for accessing the
elements stored in the collections. See “Cursors” on page 93 for more
details on cursor classes. See “Iteration Using Applicators” on page 98
for more details on applicator classes.

The pointer classes provide the means to store in collections a pointer
to an object instead of the object itself. The managed pointer class
offers this object management together with automatic storage

 Chapter 7. Overview of the Collection Class Library 77

 Flat Collections

management. See “Using Smart Pointers” on page 111 and “Managed
Pointers” on page 116 for more details on pointer classes.

 Flat Collections
Four basic properties are used to differentiate between different flat collections:

Ordering
Whether a next or previous relationship exists between elements.

Access by key
Whether a part of the element (a key) is relevant for accessing an
element in the collection. When keys are used, they are compared
using relational operators.

Equality for elements
Whether equality is defined for the element.

Uniqueness of entries
Whether any given element or key is unique, or whether multiple
occurrences of the same element or key are allowed.

Figure 8 shows the flat collection that results from each combination of properties.
For example, “Map” appears in the Unique, Unordered column for the Key, Element
Equality row. This means that a map is unordered, each element is unique, keys
are defined, and element equality is defined. This implies that there are no flat
collections that have all of the following properties:

¹ The collection is ordered.
¹ The collection is sequential.
¹ The collection allows an element to appear more than once.
¹ Keys are defined for elements in the collection.

The rationale for not implementing collections with these combinations of properties
is that there is no reason to choose them over another collection that is already
available. For example, for an ordered collection that is sequential and offers
access by key, the key access would only have advantages if the elements are
stored in a position depending on their key. Because they are not, there is no flat
collection with key access that maintains a sequential order.

Figure 8. Combination of Flat Collection Properties

Unordered Ordered

Sorted Sequential

Unique Multiple Unique Multiple Multiple

Key (Key
equality
must be
defined)

Element
Equality

Map Relation Sorted map Sorted
relation

N/A

No Element
Equality

Key set Key bag Key sorted
set

Key sorted
bag

N/A

No Key Element
Equality

Set Bag Sorted set Sorted bag Equality
sequence

No Element
Equality

N/A Heap N/A N/A Sequence

78 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Flat Collections

Ordering of Collection Elements
The elements of a flat collection class can be ordered in three ways:

¹ Unordered collections have elements that are not ordered.
¹ Sorted collections have their elements sorted by an ordering relation defined for

the element type. For example, integers can be sorted in ascending order, and
strings can be ordered alphabetically. The ordering relation is determined by
the instantiations for the collection class. For elements where the ordering
relation returns the same position, elements are added in chronological order.

¹ Sequential collections have their ordering determined by an explicit qualifier to
the add() function, for example, addAtPosition().

A particular element in a sorted collection can be accessed quickly by using the
ordering relation to determine its position. Unordered collections can also be
implemented to allow fast access to the elements, by using, for example, a hash
table or a sorted representation. The Collection Class Library provides a fast
locate() function that uses this structure for unordered and sorted collections.
Even though unordered collections are often implemented by sorting the elements,
do not assume that all unordered collections are implemented in this way. If your
program requires this assumption to be true, use a sorted collection instead.

For each flat collection, the Collection Class Library provides both unordered and
sorted abstractions. For example, the Collection Class Library supports both a set
and a sorted set. The ordering property is independent of the other properties of
flat collections: you have the choice of making a given flat collection unordered or
sorted regardless of the choices that you make for the other properties.

Access by Key
A given flat collection can have a key defined for its elements. A key is usually a
data member of the element, but it can also be calculated from the data members
of the element by some arbitrary function. Keys let you:

¹ Organize the elements in a collection
¹ Access a particular element in a collection

For collections that have a key defined, an equality relation must be defined for the
key type. Thus, a collection with a key is said to have key equality.

Equality for Keys and Elements
A flat collection can have an equality relation defined for its elements. The default
equality relation is based on the element as a whole, not just on one or more of its
data members (for example, the key). For two elements to be equal, all data
members of both elements must be equal. The equality relation is needed for
functions such as those that locate or remove a given element. A flat collection
that has an equality relation has element equality.

Note that, for non-built-in types, you can define your own equality relation to
behave differently. For example, your equality relation could test only certain data
members of two elements to determine element equality. In such cases, element
equality may apply to two elements even when the elements are not exactly equal.

The equality relation for keys may be different than the equality relation for
elements. Consider, for example, a job control block that has a priority and a job
identifier that defines equality for jobs. You could choose to implement a job

 Chapter 7. Overview of the Collection Class Library 79

 Flat Collections

collection as unordered, with the job ID as key, or as sorted by priority, with the
priority as key. The Job class for this job control block could look like this:

typedef unsigned long JobId;
typedef int Priority;
class Job {

JobId ivId; // These are private data members.
 Priority ivPriority;
 public:

JobId id () const { return ivId; }
Priority priority () { return ivPriority; }

 };
// If ivId is the key:
JobId const& key (Job const& t)
{ return t.id (); }
// If ivPriority is the key:
Priority const& key (Job const& t)
{ return t.priority (); }

 // ...

In the first case, you have fast access through the job ID but not through the
priority; in the second case, you have fast access through the priority but not
through the job ID. The ordering relation on the priority key in the second case
does not yield a job equality, because two jobs can have equal priorities without
being the same.

Functions like locateElementWithKey() (described in Chapter 15, “Flat Collection
Member Functions” in the OS/390 C/C++ IBM Open Class Library Reference) use
the equality relation on keys to locate elements within a collection. A collection that
defines key equality may also define element equality. Functions that are based on
equality (such as locate()) are only provided for collections that define element
equality. Collections that define neither key equality nor element equality, such as
heaps and sequences, provide no functions for locating elements by their values or
testing for containment. Elements can be added and retrieved from such
collections by iteration. For sequences, elements can also be added and retrieved
by position.

A sorted collection must define either key equality or element equality. A sorted
collection that does not have a key defined must have an ordering relation defined
for the element type. This relation implicitly defines element equality.

Keys can be used to access a particular element in a collection. The alternative to
defining element equality as equality of all data members is to define it as equality
of keys only. (In the job control block example on page 79, this means defining job
equality as equality of the job ID.) Use this alternative only when you are sure that
keys are unique. When you use this alternative, you can locate an element only
with the key (using locateElementWithKey(key) instead of locate(element).
Locating elements by key improves performance, particularly if the complete
element is large or difficult to construct in comparison to the key alone. Consider
the two alternatives in the following example:

// First solution
JobId const& key (Job const& t) { return t.id; }
KeySet < Job, int > jobs;

 // ...
 jobs.locateElementWithKey (1);

80 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Restricted Access

// Second solution
IBoolean operator== (Job const& t1, Job const& t2)
{ return t1.id == t2.id; }
Set < Job > jobs;

 // ...
 Job t1;

t1.id = 1;
 jobs.locate (t1);

The first solution is superior, if job construction (Job t1) requires a significant
proportion of the total system resources used by the program.

The Collection Class Library provides sorted and unsorted versions of maps and
relations, for which both key and element equality must be defined. These
collections are similar to key set and key bag, except that they define functions
based on element equality, namely union and intersection. The add() function
behaves differently toward maps and relations than it does toward key set and key
bag.

Uniqueness of Entries
The terms unique and multiple relate to the key, in the case of collections with a
key. For collections with no key, unique and multiple relate to the element.

In some flat collections, such as map, key set, and set, no two elements are equal
or have equal keys. Such collections are called unique collections. Other
collections, including relation, key bag, bag, and heap, can have two equal
elements or elements with equal keys. Such collections are called multiple
collections.

For those multiple collections with key that have element equality (relation and
sorted relation), elements are always unique while keys can occur multiple times.
In other words, if element equality is defined for a multiple collection with key,
element equality is tested before inserting a new element.

A unique collection with no keys and no element equality is not provided because a
containment function cannot be defined for such a collection. A containment
function determines whether a collection contains a given element.

The behavior during element insertion (when one of the add... methods is applied
to a collection) distinguishes unique and multiple collections. In unique collections,
the add() function does not add an element that is equal to an element that is
already in the collection. In multiple collections, the add() function adds elements
regardless of whether they are equal to any existing elements or not.

 Restricted Access
Flat collections with restricted access have a restricted set of functions that can be
applied to them; that is, only a subset of the functions listed in Chapter 15, “Flat
Collection Member Functions” in the OS/390 C/C++ IBM Open Class Library
Reference can be applied. Examples of such flat collections are stack and priority
queue.

You may want to restrict the set of functions for reasons such as:

1. You can simplify the interface to the collection.

 Chapter 7. Overview of the Collection Class Library 81

 Trees

2. The normal rules for restricted flat collections apply, so certain assumptions can
be made when validating and inspecting the code. A stack, for example, does
not allow the removal of any element except the top one.

3. You can create new implementation options.

The Collection Class Library provides the following flat collections with restricted
access:

¹ Stack, deque, and queue, which are all based on sequence
¹ Priority queue, which is based on key sorted bag

See Part 3, “Flat Collection Classes” in the OS/390 C/C++ IBM Open Class Library
Reference for descriptions of collections with restricted access. These descriptions
are alphabetically merged with descriptions for other collections. You can use
Table 4 to select the appropriate flat collection with restricted access for a given
set of properties.

Table 4. Properties for Collections with Restricted Access

Add Remove Sorted (with key) Unsorted (no key)

According to
key

First Priority queue N/A

Last Last N/A Stack

Last First N/A Queue

First or last First or last N/A Deque

 Trees
Trees can be described either as structures where the elements have a hierarchy
or as a special form of recursive structure. Recursively a tree can be described as
a node (parent) with pointers to other nodes (children). Every node has a fixed
number of pointers, which are set to null at initialization time. Insertion of a new
node involves setting a pointer in the parent so that it points to the inserted child.
Figure 9 illustrates the structure of an n-ary tree.

Node:
Element

Element Element

child 1

child 1 child 1

child 2

null pointer

0

child 2 child 2

child n

child n child n

Figure 9. The Structure of N-ary Trees

Similarly, you can obtain tree-like or recursive structures by implementing the array
of children of a node as a flat collection of nodes. This will give you different
functionality for the children, for example, the ability to locate a child with a given
value.

82 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Implementation Structure

Generally, you can locate and insert elements in collections implemented as trees
faster than you can in collections implemented as lists. However, if you only want
to iterate through elements in a collection, it is faster to iterate through the elements
of a collection if it is implemented as a list.

 Auxiliary Classes
Auxiliary classes are those classes that support other classes, and include classes
for cursors, pointers and iterators. To use the collection classes, you also need a
cursor class for referencing an element in a collection, and an applicator class for
iterating over a collection. These are described in “Cursors” on page 93 and
“Iteration Using Applicators” on page 98.

You can use the smart pointer classes to manage objects; they enable automatic
storage management. “Using Smart Pointers” on page 111 and “Managed
Pointers” on page 116 explain the concepts and usage in detail.

The Overall Implementation Structure
To achieve maximum runtime efficiency and ease of use, the Collection Class
Library combines the common features of object-oriented techniques, such as class
hierarchies and polymorphism, with an efficient class structure that uses advanced
optimization techniques. This section gives a brief overview of the Collection Class
structure that is shown in Figure 10 on page 84. A more detailed explanation of
the particular concepts is found in subsequent sections.

You need not understand the entire implementation structure to begin using the
collections in their basic forms. The following is a list of the implementation
strategies offered by the Collection Class Library, in order of increasing complexity:

Use the Defaults
Default implementations are provided for every collection. If you do not want to be
concerned with choosing an implementation for an abstract data type, you can use
the default classes provided by the Collection Classes. In chapters of the OS/390
C/C++ IBM Open Class Library Reference that describe particular collections, the
default implementation is the first implementation in the “Class Implementation
Variants” table for that chapter, if a table is present. If no table is present, the
default implementation is stated in the chapter's “Class Implementation Variants”
section.

 Use Variants
If you want to choose a particular implementation variant for a collection, you can
easily replace the default implementation by an implentation variant of the same
collection that behaves externally in the same way but may offer improved
performance for your concrete application, depending on its characteristics.

Use Polymorphism and Abstract Classes
If you want to have a more generalized collection class than those offered by the
concrete classes, you can take advantage of polymorphism. For example, when
working with a set, instead of using the concrete classes ISet, IGSet,
ISetAsBstTree, and so on, you can use the abstract class IASet or, for more
generic behavior, the abstract class IAEqualityCollection. Abstract classes let
you program to a more generalized interface, without necessarily knowing what

 Chapter 7. Overview of the Collection Class Library 83

 Implementation Structure

abstract data types (collections), your code will operate on. You can leave the
implementation details for later.

Categories of Classes
Figure 10 illustrates the relationships between the categories of classes for the
collection known as a set. Each class falls within one of the following categories:
concrete, typed implementation, typeless implementation, and abstract classes.
Arrows indicate a relationship between classes. The relationships are:

¹ Instantiates (arrow with dashed line)
¹ Is a (line with triangle)
¹ Has a (arrow with solid line)

In this figure, you will notice certain naming conventions. For example, default
classes begin with the letter I, while abstract classes begin with the letters IA. For
information on naming conventions, see “Class Template Naming Conventions” on
page 86.

ISet
AsList

ISet
AsListImpl

IACollection

IAEquality
Collection

IASet

ISet
AsDilTable

IAOrdered
Collection

ICSetImpl

ivImpl

Depending on INO_CHECKS

IASetImpl

IASet
OnKeySetImpl

IACollection
Impl

Library

ISet
AsDilTableImpl

ISet
AsAvlTreeImpl

ISet
AsAvlTree

Figure 10. Overall Structure of Collection Classes

The class ISet uses an AVL tree as the default implementation. The other
implementation variants are linked list and diluted table. The three implementation

84 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Implementation Structure

variants ISetAsAvlTree, ISetAsList, and ISetAsDilTable are subclasses of IASet. If
you do not want to deal with implementation variants, you can just use the default
class ISet. Additional information is found in Chapter 10, “Tailoring a Collection
Implementation” on page 121.

The following sections describe the categories of Collection Classes.

 Default Classes
The default classes provide the easiest way to use the collection classes. Two
default classes are provided for each abstract data type:

¹ A class that is instantiated only with the element type, and possibly the key
type. ISet is an example of this type of default class.

¹ A class that takes element-specific functions. IGSet is an example of this type
of default class. See “Using Element Operation Classes” on page 105 for
information on element-specific functions.

 Variant Classes
Each abstract data type can be instantiated either by its default class or by one of
several variant classes. Sets can be implemented, for example, as AVL trees, lists,
or hash tables. Default classes and variant classes are also called the
implementation variants of a collection. All implementation variants of a collection
have the same interface and external behavior.

Collection Class Hierarchy
The classes in the Collection Classes are all related through the hierarchy of
abstract classes shown in Figure 11 on page 86. An abstract class is a class with
at least one pure virtual function that is used as a base class for other classes.
The abstract class represents a concept, and classes derived from it represent
implementations of the concept. You cannot construct an object of an abstract
class. With abstract classes, you can program to a more generalized interface
without knowing what abstract data types, or collections, the code will operate on.
Implementation details can be left for later.

In the figure, abstract classes have a grey shadow. Concrete collections have a
black shadow, or a white shadow for restricted access collections. The leaves of
the abstract class hierarchy (that is, those classes that have no derived classes
within the abstract class hierarchy tree) define the collection for which concrete
implementations are provided. The lines in the figure represent an is a relationship
from a lower collection to the collection above it. For example, a set is an equality
collection, which is a collection. The names of abstract collections start with IA.
See Chapter 11, “Polymorphism and the Collections” on page 131 for more details
on the use of polymorphism in the Collection Classes.

Typed and Typeless Implementation Classes
Typed implementation classes implement the concrete classes. They provide an
interface that is specific to a given element type.

Typeless implementation classes prevent unnecessary code expansion, which
could occur if all code for a collection were fully implemented through its templates.
For example, the add(Element const& element) function is offered with a typed
interface, so that the compiler can check whether a program tries to add a string to

 Chapter 7. Overview of the Collection Class Library 85

 Implementation Structure

Collection

Key
Collection

Equality Key
Collection

Key Sorted
Collection

Equality
Collection

Equality
Key Sorted
Collection

Key Sorted
Set

Key Sorted
Bag

Stack

Sorted Map

Sorted Relation

DequeuePriority
Queue

Key Set Map Set

Key Bag Relation Bag

Sorted Set

Sorted Bag

Queue

Equality
Sequence

Sequence

Heap Tree

Sorted
Collection

Equality
Sorted

Collection

Sequential
Collection

Ordered
Collection

Figure 11. The Collection Class Hierarchy. Abstract classes have a grey background. Concrete classes have a
black background. Restricted access classes have a white background. Dotted lines show a “based-on” relationship,
not an actual derivation.

a collection of integers. However, suppose an application were to use all of the
following:

 integerCollection.add(anInteger);
 stringCollection.add(aString);
 elementCollection.add(anElement);
 //...

Without typeless implementations, each collection's template instantiation of the
add() function would need to contain the full functionality for adding an element.
By having each of these typed add() functions use the same typeless (void*)
implementation code, the library avoids unnecessary code expansion.

The collection classes, however, use functions that return specific types. The
implementation classes provide an untyped (void*) interface that the concrete class
implementations use.

Class Template Naming Conventions
All class templates begin with an uppercase I. Table 5 on page 87 shows the
naming conventions used to distinguish between different types of class templates,
given a default class template of ISet. Underscored letters in each class template
name are those that indicate the stated convention:

86 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Implementation Structure

Table 5. Class Template Naming Conventions

Class name Meaning of letters

ISet Default class template.

ISetImpl Typeless implementation class.

ICSetImpl Typeless implementation class that implements additional
checks.

IGSet Default generic class template. The element operations class
can be specified as template argument.

ISetAsAvlTree
ISetAsBstTree
ISetAsList
ISetAsTable
ISetAsDilTable
ISetAsHshTable

Variant class templates.

IASet Abstract class template.

IVSet Default notification-enabled class template.

 Chapter 7. Overview of the Collection Class Library 87

 Implementation Structure

88 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Instantiation and Object Definition

Chapter 8. Instantiating and Using the Collection Classes

This chapter describes how to instantiate and use collection classes. To use a
collection class, you normally follow these three steps:

1. Instantiate a collection class template and provide arguments for the formal
template arguments.

2. Define one or more objects of this instantiated class, possibly providing
constructor arguments.

3. Apply functions to these objects.

Instantiation and Object Definition
This section describes instantiation for the default implementation. Consider the
following example header file for a class Person:

//person.h - Header file containing class Person
 #include <iostream.h>
 #include <istring.hpp>

class Person {
 IString PersonName;
 IString TNumber;

 public:
 //constructor

Person ():PersonName(""),TNumber("") {};
 //copy constructor
 Person(IString Name,IStringNumber):PersonName(Name),TNumber(Number)
 {};

IString const& GetPersonName() const {return PersonName;};
IString const& GetTNumber() const {return TNumber;};
IBoolean operator== (Person const& A) const {
return (PersonName==A.GetPersonName()) &&

 (TNumber==A.GetTNumber());};
IBoolean operator< (Person const& A) const {
return (PersonName < A.GetPersonName());};

 };

For a given class, such as ISet, and a given element type, such as a class named
Person, the instantiation for a new class that represents sets of persons could look
like this:

//main.cpp - main file
 #include <iset.h>
 #include <iostream.h>
#include "person.h" //person.h from the previous example

typedef ISet <Person> AddressList;

 void main() {
 AddressList Business;

Person A("Peter Black","50706");
 Business.add(A);

cout << "\nThe set now contains " << Business.numberOfElements() <<" entries!\n";
 }

Once the AddressList collection is defined, you can define AddressList objects
Family, Business, and Sportclub as follows:

AddressList Family, Business, Sportclub;

 Copyright IBM Corp. 1996, 1998 89

 Adding, Removing, and Replacing Elements

You can also define the objects without introducing a new type name
(AddressList):

ISet < Person > Family, Business, Sportclub;

However, you should begin by explicitly defining a named class, such as
AddressList, that uses the default implementation. It is then easier to replace the
default implementation with a better implementation later on. See Chapter 10,
“Tailoring a Collection Implementation” on page 121 for more details on replacing
default implementations.

Adding, Removing, and Replacing Elements
You can perform three operations to modify a collection:

¹ Adding elements. Use the add() function and its variants.
¹ Removing elements. Use the remove() function and its variants.
¹ Replacing elements. Use the replace() function and its variants.

 Adding Elements
The function add() places the element identified by its argument into the collection.
It has two general properties:

¹ All elements that are contained in the collection before an element is added are
still contained in the collection after the element is added.

¹ The element that is added will be contained in the collection after it is added.

Operations that contradict these properties are not valid. You cannot add an
element to a map or sorted map that has the same key as an element that is
already contained in the collection, but is not equal to this element (as a whole). In
the case of a map and sorted map, an exception is thrown. Note that both map
and sorted map are unique collections. The functions
locateOrAddElementWithKey() and addOrReplaceElementWithKey() specify what
happens if you try to add an element to a collection that already contains an
element with the same key.

Figure 12 on page 91 shows the result of adding a series of four elements to a
map, a relation, a key set, and a key bag. The first row shows what each collection
looks like after the element <a,1> has been added to each collection. Each
following row shows what the collections look like after the element in the leftmost
column is added to each.

The elements are pairs of a character and an integer. The character in the pair is
the key. An element equality relation, if defined, holds between two elements if
both the character and the integer in each pair are equal.

90 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Adding, Removing, and Replacing Elements

Figure 12. Behavior of add for Unique and Multiple Collections

add Map or sorted
map

Relation or
sorted relation

Key set or key
sorted set

Key bag or key
sorted bag

<a,1> <a,1> <a,1> <a,1> <a,1>

<b,1> <a,1>, <b,1> <a,1>, <b,1> <a,1>, <b,1> <a,1>, <b,1>

<a,1> <a,1>, <b,1> <a,1>, <b,1> <a,1>, <b,1> <a,1>, <b,1>,
<a,1>

<a,2> exception:
Key Already
Exists

<a,1>, <b,1>,
<a,2>

<a,1>, <b,1> <a,1>, <b,1>,
<a,1>, <a,2>

add() behaves differently depending on the properties of the collection:

¹ In unique collections, an element is not added if it is already contained in the
collection.

¹ In sorted collections, an element is added according to the ordering relation of
the collection.

¹ In sequential collections, an element is added to the end of the collection.

For sequential collections, elements can be added at a given position using add
functions other than add(), such as addAtPosition(), addAsFirst(), and
addAsNext(). Elements after and including the given position are shifted. Positions
can be specified by a number, with 1 for the first element, by using the
addAtPosition() function. Positions can also be specified relative to another
element by using the addAsNext() or addAsPrevious() functions, or relative to the
collection as a whole by using the addAsFirst() or addAsLast functions. Consider
the following example:

//main.cpp - main file
 #include <iset.h>
 #include <iostream.h>
#include "person.h" //person.h from the previous examples

typedef ISet <Person> AddressList;

 void main() {
 AddressList Business;

Person A("Peter Black","714-50706");
Person B("Carl Render","714-540321");
Person C("Sandra Summers","214-660012");

 Business.add(A);
 Business.add(B);
 Business.add(C);

Business.add(A); //Person A is added for the second time
cout << "\nThe set now contains " << Business.numberOfElements()

 <<" entries!\n";
 }
/* If you run the program, the set will only contain 3 different

entries. In a set, each element is unique. No two elements
can be the same. To illustrate the difference between sets and
bags, run the program using a bag rather than a set. */

 Removing Elements
In the Collection Classes, you can remove an element that is pointed to by a given
cursor by using the removeAt() function. All other removal functions operate on the
model of first generating a cursor that refers to the desired position and then
removing the element to which the cursor refers. Additional information about
cursors is found in “Cursors” on page 93. There is an important difference

 Chapter 8. Instantiating and Using the Collection Classes 91

 Adding, Removing, and Replacing Elements

between element values and element occurrences. An element value may, for
nonunique collections, occur more than once. The basic remove() function always
removes only one occurrence of an element.

For collections with key equality or element equality, removal functions remove one
or all occurrences of a given key or element. These functions include remove(),
removeElementWithKey(), removeAllOccurrences(), and
removeAllElementsWithKey(). Ordered collections provide functions for removing
an element at a given numbered position. Ordered collections also allow you to
remove the first or last element of a collection using the removeFirst() or
removeLast() functions.

After you have removed one element with the property, the entire collection would
have to be searched for the next element with the property. If you want to remove
all of the elements in a collection that have a given property, you should use the
function removeAll() and provide a predicate function as its argument. This
predicate function has an element as argument and returns an IBoolean value.
The IBoolean result tells whether the element will be removed. Consider the
following example:

//main.cpp - main file
 #include <iset.h>
 #include <iostream.h>
#include "person.h" //person.h from the previous examples

typedef ISet <Person> AddressList;

IBoolean noPhone(Person const& P,void*) //predicate function
 {
 return P.GetTNumber()=="x";
 }

 void main() {
 AddressList Business;

Person A("Peter Black","714-50706");
Person B("Carl Render","714-540321");
Person C("Sandra Summers","x");
Person D("Mike Summers","x");

 Business.add(A);
 Business.add(B);
 Business.add(C);
 Business.add(D);

Business.add(A); //Person A is added for the second time
cout << "\nThe set now contains " << Business.numberOfElements()

 <<" entries!\n";
Business.removeAll (noPhone); //Person B is removed from the set
cout << "\nThe set now contains " << Business.numberOfElements()

 <<" entries!\n";
 }

/* If you run the program, the set will only contain 2 elements
as a result of the the remove function. Try modifying the
program so that all persons with a telephone number are
removed when the program is run. */

Sometimes you may want to pass more information to the predicate function. You
can use an additional argument of type void*. The pointer then can be used to
access a structure containing further information. See the last example under
“Iteration Using allElementsDo” on page 97 for information on how to use the
additional argument.

92 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Cursors

 Replacing Elements
It is possible to modify collections by replacing the value of an element occurrence.
Adding and removing elements usually changes the internal structure of the
collection. Replacing an element leaves the internal structure unchanged. If an
element of a collection is replaced, the cursors in the collection do not become
undefined.

For collections that are organized according to element properties, such as an
ordering relation or a hash function, the replace function must not change this
element property. For key collections, the new key must be equal to the key that is
replaced. For nonkey collections with element equality, the new element must be
equal to the old element as defined by the element equality relation. The key or
element value that must be preserved is called the positioning property of the
element in the given collection type.

Sequential collections and heaps do not have a positioning property. Element
values in sequences and heaps can be changed freely. Replacing element values
involves copying the whole value. If only a small part of the element is to be
changed, it is more efficient to use the elementAt() access function described in
“Using Cursors for Locating and Accessing Elements” on page 94. The
replaceAt() function checks whether the replacing element has the same
positioning property as the replaced element. (See Chapter 14, “Exception
Handling” on page 143 for more details on preconditions.) When you use the
elementAt() function to replace part of the element value, this check is not
performed. If you want to ensure safe replacement (a replacement that does not
change the positioning property), use replaceAt() rather than elementAt().

 Cursors
A cursor is a reference to an element in a collection. If the position of the element
changes, the cursor is invalidated. This occurs because the cursor refers only to
the position of the element and not to the element itself.

A cursor is always associated with a collection. The collection is specified when
the cursor is created. Each collection function that takes a cursor argument has a
precondition that the cursor actually belong to the collection. Simple functions,
such as advancing the cursor, are also functions of the cursor itself. Consider the
following example:

//main.cpp - main file
 #include <iset.h>
 #include <iostream.h>
#include "person.h" //person.h from the previous examples

typedef ISet <Person> AddressList;

 void main() {
 AddressList Business;
 AddressList::Cursor myCursor(Business); //Cursor definition

Person A("Peter Black","714-50706");
Person B("Carl Render","714-540321");
Person C("Sandra Summers","x");
Person D("Mike Summers","x");

 Business.add(A);
 Business.add(B);
 Business.add(C);
 Business.add(D);

Business.add(A); //Person A is added for the second time
cout << "\nThe set now contains " << Business.numberOfElements()

 Chapter 8. Instantiating and Using the Collection Classes 93

 Cursors

 <<" entries!\n";
 }

The following two lines of code are functionally equivalent:

 myCursor.setToNext();
 Business.setToNext(myCursor);

Cursors and iteration by cursors can be used with any collection. With cursors the
Collection Classes provide:

¹ An iteration scheme that is simpler than using applicators. (See “Iteration
Using allElementsDo” on page 97.)

¹ The ability to define functions that return cursors. Such functions can give you
fast access to an element if it exists, or indicate the non-existence of an
element by returning an invalid cursor.

Cursors are only temporarily defined. As soon as elements are added to or
removed from the collection, existing cursors become undefined. One of the three
following situations occurs:

1. The cursor is invalidated (isValid() will return false).
2. The cursor remains valid and points to an element of the collection; however, it

may point to a different element than before.
3. The cursor remains valid but no longer points to an element of the collection.

Because all cursors of the collection become undefined when elements are
removed, removing all elements with a given property from a collection cannot be
done efficiently using cursors.

Do not use an undefined cursor as an argument to a function that requires the
cursor to point to an element of the collection.

Each concrete collection class, such as ISet<int>, has an inner definition of a
class Cursor that can be accessed as ISet<int>::Cursor.

Because abstract classes declare functions on cursors just as concrete classes do,
there is a base class ICursor for these specific cursor classes. To allow the
creation of specific cursors for all kinds of collections, every abstract class has a
virtual member function newCursor(). newCursor() creates an appropriate cursor
for the given collection object.

Using Cursors for Locating and Accessing Elements
Cursors provide a basic mechanism for accessing elements of collection classes.
For each collection, you can define one or more cursors, and you can use these
cursors to access elements. Collection Class functions such as elementAt(),
locate() and removeAt() use cursors.

elementAt() lets you access an element using a cursor.

elementAt() returns a reference to an element, thereby avoiding copying the
elements. Suppose that an element had a size of 20KB and you want to access a
2-byte data member of that element. If you use elementAt() to return a reference
to this element, you avoid having to copy the entire element to a local variable.

94 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Cursors

Several other functions, such as firstElement() or elementWithKey(), return a
reference to an element. They can be thought of as first executing a corresponding
cursor function, such as setToFirst() or locateElementWithKey(), and then
accessing the element using the cursor.

You must determine if the element exists before trying to access it. If its existence
is not known from the context, it must first be checked. To save the extra effort of
locating the desired element twice (once for checking whether it exists and then for
actually retrieving its reference), use the cursor that is returned by the locate
function for fast element access:

//main.cpp - main file
 #include <iset.h>
 #include <iostream.h>
#include "person.h" //person.h from the previous examples

typedef ISet <Person> AddressList;

 void main() {
 AddressList Business;
 AddressList::Cursor myCursor(Business); //Cursor definition

Person A("Peter Black","714-50706");
Person B("Carl Render","714-540321");
Person C("Sandra Summers","x");
Person D("Mike Summers","x");

 Person E;
 Business.add(A);
 Business.add(B);
 Business.add(C);
 Business.add(D);
 if (Business.locate(B,myCursor)){
 E=Business.elementAt(myCursor) ;

} else {
cout << "\nElement not in set !";

} /* endif */
Business.remove(B); //myCursor is no longer valid
if (Business.locate(B,myCursor)) {

 E=Business.elementAt(myCursor);
} else {

cout << "\nElement not in set !";
} /* endif */

 }

The elementAt() function can also be used to replace the value of the referenced
element. You must ensure that the positioning property of the element is not
changed with respect to the given collection. See “Adding, Removing, and
Replacing Elements” on page 90 for more details.

There are two versions of elementAt():

Element const& elementAt (ICursor const&) const;
Element& elementAt (ICursor const&);

Use the first version of elementAt() if you want to ensure that the located element
cannot be changed by any subsequent function.

 Chapter 8. Instantiating and Using the Collection Classes 95

 Iteration

Iterating over Collections
Iterating over all or some elements of a collection is a common operation. The
Collection Classes give you two methods of iteration:

 ¹ Using cursors
¹ Using the allElementsDo() function together with applicators or applicator

functions

Ordered (including sorted) collections have a well-defined ordering of their
elements, while unordered collections have no defined order in which the elements
are visited in an iteration. However, each element is visited exactly once.

You cannot add or remove elements from a collection while you are iterating over a
collection, or all elements may not be visited once. You cannot use any of the
iterations described in this section if you want to remove all of the elements of a
collection that have a certain property. Use the function removeAll() (described in
Chapter 15, “Flat Collection Member Functions” in the OS/390 C/C++ IBM Open
Class Library Reference), that takes a predicate function as argument. See
“Removing Elements” on page 91 for details on removing elements.

Iteration Using Cursors
Cursor iteration can be done with a for loop. Consider the following example:

//main.cpp - main file
 #include <iset.h>
 #include <iostream.h>
#include "person.h" //person.h from the previous examples

typedef ISet <Person> AddressList;

ostream& operator<<(ostream& os,Person A) {
return (os << endl << A.GetPersonName() <<" "<<A.GetTNumber());

 }

 void main() {
 AddressList Business;
 AddressList::Cursor myCursor(Business);

Person A("Peter Black","714-50706");
Person B("Carl Render","714-540321");
Person C("Sandra Summers","x");
Person D("Mike Summers","x");

 Person E;
 Business.add(A);
 Business.add(B);
 Business.add(C);
 Business.add(D);

//List of all elements in the set
for (myCursor.setToFirst(); myCursor.isValid(); myCursor.setToNext())

 {
cout << Business.elementAt(myCursor);

 }
 }

AddressList::Cursor is the class Cursor that is defined within the class
AddressList. This is referred to as a nested class. myCursor is the name of the
cursor object. Its constructor takes Business as an argument.

The Collection Classes define a macro forICursor that lets you write a cursor
iteration even more elegantly:

96 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Iteration

 #define forICursor(c) \
 for ((c).setToFirst(); \
 (c).isValid(); \
 (c).setToNext())

 forICursor(myCursor)
 {

cout << Business.elementAt(myCursor);
 }

If the element is used read-only, a function of the cursor can be used instead of
elementAt(myCursor):

 forICursor(myCursor)
 {

cout << myCursor.element(); //myCursor is associated to Business
 }

The function element() above is a function of the Cursor class (see “Cursors” on
page 93). It returns a const reference to the element currently pointed at by the
cursor. The element returned might therefore not be modified. Otherwise it would
be possible to manipulate a constant collection by using cursors.

Note: You should remove multiple elements from a collection using the
removeAll() function, with a predicate function as an argument. See “Adding,
Removing, and Replacing Elements” on page 90 for further details.

Iteration Using allElementsDo
Cursor iteration has two possible drawbacks:

¹ For unordered collections, the explicit notion of an (arbitrary) ordering may be
undesirable for stylistic reasons. For example, it could mislead you (or another
programmer) into perceiving or exploiting an order where in fact the order does
not exist or is not guaranteed.

¹ Iteration in an arbitrary order might be done more efficiently using something
other than cursors. For example, with tree representations, a recursive descent
iteration may be faster than the cursor navigation, even though the time for
extra function calls must be considered.

The Collection Classes provide the allElementsDo() function that addresses both
drawbacks by calling a function that is applied to all elements.
The function returns an IBoolean value that tells whether the iteration should be
continued or not. For ordered collections, the function is applied in this order.
Otherwise the order is unspecified.

The function that is applied in each iteration step can be given in two ways: directly
as a C++ function, or by defining the function as a method of a user-defined
applicator class:

¹ As a C++ function : Code the function that you want to be applied to all
elements as a C++ function, then use allElementsDo() to apply the function to
the elements.

¹ As an object of an applicator class : Code the function as a member function
of an applicator class that you create (for example, MyApplicatorClass) and let
the applicator apply this function to every element, by using

 Chapter 8. Instantiating and Using the Collection Classes 97

 Iteration

allElementsDo(myApplicatorObject), where myApplicatorObject is an object of
MyApplicatorClass.

Iteration Using Applicators
Defining a function as a member function of a user-defined applicator class
provides more flexibility than coding the function that you want to be applied to all
elements as a C++ function. You can better encapsulate the member function, and
you can use additional arguments to that function if needed. If the function is a
method that you can use for various classes, you can reuse the applicator class.

By definition, an applicator is an object created from a class that is derived from
IApplicator or IConstantApplicator. This applicator class contains the member
function applyTo, which is applied to every element in a collection using the
allElementsDo function. This member function returns an IBoolean value that
indicates whether an iteration should be continued or not.

Note: You should not add or remove elements while using the applicator.

For both these possibilities (the C++ function and the object of an applicator class),
an additional distinction is made as to whether the function leaves the element
constant or not. This means that four definitions of the function allElementsDo()
are offered by every collection. The following example shows the definition of
allElementsDo() for ISet:

template < class Element, ... >
class ISet {

 // ...
// Iteration applying a C++ function:

IBoolean allElementsDo (IBoolean (*function)(Element&, void*),
void* additionalArgument = 0);

IBoolean allElementsDo (IBoolean (*function)(Element const&, void*),
void* additionalArgument = 0) const;

// Iteration applying an applicator object:
IBoolean allElementsDo (IApplicator < Element > &);
IBoolean allElementsDo (IConstantApplicator < Element > &)const;

 };

If you use an object of an applicator class, this class must offer an applyTo()
function. It also must be derived from the abstract base class IApplicator or
IConstantApplicator. These abstract applicator base classes are defined in the
following way:

template < class Element >
class IApplicator {

 public:
virtual IBoolean applyTo (Element&) = 0;

 };

template < class Element >
class IConstantApplicator {

 public:
virtual IBoolean applyTo (Element const&) = 0;

 };

Additional arguments that are needed for the iteration can, for example, be passed
as arguments to the constructor of the derived applicator class. You must define

98 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Copying and Referencing Collections

the function with the given argument and return types. For additional arguments,
you may have to define a separate class or structure.

The following example shows the use of applicators.

// SUMUP - An example of using applicators
//main.cpp - main file

 #include <iset.h>
 #include <iostream.h>
#include "person.h" //person.h from the previous examples

typedef ISet <Person> AddressList;

ostream& operator<<(ostream& os,Person A) {
return (os << endl << A.GetPersonName() <<" "<<A.GetTNumber());

 }

class ListApplicator: public IConstantApplicator <Person> {
 public:

IBoolean applyTo (Person const& A) {
cout << A;

 return true;
 }
 };

void ListFunction (AddressList const& List) {
 ListApplicator LA;
 List.allElementsDo (LA);
 }

 void main() {
 AddressList Business;
 AddressList::Cursor myCursor(Business);

Person A("Peter Black","714-50706");
Person B("Carl Render","714-540321");
Person C("Sandra Summers","x");
Person D("Mike Summers","x");

 Person E;
 Business.add(A);
 Business.add(B);
 Business.add(C);
 Business.add(D);

//List of all elements in the set
 ListFunction(Business);
 }

/* This time you get the address listing using an applicator */

Copying and Referencing Collections
The Collection Classes implement no structure sharing between different collection
objects. The assignment operator and the copy constructor for collections are
defined to copy all elements of the given collection into the assigned or constructed
collection. You should remember this point if you are using collection types as
arguments to functions. If the argument type is not a reference or pointer type, the
collection is passed by the copy constructor, and changes made to the collection
within the called function do not affect the collection in the calling function.

If you want a function to modify a collection, pass the collection as a reference:

void removeListMember (AddressList aList) { /* ... */ } // wrong
void removeListMember (AddressList & aList) { /* ... */ } // right

For the sake of efficiency, avoid having a collection type as the return type of a
function:

 Chapter 8. Instantiating and Using the Collection Classes 99

 Bounded and Unbounded Collections

AddressList f() {
 AddressList aList;
 // ...
 return aList;
 }
 Business=f(); //Very inefficient

In this program Business becomes a reference argument to the assignment
operation, which would again copy the set. A better approach is:

void f (AddressList & aList) { /* ... */ }
 // ...
 f(Business);

Bounded and Unbounded Collections
A bounded collection limits the number of elements it can contain. The concept of
bounded collections is supported so that you can create your own bounded
collection implementations. There are no bounded collections in the Collection
Classes.

When a bounded collection contains the maximum number of elements (its bound),
the collection is said to be full. This condition can be tested by the function
isFull(). If elements are added to a full collection, the exception IFullException
is thrown. This behavior is useful for collections that are to have their storage
allocated completely on the runtime stack.

You can determine the maximum number of elements in a bounded collection by
calling the function maxNumberOfElements(). You can only call this function if the
collection is bounded. You can determine whether a collection is bounded by
calling the function isBounded().

In the current implementation of the Collection Classes, all collections are
unbounded. The functions isBounded() and isFull() always return false. The
function maxNumberOfElements() throws the exception INotBoundedException.

100 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Element and Key-Type Functions

Chapter 9. Element Functions and Key-Type Functions

This chapter describes the functions that are required by member functions of the
Collection Classes to manipulate elements and keys. The following topics are
discussed:

¹ Element functions and key-type functions
¹ Using standard operators to provide element and key-type functions
¹ Using separate functions
¹ Using element operation classes
¹ Functions for derived element classes

Introduction to Element Functions and Key-Type Functions
The member functions of the Collection Class Library call other functions to
manipulate elements and keys. These functions are called element functions and
key-type functions, respectively.

Member functions of the Collection Class Library may, for example, use the
element's assignment or copy constructors for adding an element, or they may use
the element's equality operator for locating an element in the collection. In addition,
Collection Class functions use memory management functions for the allocation
and deallocation of dynamically created internal objects (such as nodes in a tree or
a linked list).

The element functions that may be required by a given collection are:

¹ Default and copy constructor
 ¹ Destructor
 ¹ Assignment
 ¹ Equality test
 ¹ Ordering relation
 ¹ Key access
 ¹ Hash function

The key-type functions that may be required by a given collection are:

 ¹ Equality test
 ¹ Ordering relation
 ¹ Hash function

Note: For implementation variants where both equality test and ordering relation
are required element functions (or where both are required key-type functions), the
library does not define which of the two is used to determine element or key
equality.

The memory management functions that may be required by a given collection are:

 ¹ Allocation
 ¹ Deallocation

The lists above are the superset of all element functions and key-type functions that
a Collection Class can ever require. For example, a collection without keys does
not require any key-type functions, and a collection without element equality does
not require an equality test. Element functions and key-type functions required for

 Copyright IBM Corp. 1996, 1998 101

 Using Member Functions

a certain collection are listed with the description of each collection in the OS/390
C/C++ IBM Open Class Library Reference.

Where possible, these functions are already defined by the Collection Class Library.
Default memory management functions are provided for usage with any element
and key type. For the standard C++ data types int and char*, defaults are offered
for all element and key-type functions. For all other element and key types, you
must provide these functions.

There are three different methods of providing element functions and key-type
functions, each of which offers a different level of flexibility and tailoring:

1. Using member functions
2. Using separate functions in the global name space
3. Using element operation classes.

The second and third methods can also be used to replace the default memory
management functions for some of the collections.

Using Member Functions
The easiest way to provide the required element or key-type functions is to use
member functions. For assignment, equality, and ordering relation, operator=,
operator==, and operator< are used, respectively. Certain element functions and
key-type functions must be defined as member functions. Others cannot be
defined as member functions, but must be defined as separate functions.

You must define these functions using member functions:

 ¹ Constructors
 ¹ Destructors

Except for assignment, you must define member functions of a class as const .
You will get a compile-time error if you do not include const in these definitions.

The following example shows how member functions must be defined as const :

 class Element
 {
 public:
 Element& operator= (Element const&);

IBoolean operator== (Element const&) const;
IBoolean operator< (Element const&) const;

 };

The Collection Class Library does not check or use the return type of operator=().
The return type of equality and ordering relation must be compatible with type
IBoolean.

102 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Using Separate Functions

Using Separate Functions
You can use separate functions to provide the required element and key functions.
A separate function is a function that is not a member of any class. Use separate
functions when, in instantiating the Collection Class, you have no control over the
element class, and the element class does not define the appropriate functions.

The following functions must be defined as separate functions that are not
members of any class:

¹ Functions for key access
¹ Functions for hashing
¹ Functions for memory management

The following shows what the declarations for these separate functions must look
like:

void assign (Element&, Element const&);
IBoolean equal (Element const&, Element const&);
long compare (Element const&, Element const&);

 Key const& key (Element const&);
unsigned long hash (Element const&, unsigned long);
IBoolean equal (Key const&, Key const&);
long compare (Key const&, Key const&);
unsigned long hash (Key const&, unsigned long);

You can find examples of these functions in the tutorials (see Chapter 15,
“Collection Class Library Tutorials” on page 149) and in the coding examples in the
OS/390 C/C++ IBM Open Class Library Reference.

You can also use separate functions for the standard memory management
functions, as defined by the C++ language:

void* operator new (size_t);
void operator delete (void*);

The compare() function must return a value that is less than, equal to, or greater
than zero, depending on whether the first argument is less than, equal to, or
greater than the second argument.

The hash() function must return a value that is less than the second argument; this
value may be achieved, for example, by computing the remainder (operator%) with
the second argument. The hash function should evenly distribute over the range
between zero and the second argument. For equal elements or keys, the hash
element must yield equal results.

Note: An efficient hash function is very important to the performance of your
program. If you are unsure of how to implement an efficient hash function, see the
suggested reading material on data structures and algorithms in “Suggested
Reading” on page xl.

For assign(), equal(), and compare(), template functions are defined that will be
instantiated unless otherwise specified. The default for assign() uses the
assignment operator, the default for equal() uses the equality operator, and the
default for compare() uses two comparisons with operator<. It is therefore
advisable to define your own compare() function if the given element type has a
more efficient implementation available. Such definitions are already provided for
integer types using operator- and for char* using strcmp(). By default, the
standard memory management functions are used. (Using operator- works for

 Chapter 9. Element Functions and Key-Type Functions 103

 Using Separate Functions

integer types because the result of a-b can be used to determine whether a<b
evaluates to true.)

The following examples demonstrate the use of a separate function for the
definition of the key access. The element class is Person, its data member
PersonName is the key, and its member function GetPersonName() is used to access
the key. The example below is the header file:

//person.h - header file containing class Person
 #include <iostream.h>
 #include <istring.hpp>

class Person {
IString PersonName; //This will be used as the key

 IString TNumber;

 public:
 //constructor

Person ():PersonName(""),TNumber("") {};
 //copy constructor

Person(IString Name,IString Number):PersonName(Name),TNumber(Number)
 {};

IString const& GetPersonName() const {return PersonName;};
IString const& GetTNumber() const {return TNumber;};
IBoolean operator== (Person const& A) const {

return (PersonName==A.GetPersonName()) &&
 (TNumber==A.GetTNumber());
 };

IBoolean operator< (Person const& A) const {
return (PersonName < A.GetPersonName());

 };
 };

ostream& operator<<(ostream& os,Person A);

// Use separate function Key const& key (Element const&);

inline IString const& key (Person const& A) //Key access
 { return A.GetPersonName();};

The example below is the main file.

//main.cpp - main file
#include "person.h" //person.h from the previous example

 #include <ikeyset.h>

typedef IKeySet <Person,IString> AddressList;

ostream& operator<<(ostream& os,Person A) {
return (os << endl << A.GetPersonName() <<" "<<A.GetTNumber());

 }

 void main() {
 AddressList Business;
 AddressList::Cursor myCursor(Business);

Person A("Peter Black","714-50706");
Person B("Carl Render","714-540321");
Person C("Sandra Summers","x");
Person D("Mike Summers","x");

 Business.add(A);
 Business.add(B);
 Business.add(C);
 Business.add(D);
 Business.removeElementWithKey("Carl Render");
 forICursor(myCursor) {
 cout<<Business.elementAt(myCursor);
 }
 }

104 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Using Element Operation Classes

Using Element Operation Classes
You can use element operation classes in cases where you want to place elements
of one type into more than one collection, and where the element or key-type
functions are different for each collection. For example, suppose you require an
element type that is used to instantiate employee records that can be sorted either
by name or by salary. You can declare an element class Person, and then place
references to each Person instance into each of two collections. In one collection,
the key is the name; in the other, the key is the salary. In your program, you need
to define different element and key-type functions for hashing, comparison, and so
on. Because these functions are not identical for both collections, you cannot
define them within the class Person.

You can provide different sets of element and key-type functions for a given
element type and multiple collections, by using the IG... class template for the
collection you want to use. This class template lets you define element functions
separately from the element class. In the case of the employee program, you can
declare two classes as follows:

IGKeySortedSet <PersonPtr, int, SalaryOps> SalaryKSet;
IGKeySortedSet <PersonPtr, IString, NameOps> NameKSet;

You then need to define two other classes, SalaryOps and NameOps, which must
contain appropriate element and key-type functions.

When you do not provide element or key operations by using an IG... collection,
the standard class template (I... as opposed to IG...) defines default operations.
These default operations are declared in istdops.h.

For an example of using element operation classes, see “Coding Example for Map”
in the OS/390 C/C++ IBM Open Class Library Reference.

The following excerpt shows the definition of the class templates for
ISequenceAsList and IGSequenceAsList:

template < class Element, class ElementOps >
class IGSequenceAsList { /* ... */ };

template < class Element >
 class ISequenceAsList:

public IGSequenceAsList < Element, IStdOps < Element > > {
/* ... */ };

The advantage of passing the arguments using an extra class instead of passing
them as function pointers is that the class solution allows inlining.

The following is a skeleton for operation classes. The keyOps member must only
be present for key collections. Note that all element and key operations must be
defined as const .

template < class Element, class Key >
 class ...Ops
 {
 void* allocate (size_t) const;
 void deallocate (void*) const;

void assign (Element&, Element const&) const;

IBoolean equal (Element const&, Element const&) const;
long compare (Element const&, Element const&) const;
Key const& key (Element const&) const;
unsigned long hash (Element const&, unsigned long) const;

 Chapter 9. Element Functions and Key-Type Functions 105

 Using Element Operation Classes

 class KeyOps
 {

IBoolean equal (Key const&, Key const&) const;
long compare (Key const&, Key const&) const;
unsigned long hash (Key const&, unsigned long) const;

 }
 keyOps;
 };

You can inherit from the following class templates when you define your own
operation classes. Templates with argument type T can be used for both the
element and the key type.

 class IStdMemOps
 {

void* allocate (size_t) const;
void deallocate (void*) const;

 };

template < class T >
 class IStdAsOps
 {

void assign (T&, T const&) const;
 };

template < class T >
 class IStdEqOps
 {

IBoolean equal (T const&, T const&) const;
 };

template < class T >
 class IStdCmpOps
 {

long compare (T const&, T const&) const;
 };

template < class Element, class Key >
 class IStdKeyOps
 {

Key const& key (Element const&) const;
 };

template < class T >
 class IStdHshOps
 {

unsigned long hash (T const&, unsigned long) const;
 };

The file istdops.h defines the above templates. It also defines other templates that
combine the properties of one or more of the templates. The following table shows
all template class names defined in istdops.h, and the element and key-type
functions they implement:

106 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Using Element Operation Classes

To define an operations class, use the predefined templates for standard functions,
and define the specific functions individually. Consider, for example, persons that
have a name (PersonName) and a phone number (TNumber). The name serves
as the key for an address list, while the phone number serves as the key for a
phone list. Because the key() function is already defined to yield the person name,
the phone list has to be instantiated in the following way:

//person.h - header file containing class Person
 #include <iostream.h>
 #include <istring.hpp>
 #include <istdops.h>

class Person {
 IString PersonName;
 IString TNumber;

 public:
 //constructor

Person ():PersonName(""),TNumber("") {};
 //copy constructor

Person (IString Name,IString Number):PersonName(Name),TNumber(Number)
 {};

IString const& GetPersonName() const {return PersonName;};
IString const& GetTNumber() const {return TNumber;};
IBoolean operator== (Person const& A) const {

return (PersonName==A.GetPersonName()) &&
 (TNumber==A.GetTNumber());
 };

IBoolean operator< (Person const& A) const {
return (PersonName < A.GetPersonName());

 };
 };

ostream& operator<<(ostream& os,Person A);

class PhoneOps:public IStdMemOps,public IStdAsOps<Person> {
 public:

IString const& key (Person const& A) const {return A.GetTNumber();}
IStdCmpOps <IString> keyOps;

 };

inline IString const& key (Person const& A) //Key access
 { return A.GetPersonName();};

Template allocate
deallocate

assign equal compare hash key
using
compare

key using
equality
and hash

IStdMemOps √

IStdAsOps √

IStdEqOps √

IStdCmpOps √

IStdHshOps √

IStdOps √ √

IEOps √ √ √

ICOps √ √ √

IEHOps √ √ √ √

IKCOps √ √ √

IKEHOps √ √ √

IEKCOps √ √ √ √

IEKEHOps √ √ √ √

 Chapter 9. Element Functions and Key-Type Functions 107

 Using Element Operation Classes

The following example is the main file:

//main.cpp - main file
#include "person.h" //person.h from the previous example

 #include <istdops.h>
 #include <ikeyset.h>

typedef IKeySet <Person,IString> AddressList;
typedef IGKeySet <Person,IString,PhoneOps> PhoneList;

ostream& operator<<(ostream& os,Person A) {
return (os << endl << A.GetPersonName() <<" "<<A.GetTNumber());

 }

 void main() {
 AddressList Business;
 PhoneList PhoneBook;

 AddressList::Cursor myCursor1(Business);
 PhoneList::Cursor myCursor2(PhoneBook);

Person A("Peter Black","714-50706");
Person B("Carl Render","714-540321");
Person C("Sandra Summers","x");
Person D("Mike Summers","x");

 Business.add(A);
 Business.add(B);
 Business.add(C);
 Business.add(D);
 PhoneBook.add(A);
 PhoneBook.add(B);
 PhoneBook.add(C);
 PhoneBook.add(D);

cout << "\n\nPhoneBook before removing an element: ";
 forICursor(myCursor2) {
 cout<<PhoneBook.elementAt(myCursor2);
 }

cout << "\n\nPhoneBook after removing an element: ";
 PhoneBook.removeElementWithKey("714-50706");
 forICursor(myCursor2) {
 cout<<PhoneBook.elementAt(myCursor2);
 }

cout << "\n\nBusiness before removing an element: ";
 forICursor(myCursor1) {
 cout<<Business.elementAt(myCursor1);
 }

cout << "\n\nBusiness after removing an element: ";
 Business.removeElementWithKey("Peter Black");
 forICursor(myCursor1) {
 cout<<Business.elementAt(myCursor1);
 }
 }
/* Questions: Why does the PhoneBook only contain 3 elements?

Why are both lists in a different order? */

The functions that are required for a particular Collection Class depend not only on
the abstract class but also on the concrete implementation choice. If you choose a
set to be implemented through a hash table, the elements require a hash function.
If you choose a (sorted) AVL tree implementation, elements need a comparison
function. Even the default implementations may require more functions to be
provided than would be necessary for the collection interface. Each chapter in the
OS/390 C/C++ IBM Open Class Library Reference that describes a particular
collection defines which functions must be provided for keys and elements for each
implementation of that collection.

108 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Functions for Derived Element Classes

Memory Management with Element Operation Classes
The following scenario illustrates the use of memory management with element
operation classes.

Suppose you want to use your own element operation class to provide a special
form of memory management. For example, you want an entire collection (the
collection body plus the elements) to reside in a database, or in shared memory.
To do this you can code:

IGSequenceAsList<Element, MyOperationsClass>

where MyOperationsClass is an element operations class you have coded, which
provides your own element operations allocate() and deallocate(). This class
may or may not inherit from previously described template classes, except that it
must inherit from IStdMemOps).

A certain instance of your collection is instantiated together with an instance of your
MyOperationsClass. You can retrieve the this pointer of this instance of
MyOperationsClass to find out where the collection is instantiated, and you can use
this address in your implementation of the allocate() element function to allocate
your elements in the same memory pool where your collection resides.

Functions for Derived Element Classes
One of the C++ language rules states that function template instantiations are
considered before conversions. Because the Collection Classes define default
templates for element functions, functions such as equal() or compare(), defined
for a class, will not be considered for that class's derived classes; the default
template functions will be instantiated instead. In the following example, the
compiler would attempt to instantiate the template compare() function for class B,
instead of inheriting the compare() function of class A and converting B to A:

class A { /* ... */ };
long compare (A const&, A const&);
class B : public A { /* ... */ };
ISortedSet < B > BSet;

The instantiated default compare() function for class B uses the operator< of B, if
defined. Otherwise, a compilation error occurs, because class B's operator< is not
found. You must define standard functions such as equal() or compare() for the
actual element type B to prevent the template instantiation of those functions, in
case you want to provide a class-specific equal() or compare() function for B.

The classes IElemPointer, IMngElemPointer, and IAutoElemPointer (see
“Managed Pointers” on page 116) internally use a function called elementForOps()
to direct functions such as equal() and compare() to the referenced element, so
that they are not applied to the pointer itself and so that instantiations such as ISet
<IElemPointer <Person>> perform the functions on the elements. This indirection is
usually transparent but you must consider it when you derive classes from the
IElemPointer class. The standard operation classes first apply a function
elementForOps() to the element before they apply the corresponding non-member
(equal(), ...) function. By default, a corresponding template function is instantiated
for elementForOps() which takes an element as input and returns that element. For
pointer classes that perform operations on the pointers themselves (IAutoPointer,
IMngPointer), this function takes the pointer as input and returns the same pointer.

 Chapter 9. Element Functions and Key-Type Functions 109

 Functions for Derived Element Classes

For pointer classes that perform the operations on the referenced elements
(IElemPointer, IAutoElemPointer, IMngElemPointer), this function takes the pointer
as input and returns the referenced element. If a class derived from
IElemPointer<E> is used as a collection element type, the default template
functions must be instantiated before a conversion will be considered. A derived
class must therefore explicitly redefine the elementForOps() function, as shown in
the following example, where class PersonPtr redefines both versions of
elementForOps() by calling the default elementForOps() with a PersonPtr as
argument. Both versions are then made to return a cast to Person reference.
Consider the following header file example:

//person.h - header file containing class Person
 #include <iostream.h>
 #include <istring.hpp>
 #include <iptr.h>

class Person {
IString PersonName; //This will be used as the key

 IString TNumber;

 public:
 //constructor

Person ():PersonName(""),TNumber("") {};
 //copy constructor

Person(IString Name,IString Number):PersonName(Name),TNumber(Number)
 {};

IString const& GetPersonName() const {return PersonName;};
IString const& GetTNumber() const {return TNumber;};
IBoolean operator== (Person const& A) const {

return (PersonName==A.GetPersonName()) &&
 (TNumber==A.GetTNumber());
 };

IBoolean operator< (Person const& A) const {
return (PersonName < A.GetPersonName());

 };
 };

class PersonPtr: public IElemPointer <Person> {

friend inline Person& elementForOps (PersonPtr& A) {
return (Person&) elementForOps ((IElemPointer<Person> &)A); }

friend inline Person const& elementForOps (PersonPtr const& A) {
return (Person const&) elementForOps ((IElemPointer<Person> &) A);}

 public:
PersonPtr(): IElemPointer<Person>() {}
PersonPtr(Person* ptr,IExplicitInit IINIT)

 :IElemPointer<Person>(ptr,IINIT) {}

 };

ostream& operator<<(ostream& os,Person A);

inline IString const& key (Person const& A) //Key access
 { return A.GetPersonName();};

The following example shows the main file.

//main.cpp - main file
#include "person.h" //person.h from the previous example

 #include <istdops.h>
 #include <iset.h>

typedef ISet <PersonPtr> AddressList;

ostream& operator<<(ostream& os,Person A) {
return (os << endl << A.GetPersonName() <<" "<<A.GetTNumber());

110 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Using Smart Pointers

 }

 void main() {
 AddressList Business;
 AddressList::Cursor myCursor1(Business);

PersonPtr Aptr (new Person("Peter Black","714-50706"),IINIT);
PersonPtr Bptr (new Person("Carl Render","714-540321"),IINIT);
PersonPtr Cptr (new Person("Sandra Summers","x"),IINIT);
PersonPtr Dptr (new Person("Mike Summers","x"),IINIT);
PersonPtr CopyCptr (new Person("Sandra Summers","x"),IINIT);

 Business.add(Aptr);
 Business.add(Bptr);
 Business.add(Cptr);
 Business.add(Dptr);
 Business.add(CopyCptr);

forICursor (myCursor1) {
cout << *Business.elementAt(myCursor1);

 }
 }
/* Comment: CopyCptr and Cptr refer to different memory addresses, so

both of them could be put into the set. Using ElementPointers
rather than regular pointers, all collection functions are done
on the elements to which the pointers point. That is why a pointer
pointing on Sandra Summers is only entered once into the list. */

Using Smart Pointers
In C++, variables and function arguments have their values copied when they are
assigned. This copying can decrease a program's efficiency, especially when the
objects are large. To improve efficiency, pointers or references are often used for
common objects. For example, a pointer or reference to the object can be copied,
instead of the object itself. Polymorphism is achieved with pointers through the use
of virtual functions. Pointers to elements can be used as collection element types,
rather than the elements themselves. (References are not allowed as collection
element types).

The Collection Classes define five pointer classes:

 ¹ IElemPointer
 ¹ IAutoPointer
 ¹ IAutoElemPointer
 ¹ IMngPointer
 ¹ IMngElemPointer

These types are referred to as smart pointers. Their main characteristics are:

¹ Certain smart pointers perform storage management. Storage management in
this context means that referenced objects are automatically deleted under
certain conditions.

¹ Certain smart pointers, if stored in a collection, perform all element and
key-type functions, for example equality test, on the referenced elements,
instead on the pointers themselves.

¹ Certain smart pointers combine both of the above features.

You can make use of smart pointers that perform element and key functions on the
referenced elements, by storing pointers from these classes in collections. For
smart pointers that perform storage management only, you can use the pointers
instead of native C++ pointers for general purposes.

 Chapter 9. Element Functions and Key-Type Functions 111

 Using Smart Pointers

You can store smart pointers, as well as C++ pointers, as elements in any
collection. The following sections describe the enhancements that smart pointers
provide over native C++ pointers.

Overview of Smart Pointers
If you store standard C++ pointers in a collection, the collection performs all
element functions (for example, equality test) on the pointers themselves. This is
not always what you intend. If you want the collections to perform those element
functions on the referenced elements instead, use one of the following smart
pointers:

 ¹ IElemPointer
 ¹ IAutoElemPointer
 ¹ IMngElemPointer

If you use pointers from these classes, and you check, for example, the equality of
two pointers from your collection of pointers, true is only returned if the referenced
elements are equal as defined by the equality relation of the element type, even if
the elements are located at different addresses in memory. The same equality test
for a collection of C++ pointers would only return true if the pointers pointed to the
same address.

Pointers from the three I...Elem... classes are also called element pointers.
Element pointers are only useful when you store them in a collection. The
elements themselves are not “stored” in the collection, although information from
the elements is used by Collection Classes functions. See “Element Pointers” on
page 113 for more information on the element pointer types.

If you prefer to perform all element functions (for example, equality test) on the
pointers themselves, and not on the referenced objects (elements), then you can
use one of the following smart pointers:

 ¹ IMngPointer
 ¹ IAutoPointer

For example, if you check the equality of two such pointers from your collection of
pointers, true is only returned if the pointers point to the same address (this is the
same behavior as you would expect for native C++ pointers).

Most smart pointers perform automatic storage deallocation for objects that are no
longer referenced. They are:

 ¹ IAutoPointer
 ¹ IAutoElemPointer
 ¹ IMngPointer
 ¹ IMngElemPointer

Pointers of classes IAuto... are called automatic pointers. Automatic pointers
perform memory management in such a way that referenced objects are deleted as
soon as the pointer passes out of scope. See “Automatic Pointers” on page 116
for more information on automatic pointers.

Pointers of classes IMng... are called managed pointers. Managed pointers
perform memory management in such a way that the references to objects are
counted, and objects are deleted only when they are no longer referenced by any

112 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Using Smart Pointers

managed pointer. See “Managed Pointers” on page 116 for more information on
managed pointers.

To exploit the advantage of memory management, you can use non-element
pointers (for example, IMngPointer) instead of standard C++ pointers without
storing the pointers in a collection.

Automatic storage management is particularly useful when functions return pointers
or references to objects that they have created (dynamically allocated), and the last
user of the object is responsible for cleaning up.

The following features of Collection Classes pointer types give you the choices
shown in the table below. Standard C++ pointers are included for comparison.

¹ Element functions performed on referenced elements
¹ Element functions performed on pointers
¹ Automatic storage management

Smart pointers can only take arguments of type class or struct. This is because
the overloaded operator-> needs to return an object of such a type. You can
apply pointer objects from these five classes in the same way you use ordinary C++
pointers, with the * and -> operators. Elements are implicitly deleted except in the
case of IElemPointer. To delete an element referred to by an IElemPointer you
must use an explicit conversion to the referenced element type:

IElemPointer < E > ptr;
 // ...

delete (E*) ptr;

 Destruction of Pointed Objects

Not managed When
out-of-scope

Reference
counted

Collections call
element operations on
pointer

Standard C++
pointer

IAutoPointer IMngPointer

Collections call
element operations on
referenced object

IElemPointer IAutoElemPointer IMngElemPointer

 Element Pointers
If you create a collection of C++ pointers or pointers of type IMngPointer or
IAutoPointer, Collection Classes methods that use element comparison functions
will do the comparison on the elements' pointers instead of on the elements
themselves.

If you do want element functions to work on the pointers instead of the referenced
elements, you do not need to implement equality and ordering relation for the
chosen pointer type (IAutoPointer, IMngPointer or C++ pointers). The compiler
can instantiate the default element function templates in such cases. If necessary,
you can implement your element functions for the referenced element type.

In the following examples, adding, locating, and other functions are based on
pointer equality and ordering, and not on the equality defined for the Person type.
The header file appears below:

 Chapter 9. Element Functions and Key-Type Functions 113

 Using Smart Pointers

//person.h - header file containing class Person
 #include <iostream.h>
 #include <istring.hpp>
 #include <iptr.h>

class Person {
IString PersonName; //This will be used as the key

 IString TNumber;

 public:
 //constructor

Person ():PersonName(""),TNumber("") {};
 //copy constructor

Person(IString Name,IString Number):PersonName(Name),TNumber(Number)
 {};

IString const& GetPersonName() const {return PersonName;};
IString const& GetTNumber() const {return TNumber;};
IBoolean operator== (Person const& A) const {

return (PersonName==A.GetPersonName()) &&
 (TNumber==A.GetTNumber());
 };

IBoolean operator< (Person const& A) const {
return (PersonName < A.GetPersonName());

 };
 };

class PersonPtr: public IElemPointer <Person> {

friend inline Person& elementForOps (PersonPtr& A) {
return (Person&) elementForOps ((IElemPointer<Person> &)A); }

friend inline Person const& elementForOps (PersonPtr const& A) {
return (Person const&) elementForOps ((IElemPointer<Person> &) A);}

 public:
PersonPtr(): IElemPointer<Person>() {}
PersonPtr(Person* ptr,IExplicitInit IINIT)

 :IElemPointer<Person>(ptr,IINIT) {}

 };

ostream& operator<<(ostream& os,Person A);

inline IString const& key (Person const& A) //Key access
 { return A.GetPersonName();};

The following example shows the main file.

//main.cpp - main file
#include "person.h" //person.h from the previous example

 #include <istdops.h>
 #include <iset.h>

typedef IMngPointer <Person> ManagedPersonPtr;
typedef ISet <ManagedPersonPtr> AddressList;

ostream& operator<<(ostream& os,Person A) {
return (os << endl << A.GetPersonName() <<" "<<A.GetTNumber());

 void main() {
 AddressList Business;
 AddressList::Cursor myCursor1(Business);

ManagedPersonPtr Aptr (new Person("Peter Black","714-50706"),IINIT);
ManagedPersonPtr Bptr (new Person("Carl Render","714-540321"),IINIT);
ManagedPersonPtr Cptr (new Person("Sandra Summers","x"),IINIT);
ManagedPersonPtr Dptr (new Person("Mike Summers","x"),IINIT);
ManagedPersonPtr CopyCptr (new Person("Sandra Summers","x"),IINIT);

 Business.add(Aptr);
 Business.add(Bptr);

114 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Using Smart Pointers

 Business.add(Cptr);
 Business.add(Dptr);
 Business.add(CopyCptr);

forICursor (myCursor1) {
cout << *Business.elementAt(myCursor1);

 }
 }
/* Comment: CopyCptr and Cptr refer to different memory addresses, so

both of them are entered into the set even if the element they
point to is identical. This is because equality now refers to the
pointers even though it is also defined for Person. */

On the other hand, if you want element functions to work on the elements
referenced by the pointers, the Collection Classes offer the IElemPointer,
IAutoElemPointer and IMngElemPointer pointer classes, which are instantiated with
the element type. Pointers of these classes automatically apply all element
functions, except for assignment, to the referenced object. Element pointers are
constructed from C++ pointers. The C++ dereferencing operators * and -> are
defined, for element pointers, to refer to the referenced objects. Consider the
following example:

//main.cpp - main file
#include "person.h" //person.h from the previous examples

 #include <istdops.h>
 #include <iset.h>

typedef ISet <PersonPtr> AddressList;

ostream& operator<<(ostream& os,Person A) {
return (os << endl << A.GetPersonName() <<" "<<A.GetTNumber());

 }

 void main() {
 AddressList Business;
 AddressList::Cursor myCursor1(Business);

PersonPtr Aptr (new Person("Peter Black","714-50706"),IINIT);
PersonPtr Bptr (new Person("Carl Render","714-540321"),IINIT);
PersonPtr Cptr (new Person("Sandra Summers","x"),IINIT);
PersonPtr Dptr (new Person("Mike Summers","x"),IINIT);
PersonPtr CopyCptr (new Person("Sandra Summers","x"),IINIT);

 Business.add(Aptr);
 Business.add(Bptr);
 Business.add(Cptr);
 Business.add(Dptr);
 Business.add(CopyCptr);

forICursor (myCursor1) {
cout << *Business.elementAt(myCursor1);

 }

Business.remove(Cptr); //Remove pointer from collection
cout << "\nPointer was removed from collection but still exists : "

 << *Cptr;
delete (Person*) Cptr;

 }

/* Because PersonPtr is an ElementPointer, you must manually
 free memory. */

The dynamically created elements are not automatically deleted when they are
removed from the collection.

 Chapter 9. Element Functions and Key-Type Functions 115

 Using Smart Pointers

 Managed Pointers
Managed pointers keep a reference count for each referenced object (element).
When the last managed pointer to the object is destructed, the object is
automatically deleted. You should use managed pointers when you are unsure
who is responsible for deleting an object. This may occur where several pointers to
an object are introduced over time, and the order in which the pointers are released
is not known.

The following example shows how to use pointers from the IMngElemPointer class:

//main.cpp - main file
#include "person.h" //person.h from the previous examples

 #include <istdops.h>
 #include <iset.h>

typedef IMngElemPointer <PersonPtr> MEPersonPtr;
typedef ISet <MEPersonPtr> AddressList;

ostream& operator<<(ostream& os,Person A) {
return (os << endl << A.GetPersonName() <<" "<<A.GetTNumber());

 }

 void main() {
 AddressList Business;
 AddressList::Cursor myCursor1(Business);

MEPersonPtr Aptr (new Person("Peter Black","714-50706"),IINIT);
MEPersonPtr Bptr (new Person("Carl Render","714-540321"),IINIT);
MEPersonPtr Cptr (new Person("Sandra Summers","x"),IINIT);
MEPersonPtr Dptr (new Person("Mike Summers","x"),IINIT);
MEPersonPtr CopyCptr (new Person("Sandra Summers","x"),IINIT);

 Business.add(Aptr);
 Business.add(Bptr);
 Business.add(Cptr);
 Business.add(Dptr);
 Business.add(CopyCptr);

forICursor (myCursor1) {
cout << *Business.elementAt(myCursor1);

 }

Business.remove(Cptr); //Remove pointer from collection

//delete (Person*) Cptr; //Wrong: after removing the pointer from the
//collection, the managed pointer is

 //automatically deleted.
 }

In the example, the allocated Person will automatically be deleted by the remove()
function unless it is referenced through another PersonPtr.

 Automatic Pointers
Automatic pointers do not keep a reference count. A referenced object (element) is
automatically deleted in two cases:

¹ The automatic pointer is destructed. Automatic pointers should be used when
the lifetime of the element is the same as the lifetime of the pointer, but when
an explicit deletion of the element is awkward or even impossible. This applies
in particular to pointers to objects that are dynamically created within a function,
and whose lifetime is the scope of the function. The function may be left
through several return statements or through an exception being thrown from
some other function being called.

116 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Using Smart Pointers

¹ Using the assignment operator, the automatic pointer is used to point to
another element (which is implicitly a new element). The assigned pointer is
set to NULL.

If you define a collection taking automatic pointers as elements, the elements are
automatically deleted when the collection is destructed, when an element is
removed, or, if the element was not added to the collection, when the variable or
temporary holding the pointer is destructed. Consider the following example:

//main.cpp - main file
#include "person.h" //person.h from the previous examples

 #include <istdops.h>
 #include <iset.h>

typedef IAutoElemPointer <Person> AEPointer;
typedef ISet <AEPointer> AddressList;

ostream& operator<<(ostream& os,Person A) {
return (os << endl << A.GetPersonName() <<" "<<A.GetTNumber());

 }

 void main() {
 AddressList Business;
 AddressList::Cursor myCursor1(Business);

Business.add(AEPointer (new Person("Peter Black","714-50706"),IINIT));
Business.add(AEPointer (new Person("Carl Render","714-540321"),IINIT));
Business.add(AEPointer (new Person("Sandra Summers","x"),IINIT));
Business.add(AEPointer (new Person("Mike Summers","x"),IINIT));
//The temporary automatic pointer variables were set to NULL
//when the pointer was copied to the collection.

 {
Business.add(AEPointer (new Person("Sandra Summers","x"),IINIT));

} //Deletes the second Person ("Sandra ..."), because it was not
//added (note that in a set, each element occurs only once).

forICursor (myCursor1) {
cout << *Business.elementAt(myCursor1);

 }
} //Deletes all pointers that were added previously to the set

//with the destruction of the set.

Transfer of Automatic Pointers
You should be aware of the implementation details described below when
transferring automatic pointers between functions. Consider the following cases:

¹ A calling function passes an automatic pointer to a called function and the
pointer is returned.

IAutoPointer <Int> f (IAutoPointer <Int> i) { return i; }
 // ...

main () {
IAutoPointer <Int> i (new Int (5), IINIT);
cout << *f(i) << endl;

 }

This program results in the following taking place at runtime:

– main constructs an IAutoPointer object i and initializes it with the address
of Int object 5.

– On invocation of f(), the copy constructor of IAutoPointer is called and
the new constructed auto pointer is initialized with the address of the given
input pointer. The given pointer is set to NULL. On return from f(), the
copy constructor of IAutoPointer constructs a new auto pointer in main()

 Chapter 9. Element Functions and Key-Type Functions 117

 Using Smart Pointers

and initializes it with the address of the auto pointer object from f(), which
then is destructed.

– When main exits, it calls the destructors for all auto pointer objects and the
destructor for Int object 5.

¹ A called function has no input, but returns an object that has been dynamically
created using an automatic pointer.

Int g() {
IAutoPointer <Int> j (new Int (6), IINIT);

 return *j;
 }
 // ...

main () {
cout << g() << endl;

 }

This program results in the following taking place at runtime:

– On invocation of g(), this function constructs an IAutoPointer object,
constructs an Int(6) object, and initializes the auto pointer with the
address of Int(6).

– On return from g(), the copy constructor of Int constructs a new Int(6)
object in main(). The auto pointer object and the Int(6) object in g() are
destructed.

– On exit from main(), the Int(6) object is destructed.

Constructing Smart Pointers
All smart pointers have two constructors: a default constructor that initializes the
pointer to NULL, and a constructor taking a C++ pointer to an element that you must
have created before (using new).

Implicit conversions from a C++ pointer to a managed or automatic pointer are
dangerous: elements might be implicitly deleted without your being aware that this
has happened. Therefore, the conversion functions for these classes take an extra
argument IINIT to make the construction explicit. Hence, the notation for creating
a managed or automatic pointer is:

IAutoPointer < E > ePtr (new E, IINIT);

Note: After you have constructed a managed or automatic pointer from a C++
pointer, you should no longer use the C++ pointer. You should only access
the element through the pointer of the given class. Otherwise, the element
could be implicitly destructed while a C++ pointer still refers to it. In
particular, you must not construct two managed pointers or two automatic
pointers from the same C++ pointer, because this would cause the managed
pointers to keep two separate reference counts, and to implicitly delete the
referenced element twice. For example:

IString *s = new IString("...");
IMngPointer < IString > p1 (s, IINIT); // OK
IMngPointer < IString > p2 (s, IINIT); // NO!
// Do not use s a second time, because the compiler may try to
// delete the IString object referred to by s, p1, and p2 twice.

You should keep the following rule in mind when using managed or
automatic pointers created from standard pointers: Never use the C++
pointer once the managed or automatic pointer has been created from it,
because this may interfere with the automatic storage management. For
example, the object that is referenced by a C++ pointer and by an automatic
pointer created from this C++ pointer, is deleted as soon as the automatic

118 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Using Smart Pointers

pointer gets out of scope. The C++ pointer then points to undefined
storage.

The extra IINIT argument is introduced to make such situations explicit and
especially to avoid the usage of the constructor as an implicit conversion operator.
The IINIT argument is defined as follows:

enum IExplicitInit {IINIT};

Without the IINIT argument, you might try to write code such as the following:

//main.cpp - main file
#include "person.h" //person.h from the previous examples

 #include <istdops.h>
 #include <iset.h>

typedef IMngPointer <Person> MPointer;
typedef ISet <MPointer> AddressList;

ostream& operator<<(ostream& os,Person A) {
return (os << endl << A.GetPersonName() <<" "<<A.GetTNumber());

 }

void func (MPointer aPointer);
 //.......

 void main() {
 AddressList Business;
 AddressList::Cursor myCursor1(Business);

Person* ptr1=new Person("Peter Black","714-50706");
MPointer mngdP=MPointer (ptr1);

func (ptr1); //Error: Second use of the C++ pointer.
 }
// This listing is not intended to work. It illustrates how to
// avoid serious errors.

For the call to func(), the compiler would call a constructor for implicit conversion if
the constructor did not require IINIT. On function return the temporary managed
pointer would be destructed and the Task object deleted.

Notes on Smart Pointers
1. The smart pointers do not work with basic types such as int , long , and char .

2. If you implement a key collection containing element pointers, you must define
your key() function with the element as input, not the pointer to the element,
for example,

typedef IKeySortedSet <IMngElemPointer <Element>, int> keySortedSetOfPointers;
 // ...

int const& key(Element const& element) {
 return element.elementKey();
 }

where elementKey() returns the element's key.

3. An automatic pointer's copy constructor and assignment operator are defined in
a way that resets the source pointer to NULL. This prevents multiple automatic
pointers from pointing to the same element. In the following example, p2 is
implicitly set to NULL:

IAutoPointer < E > p1, p2;
 ...

p1 = p2;

However, the copy constructor and assignment operator still take a const
argument (using a const cast-away) to maintain compliance with the standard

 Chapter 9. Element Functions and Key-Type Functions 119

 Using Smart Pointers

interface for these operations. This standard interface is required, for example,
when you use these types as element types in collections, because the copy
constructor and assignment operator are required to have such an interface.
(Otherwise, the collection's add() function could not take a const argument.)

4. If you want to create managed pointers for a collection and copy in elements
from a second collection that already contains managed pointers, you cannot
use IINIT because it will destroy the managed pointers in the second collection.
To avoid this situation, you can use the following notation:

typedef IMngElemPointer <PersonPtr> MyClassPtr;
typedef IKeySet<MyClassPtr> MyAddressList;

MyClassPtr pMyClass;
:pMyClass = Business.elementWithKey(...);

In the above notation, Business is the collection from the previous examples,
but here it is an IKeySet collection rather than an ISet collection so that
.elementWithKey can be used.

120 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Replacing the Default Implementation

Chapter 10. Tailoring a Collection Implementation

This chapter describes how to tailor a collection implementation for your specific
applications. It describes the based-on concept and predefined implementation
variants.

 Introduction
When you are developing a program that uses a collection, you should begin by
using the default implementation and go on to a final tuning phase where you
choose implementations according to the actual requirements of your application.
You can determine these requirements by profiling or by using other measurement
tools. This section describes how to choose between a variety of implementations
provided by the Collection Classes as well as how to create your own
implementation classes.

As described in “The Overall Implementation Structure” on page 83, each abstract
data type has several possible implementations. Some of these implementations
are basic; that is, the collection class is implemented directly as a concrete class.
These basic implementations include:

 ¹ AVL trees
 ¹ Hash tables
 ¹ Linked sequences
 ¹ Tabular sequences

Other implementations, including bags, are based on other collection classes. The
based-on concept provides a systematic framework for choosing the most
appropriate implementations. It is also useful for extending the Collection Classes
with other basic implementations, such as specific kinds of search trees, and for
using these implementations as the basis for other data abstractions such as sets,
maps, and bags.

Replacing the Default Implementation
You can easily replace the default implementation with another implementation.
Suppose that you have a key set class called MyType that has been defined with the
default implementation IKeySet. The definition of this class would look like this:

typedef IKeySet < Element, Key > MyType;

If you want to replace the default implementation, which uses an AVL tree, with a
hash table implementation, you can replace the above implementation with the
following definition:

typedef IHashKeySet < Element, Key > MyType;

If you replace a collection's default implementation with one of its implementation
variants, you must determine what element functions and key-type functions need
to be provided for the variant. You must then provide those functions. The list of
required functions is not always the same for a collection's default implementation
as for particular implementation variants. Required functions for a collection's
default implementation or an implementation variant are listed in the collection's

 Copyright IBM Corp. 1996, 1998 121

 Provided Implementation Variants

chapter in the OS/390 C/C++ IBM Open Class Library Reference. See the section
“Template Arguments and Required Functions” in each such chapter.

The Based-On Concept
The Collection Classes achieve a high degree of implementation flexibility by
basing several collection class implementations on other abstract classes, rather
than by implementing them directly through a concrete implementation variant of
the class. This design feature results in an implementation path rather than the
selection of an implementation in a single step. The Collection Classes contain
type definitions for the most common implementation paths; they are described in
the corresponding sections of the OS/390 C/C++ IBM Open Class Library
Reference. See Figure 13 on page 123 for an illustration of implementation paths.
The figure is explained in “Provided Implementation Variants.”

The element functions that are needed by a particular implementation depend on all
collection class templates that participate in the implementation. While ISet
requires at least element equality to be defined, an AVL tree implementation of this
set also requires the element type to provide a comparison function. A hash table
implementation also requires the element type to have a hash function. The
required element functions for all predefined implementation variants are listed in
the chapters for individual collection types in the OS/390 C/C++ IBM Open Class
Library Reference.

For a concrete implementation, such as a set based on a key-sorted set that is in
turn based on a tabular sequence, these class templates are plugged together.

Provided Implementation Variants
Figure 13 on page 123 lists the basic and based-on implementations provided by
the Collection Classes. The upper left corner of each cell contains the name of the
(abstract) collection class; basic implementations are written in smaller letters in
bold face, while based-on implementations are described by arrows starting from
the class that they implement and ending in the (abstract) class on which they are
based. An implementation choice for a given class must use either a basic
implementation for this class or follow a based-on implementation path that
ultimately leads to a basic implementation.

Take the example of the Set abstraction. The Set is not implemented directly.
(You can tell this from the figure because no implementation variant name appears
in bold in the box containing Set.) To determine the possible implementation
variants for Set, follow the arrows out of the Set box:

¹ One arrow leads to the KeySet box. The KeySet box contains an
implementation variant, Hash Table , so this is one possibility. An arrow also
points from the KeySet Box to the KeySortedSet box, which allows the
following possibilities:

– AVL Tree (appears in KeySortedSet box)
– B* Tree (appears in KeySortedSet box)
– An arrow leads from KeySortedSet to Sequence, which contains the

following implementation variants:
 - List
 - Table
 - Diluted Table

122 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Provided Implementation Variants

A Set can therefore be implemented using any of the six implementation variants
cited in bold face above.

Map

Key Set Key Bag

Set Bag Sorted Set Sorted Bag Equality Sequence

Heap Sequence

Hash Table AVL Tree

B* Tree

Diluted Table

List

Table

Key Sorted Set Key Sorted Bag

Relation Sorted Map Sorted Relation

Figure 13. Possible Implementation Paths

Figure 14. Implementation Variants Provided for Each Flat Collection. Squares identify default implementations;
circles identify implementation variants.

Table 6. Implementation Variants

Implementation Variant B
ag

 S
or

te
d

B
ag

 K
ey

 B
ag

 K
ey

 S
or

te
d

B
ag

 S
et

 S
or

te
d

S
et

 K
ey

 S
et

 K
ey

 S
or

te
d

S
et

 M
ap

 S
or

te
d

M
ap

 R
el

at
io

n

 S
or

te
d

R
el

at
io

n

 S
eq

ue
nc

e

 E
qu

al
ity

 S
eq

ue
nc

e

 H
ea

p

AVL Tree ■ ■ ■ ■ ■ ■

B* Tree Á Á Á Á Á Á

Hash Table Á ■ Á Á Á ■

List ■ ■ Á ■ Á Á Á Á Á Á Á ■ ■ ■ ■

Table Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á

Diluted Table Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á

Features of Provided Implementation Variants
You can implement a given collection type (bag, key sorted set, etc.) in a number
of different ways. The possible implementation variants are described in “Provided
Implementation Variants” on page 122, and are listed in the “Class Implementation
Variants” section of each collection chapter in the OS/390 C/C++ IBM Open Class
Library Reference. The Collection Classes provide multiple implementation variants
for collections because different variants have different performance and storage
use characteristics. After you have coded and debugged an application that uses

 Chapter 10. Tailoring a Collection Implementation 123

 Provided Implementation Variants

the Collection Classes, you can change an implementation to a variant that is
well-suited to the ways in which you use the collection. For example, in
Chapter 21, “Key Set” in the OS/390 C/C++ IBM Open Class Library Reference,
the section “Variants and Header Files” on page 151 lists six implementation
variants, including the default key set. These variants are implemented using the
following concrete techniques:

 ¹ Sequences
 – List
 – Table
 – Diluted table

 ¹ Trees
– AVL tree (the technique used for the default key set)

 – B* tree
 ¹ Hash table

As it turns out, the implementation variants for key set encompass all the concrete
techniques used by the Collection Classes. Other collections may only use some
of the techniques in the list above. If you want to choose the best implementation
variant for your program, you need to know the advantages of each concrete
technique. The remainder of this section describes each technique and presents its
advantages and the trade-offs it entails.

 Sequences
Sequences are generally used to store elements sequentially. Each of the three
available implementation variants for sequences allows certain operations to be
done more efficiently than others. The benefits of each variant are described first,
and then each variant is explained in detail.

Lists are suitable when you anticipate that many elements will be added or
deleted, and where you cannot accurately predict the maximum size of the
collection when it is first created.

Tables provide good performance where a collection is primarily used for
reading data but elements are not frequently added or deleted once the
collection is created.

Diluted tables are more suitable for collections where some elements are
inserted or deleted after the collection is created, but where the collection is still
primarily read from rather than written to.

Following are descriptions of each type of sequence.

 List
A list uses pointers to link each element to its predecessor and successor. This
implementation does not require contiguous memory for storing an array, which
means that elements do not have to be shifted to make room for new elements or
to close up gaps created by deleted elements.

Because storage is dynamically allocated and freed, this implementation variant is a
good choice in applications that add or delete many elements, particularly where
you cannot predict the amount of storage required. Figure 15 on page 125 shows
a list implementation variant.

124 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Provided Implementation Variants

header last element

el 1 el 2 el n. . .

Figure 15. List Implementation Variant

 Table
A table is an array implementation of a sequence. The elements are stored in
contiguous cells of an array. In this representation, a list can easily be traversed,
and new elements can easily be added to the tail of the list. If an element needs to
be inserted into the middle of the list, however, all following elements need to be
shifted to make room for the new element. Similarly, if an element needs to be
removed from the list, and the element is not the last element in the list, all
elements following the element to be deleted must be shifted in to close up the
gap.

A table can access all elements quickly because all elements can be stored in a
single storage block. If all of the following conditions hold true for your use of a
collection, a table is a suitable implementation variant to use:

¹ The elements to be stored are small.
¹ You can predict with some accuracy how many elements your application will

have to handle.
¹ Few or no elements will need to be added or deleted once the collection is first

created.

Note that memory is statically allocated for tables, at the beginning of your
program.

Figure 16 shows a table implementation variant.

el 1 el 2 el 3 ...el 4 el 5 el n max

last
filled free

Figure 16. Table Implementation Variant

 Diluted Table
A diluted table, like a table sequence, is an array implementation of a list.
However, when you delete an element from a diluted table, it is not actually
deleted, but only flagged as deleted. This provides a performance advantage, in
that elements following a deleted element do not need to be shifted. The additional
overhead of using a dilution flag is trivial.

If you want to add a new element at a certain position, only those elements
between that position and the next element flagged as deleted need to be shifted.
(If no elements later in the list are flagged as deleted, then all elements beyond the
insertion position must be shifted.)

 Chapter 10. Tailoring a Collection Implementation 125

 Provided Implementation Variants

Use a diluted table rather than a table if your application will be doing much adding
or deleting of elements after the collection is established.

Figure 17 shows a diluted table implementation variant.

el 1 el 2 el 3 ...el 4 el n max

Diluted Diluted

last
filled free

Figure 17. Diluted Table Implementation Variant

 Trees
A tree is a collection of nodes. The nodes either contain the data of the collection
or pointers to that data.

A node normally contains a reference to one or more other nodes. Referenced
nodes are children of the referencing node. One node is the entry point to the tree.
This node is designated as the root. Nodes without any references to other nodes
are called leaf nodes or terminal nodes.

Trees in general are more useful for searching elements than for adding and
deleting elements. For this reason, they are often called search trees. The
descriptions of AVL and B* trees below explain why trees are well-suited for
searching.

 AVL Tree
AVL trees are a special form of binary tree. You can better understand AVL trees if
you know how a binary tree is structured.

Trees are binary trees when all nodes have either zero, one, or two children.
Binary trees are often used in applications where you want to store elements in a
certain order. In such cases, the left child always points to an element that comes
earlier in the order than the parent node, and the right child points to an element
that comes later than the parent. A search through a binary tree begins at the root
node. The search then continues downward until the desired element is found, by
determining whether a node comes before or after the searched-for node, and then
following the appropriate branch. For example, the binary tree shown in Figure 18
on page 127 has elements added in the following sequence: 8 - 10 - 5 - 1 - 9 - 6 -
11. A search for element 9 begins at the root node (element 8). Assuming that the
element value defines the ordering relation, the search would take the right node
from element 8 (because 9 is greater than 8) and would arrive at element 10. The
search would take the left node from element 10 (because 9 is smaller than 10)
and would arrive at element 9, the desired element.

126 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Provided Implementation Variants

8

5

61 9 11

10

Figure 18. Binary Search Tree

One drawback of a binary search tree is that the tree can easily become
unbalanced. Figure 19 shows how unbalanced the tree becomes when the
elements 12 through 15 are added.

8

105

1 6 9 11

12

13

14

15

Figure 19. Unbalanced Binary Search Tree

This tree looks almost like a list, without the performance advantage of a normal
binary search tree. To obtain this performance advantage, a binary search tree
should always remain balanced. The AVL Tree is a special form of binary search
tree that maintains balance.

The AVL tree was invented by the two mathematicians, Adel'son-Vel'skii and
Landis, from whom it derives its name. AVL trees are height-balanced. They have
the property that, for every node in the tree, the height of that node's left subtree
minus the height of the right subtree is always -1, 0, or +1. AVL trees provide
better performance than ordinary binary search trees because they do not become
unbalanced. Unbalanced trees often have very poor search characteristics. If
adding or removing an element from an AVL tree causes the tree to lose its AVL
property, then a few local readjustments are sufficient to restore the AVL property.
Figure 20 on page 128 shows how the unbalanced tree shown earlier would look
after the AVL property is restored.

 Chapter 10. Tailoring a Collection Implementation 127

 Provided Implementation Variants

12

10

119

5

8

61

13 15

14

Figure 20. AVL Tree

AVL trees are useful for collections containing a large number of small elements.
An AVL tree implementation is even suitable for adding and deleting, because the
performance overhead for the rebalancing that sometimes occurs when an element
is added or deleted is still less expensive than searching through the elements of a
sequence to find the position at which to add or delete an element.

If you use a set collection and do not choose an implementation variant, you are
automatically using an AVL tree. If you use a set and are not aware that the set is
implemented as an AVL tree, you may be surprised that a set requires an ordering
relation, when a set is an unordered collection, as shown in Figure 8 on page 78.
The reason a set requires an ordering relation is that an AVL tree requires an
ordering relation so that it knows where to add new elements or where to find
elements being accessed or deleted. As this example shows, required element and
key-type functions are determined by two factors:

¹ Some functions are required because of the properties of the collection.
¹ Some properties are required because of the implementation variant you

choose.

 B* Tree
A B* tree is a search tree that may have more than two references per node.
Figure 21 shows a B* tree with up to five children per node.

Figure 21. A B* tree

A B* tree combines the advantages of binary search and sequential access upon
the same set of keys. B* trees are based on two simple ideas:

¹ The internal nodes are used only for storing the keys, with all real data stored
at the leaves. A B* tree takes into consideration the page or block size of the
operating system's virtual memory structure, and is suitable for applications
where paging or memory thrashing is a constraint.

128 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Provided Implementation Variants

¹ The leaves of a B* tree are chained together in logical sequence to support
sequential access.

A B* tree implementation variant is suitable when you have many large elements
that are accessed by key. Because keys and their data are separated, the keys in
the tree structure are used for a quick search and the pointers are used for quick
access to the data.

In contrast to a B* tree, keys and data in an AVL tree are both stored in the nodes.
This means that searching through elements could cause page faults if the
elements are large, because the various keys may be spread across several pages
along with the data they refer to.

In Figure 22, the B* tree has an order of 5 (which means that each internal node
has a maximum of five references). The data is stored only in the leaves. A leaf
block is built to hold one element. A leaf block may be larger than one page. The
B* tree implementation uses the keys in the nodes for quick access to a required
page (leaf), or it uses the keys for a quick sequential access to all pages, and
hence to all elements.

20

10 45

root pointer

2 65 8 10 14 15 20 45 49 53 6221 24 26 27

2 two 6 six 45 fourtyfive 62 sixtytwo

49 fourtynine

21 twentyone

26 twentysix

...
...

...
...

...

Figure 22. B* Tree Implementation Variant

 Hash Table
Hashing is another important and widely used technique to implement collections.
Conceptually, hashing involves calculating an index from the key or other parts of
an element, and then using that index to look for matches in a hash table. The
function that calculates the index is called a hash function.

A hash table implementation variant is suitable for nearly all applications with a
balanced mix of operations. Such an implementation is quick for retrieving
elements. It can also add and delete elements quickly, because, unlike an AVL
tree, it does not need to be rebalanced. The efficiency of a hash-table
implementation is largely dependent on how efficiently you implement the hash
function.

You cannot use a hash-table implementation variant when you require your
elements to appear in main storage in sorted order (where elements earlier in the

 Chapter 10. Tailoring a Collection Implementation 129

 Provided Implementation Variants

sorting order have lower addresses than elements later in the sorting order). On
the other hand, you must use a hash table if you have a complex key (one
composed, for example, of several attributes of an element), and either you cannot
find a reasonable way to compare keys, or the comparison would be expensive.

For collections that do not provide access by key, but that support a hash-table
implementation variant, the complete element is used as the input to the hash
function.

Hashing, as implemented in the collection classes, allows elements to be stored in
a potentially unlimited space, and therefore imposes no limit on the size of the
collection. Figure 23 shows a hash table implementation variant.

1

2

3

4

5

6

.....

.....

.....

.....
abcd

xyz

7

.....
yyy

Figure 23. Hash Table Implementation Variant

The hash function that calculates the index 3 from abcd is implemented as follows:

1. Each character is transformed into an integer according to its position in the
alphabet.

2. The resulting integers are added together.
3. The result is divided by the hash table size. The remainder is the hash.

This hash function returns the following results for elements abcd, xyz and yyy:

¹ abcd: (1 + 2 + 3 + 4) % 7 = 3
¹ xyz: (24 + 25 + 26) % 7 = 5
¹ yyy: (25 + 25 + 25) % 7 = 5

The principal behind a hash table is that the possibly infinite set of elements in your
collection is partitioned into a finite number of hash values (1, 2, 3, ...). Your hash
function is called with a key and a modulo value, and you use the key and the
modulo value to arrive at an integer hash value. If for two different keys the hash
function returns the same hash value (as for xyz and yyy in the previous figure), a
hash collision occurs. In such cases, a hash implementation constructs a collision
list where all keys returning the same hash value are linked.

In the best case, for each different key, your hash function should return a different
hash value. At the very least, it is desirable for the collision lists to remain small so
that access time is fast. This means that hash values should be evenly distributed.
Your hash function should randomly hash the key so that the hash value is not
dependent on the key value in any trivial way. Your hash function should always
return the same hash value for a given key and modulo provided to it.

130 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Polymorphism and the Collections

Chapter 11. Polymorphism and the Collections

This chapter describes how you can make use of polymorphism in the Collection
Classes

Introduction to Polymorphism
Polymorphism allows you to take an abstract view of an object or function argument
and use any concrete objects or arguments that are derived from this abstract view.
The collection properties defined in “Flat Collections” on page 78 define such
abstract views. They are represented in the form of the class hierarchy in
Figure 11 on page 86.

Polymorphic use of collections differs from polymorphism of the element type.
Polymorphic use of collections means that a function can specify an abstract
collection type for its argument, for example IACollection, and then accept any
concrete collection given as its actual argument. Element polymorphism means
that you can use the collections with any elements that provide basic operations
like assignment and equality. This chapter deals with the polymorphic use of
collections rather than elements.

Each abstract class is defined by its functions and their behavior. The most
abstract view of a collection is a container without any ordering or any specific
element or key properties. Elements can be added to a collection, and a collection
can be iterated over. A polymorphic function on collections that uses only
properties of the most abstract view might be to print all elements; such a function
is given as an example on page 132.

Collections with more specialized element properties, such as equality or key
equality, also provide functions for retrieving element occurrences by a given
element or key value. Ordered collections provide the notion of a well-defined
ordering of element occurrences, either by an element ordering relation or by
explicit positioning of elements within a sequence. Ordered collections define
operations for positional element access. Sorted collections provide no further
functions, but define a more specific behavior, namely that the elements or their
keys are sorted.

The properties represented by abstract collection classes are combined through
multiple inheritance: The abstract collection class IAEqualitySortedCollection, for
example, combines the properties of element equality and of being sorted, which
implies being ordered. If a polymorphic function uses IAEqualitySortedCollection
as its argument type, the argument will be sorted, and the function can use
functions such as contains() that are only defined for collections with element
equality.

Using the Abstract Class Hierarchy
The following example defines a universal printer class that accepts an arbitrary
collection of jobs and prints their IDs. The elements are printed in the iteration
order that is defined for the given collection. The key set running can be used as
argument to the universal printer.

 Copyright IBM Corp. 1996, 1998 131

 Polymorphism and the Collections

class JobPrinter {
 public:

print (IACollection <Job*> const& jobs)
{ cout << "ID ..."
ICursor *cursor = jobs.newCursor ();
cout << "{ ";

 forICursor (*cursor)
cout << jobs.elementAt (*cursor)->id() << ' ';

cout << "}\n";
 delete cursor;
 }
 };
 // ...

typedef IKeySet <Job*, JobId> JobSet;
 JobSet running;
 // ...
 JobPrinter jobPrinter;
 jobPrinter.print (running);

Adding and Overloading Member Functions
When you derive classes from the Collection Classes you can do so in two different
ways:

1. The derived class only adds new member functions.

2. The derived class overloads existing member functions. The derived collection
class will not be used in a polymorphic way.

You do not need to take any special measures. You just code your derived class
as usual. For example, suppose you want to implement a set of integers that can
give you information about the sum of integers contained in the collection. You
create a class IntSet that is derived from ISet<int>. This class does the
following:

1. Introduces the data member ivSum to hold the current sum.

2. Adds the member function sum(), which returns the current sum.

3. Overloads the add() member function so that it updates ivSum each time an
integer is added to the collection.

In a real application, any add, replace or remove member function would have to
be overloaded in order to update the sum of integers. For simplicity, this is not
done in the example below:

#include <iset.h>

class IntSet: public ISet<int> {
typedef ISet<int> Inherited;

public:
IntSet (INumber n = 100)
: ISet<int> (n), ivSum (0) { }

 IBoolean add (int const& i)
{ ivSum += i;
return Inherited::add(i); }

int sum () const
{ return ivSum; }

132 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Polymorphism and the Collections

private:
 int ivSum;
};

// ...
IntSet anIntSet;
anIntSet.add (1);
anIntSet.add (2);
cout << anIntSet.sum () << endl;

The output of this program is 3.

Note: Collection classes do not have virtual functions. You cannot override the
member functions of a collection class.

 Chapter 11. Polymorphism and the Collections 133

 Polymorphism and the Collections

134 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Support for Notifications

Chapter 12. Support for Notifications

The Collection Classes include special classes that support notifications. For every
concrete flat collection class (for example ISequence), there is a corresponding
notification-enabled collection class starting with IV (for example IVSequence).

All collection methods that modify a collection send notifications to observers. The
class IVCollection defines four notification IDs for Collection Classes:

IVCollection: addId Sent if an element is added to the collection

IVCollection: removeId Sent if an element is removed from the collection

IVCollection: replaceId Sent if an element is replaced in the collection

IVCollection: modifyId Sent if a collection is changed in any way other than
those mentioned above.

The Collection notifications addId, removeId and replaceId pass a pointer to an
instance of the class IVCollectionEventData.

The class IVCollectionEventData provides the methods:

1. ICursor const& cursor() const

2. Element const*const element() const

For the notifications addId, removeId and replaceId, you can use
INotificationEvent::eventData() to access event data (IVCollectionEventData)
generated by collections. The cursor points to the element referred to by the
modification method. For example, if addId is the notification, the cursor points to
the added element. The replaceId notification also gives you access to a copy of
the element that was replaced.

For the notifications addId and modifyId, the library sends notification after the
modification occurs. For the notification removedId and replaceId the library sends
notification before the collection is changed, otherwise you would not be able to use
the cursor to refer to the element being removed.

Notifications are only sent if the collection is changed by the method. The following
methods do not create a notification:

¹ removeAll() for an empty collection
¹ add(), when add() does not actually add an element (for example, because the

element already exists in a unique collection, or because the collection is full)
¹ remove() if the element is not in the collection
¹ locateOrAdd() if the element is already in the collection

Information about the notification framework is found in Chapter 23, “The IBM
Open Class Notification Framework” on page 235.

 Copyright IBM Corp. 1996, 1998 135

 Support for Notifications

Example for IVSequence<IString>
The following example demonstrates the use of collection event data for a
sequence of IStrings. IString is the main string handling class provided by the
IBM Open Class Library. See Chapter 19, “String Classes” on page 199 for
information on how to use this class.

#include <iobservr.hpp>
#include <inotifev.hpp>
#include <iseq.h>

typedef IVSequence <long> Notifier;

#include <iostream.h>

template <class Notifier>
class Observer : public IObserver {
public:

Observer (Notifier* notifier)
: ivNotifier (notifier)
{ handleNotificationsFor (*ivNotifier);

 }

 ˜Observer ()
{ if (ivNotifier != 0) // critical !

 stopHandlingNotificationsFor (*ivNotifier);
 }

 IObserver&
dispatchNotificationEvent (INotificationEvent const& event)
{ if (event.notificationId () == IStandardNotifier::deleteId) {

cout << "IStandardNotifier::deleteId received" << endl;
 }
 else

if (event.notificationId () == IVCollection::removeId) {
cout << "IVCollection::removeId received" << endl;
cout << "Old Data: "

 << ((IASequence<long>)(event.notifier()))
//
// IASequence can be either replaced by IACollection
// or IAOrderedCollection:
// << ((IACollection<long>)(event.notifier()))
//
 .elementAt(((IVCollectionEventData<long>*)
 ((char*)event.eventData()))->cursor())
 << endl;
 }
 else

if (event.notificationId () == IVCollection::replaceId) {
cout << "IVCollection::replaceId received" << endl;
cout << "Replace at position: "

 << ((IASequence<long>)(event.notifier()))
//
// IASequence can be replaced by IAOrderedCollection
// << ((IAOrderedCollection<long>)(event.notifier()))
//
 .positionAt(((IVCollectionEventData<long>*)
 ((char*)event.eventData()))->cursor())
 << endl;

cout << "Old Data: "
 << ((IASequence<long>)(event.notifier()))
//
// IASequence can be either replaced by IACollection

136 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Support for Notifications

// or IAOrderedCollection:
// << ((IACollection<long>)(event.notifier()))
//
 .elementAt(((IVCollectionEventData<long>*)
 ((char*)event.eventData()))->cursor())
 << endl;

cout << "New Data: "
 << *(((IVCollectionEventData<long>*)
 ((char*)event.eventData()))->element())
 << endl;
 }
 else

if (event.notificationId () == IVCollection::addId) {
cout << "IVCollection::addId received" << endl;
cout << "Add at position: "

 << ((IAOrderedCollection<long>)(event.notifier()))
 .positionAt(((IVCollectionEventData<long>*)
 ((char*)event.eventData()))->cursor())
 << endl;

cout << "New Data: "
 << ((IASequence<long>)(event.notifier()))
//
// IASequence can be either replaced by IACollection
// or IAOrderedCollection:
// << ((IACollection<long>)(event.notifier()))
//
 .elementAt(((IVCollectionEventData<long>*)
 ((char*)event.eventData()))->cursor())
 << endl;
 }
 else {

cout << "unknown event received" << endl;
 }
 return *this;
 }

private:

 Notifier* ivNotifier;

};

int main ()
{ Notifier* n = new Notifier;
 Notifier::Cursor c(*n);
Observer <Notifier> o (n);

 n->enableNotification ();
 {
 n->add(123,c);
cout << "element in collection: " << n->elementAt(c) << endl;

 n->replaceAt(c,456);
cout << "element in collection: " << n->elementAt(c) << endl;

 n->removeAt(c);
cout << "Number of elements in collection: " << n->numberOfElements() << endl;

 }
 delete n;

 return 0;
}

 Chapter 12. Support for Notifications 137

 Support for Notifications

138 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Guard Objects

Chapter 13. Thread Safety and the Collection Classes

Like most of the IOC classes, the collection classes require thread safe operation of
multithreaded access to global data. The collection classes offer support for Level
1 thread safety, but they also offer built-in support to simplify the explicit
serialization needed by the programmer to protect the collection instance. While
serialization for global data is still needed under Level 1, the built-in support helps
to reduce the amount of programming required. Note, however, that the locking of
elements stored within a collection is the responsibility of the user and is not
provided as part of collection class thread safety.

 Guard Objects
For each different collection abstraction, a Guard class similar to IResourceLock
has been defined and a corresponding typedef added:

template <class Element> class ICollectionGuard {}
typedef ICollectionGuard<Element> Guard;

Essentially, a Guard object is an object created on a stack that is used to lock
some other object. Guard objects are useful in C++ because they respond properly
to exceptions. When an exception is thrown while still in the scope of the Guard
object, its destructor is called as the exception passes through the stack frame and
the destructor unlocks the target object. As a result, the exception can be caught
and dealt with by code further up the call chain without leaving the locked object in
an unusable locked state.

The Guard typedef can be used as if it was a nested class of a particular collection
and is based on one of three new classes added to the IBM collection class
wrapper:

template <class Element>
 class ICollectionGuard
 {
 public:
 ICollectionGuard(
 IACollection<Element>&,long timeout=-1);
 ˜ICollectionGuard();
 private:
 IACollection<Element>& ivCollection;
 }

Note: The time-out parameter is ignored on OS/390.

 Usage
In a user program, a Guard is used in the following way to obtain a lock on a
specific collection:

 Copyright IBM Corp. 1996, 1998 139

 Guard Objects

//...
{ ISet<char> my_set;
 try {

ISet <char>::Guard g(my_set);
 my_set.add('x');
} catch (IException& e) {

// The user’s error recovery...
 }
}
//...

The critical region, in this case the add method invoked on the ISet<char>, must be
specified within a C++ compound statement. On entry to the block, the Guard
constructor locks the collection that is specified as the Guard constructor
parameter. The destructor is executed when the scope of the block is left at the
time the collection is unlocked. The specified name of the Guard object (g in the
above example) is arbitrary and plays no role in the locking.

Depending on the number of threads of a particular user application, multiple Guard
objects may exist that work with the same collection object.

For the Restricted Access Collections and the Tree Collections, two similar Guard
classes and corresponding typedefs are added. They are exposed to the user
through the following typedefs on the level of appropriate concrete collections:

typedef IRestrictedAccessCollectionGuard<Element> Guard;
typedef ITreeGuard<Element> Guard;

In the event that the user invokes a Collection method that involves two or even
three collections, code such as the following must be used in order to achieve
thread-safe execution:

//...
{ try {

ISet <char>::Guard l1(my_set1);
ISet <char>::Guard l2(my_set2);

 my_set1.addAllFrom(my_set2);
} catch (IException& e) {

// The user’s error recovery...
 }
}
//...

In the case of three involved collections, the following code must be used:

//...
{ try {

ISet <char>::Guard l1(my_set1);
ISet <char>::Guard l2(my_set2);
ISet <char>::Guard l3(my_set3);

 my_set1.addInterSection(my_set2,my_set3);
} catch (IException& e) {

// The user’s error recovery...
 }
}
//...

140 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Restrictions

The programmer does not need to include any new header files. The typedef for
the ISet coding samples illustrated above is provided by the standard include file
iset.h.

ICollectionGuard<Element> Constructor and Destructor
The Guard constructor takes the collection object to be locked and an optional
timeout value as parameters. The timeout value is specified in milliseconds. If a
lock request cannot be resolved within the specified range of time, an exception is
thrown. The timeout value defaults to -1 to indicate an indefinite wait. The value 0
informs the constructor to throw an exception if the lock is not immediately
available.

This parameter is only supported on non-POSIX platforms. Other platform
implementations ignore the specification of this value. It is specifically ignored on
OS/390.

The Guard destructor unlocks the Collection specified within the constructor of the
Guard.

Guard Copy Constructor
The Guard copy constructor is made private in order to prevent the user from
copying Guard objects.

Collection Constructor and Destructor
The collection does not keep track of all possible Guard objects currently in use
with the target collection. Guards for a collection must be destructed before the
collection itself is destructed. This is normally accomplished by declaring the Guard
within a compound statement so that it is automatically destructed when the
statement passes out of scope.

Collection Copy Constructor
If a new collection is created from an existing collection instance, the guards of the
existing collection have no effect on the new collection.

Return Codes and Exceptions
Since the Guard is constructed, there are no return codes. The Collection classes
use exceptions to indicate that a lock cannot be obtained. The user must code the
Guard constructor within a try/catch clause. When the Guard constructor fails and
the lock was not obtained for any reason, a C++ exception is thrown.

 Deadlocks
In either of the above cases, you are responsible for the proper sequence of
obtaining the locks. There is no special code within the collection classes to
prevent the user from producing deadlocks.

 Restrictions
The current implementation does not provide any means to support users who want
to program in a multiprocessing environment with the IBM Open Class collection
classes having collection instances in shared memory regions executed. It only
supports thread safety within a single process.

 Chapter 13. Thread Safety and the Collection Classes 141

 Restrictions

Due to inherent POSIX limitations, the IBM Open Class collection classes do not
support the described time-out processing in the following environments:

| ¹ OS/390 UNIX System Services
 ¹ AIX

The time-out parameters on OS/390 are ignored.

| All guard processes that run on a non-OS/390 UNIX system are actually no
operation (NOOP). The internally used IResource classes are not available on

| non-OS/390 UNIX systems.

142 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Exception Handling

 Chapter 14. Exception Handling

This chapter describes the exception-handling facilities provided by member
functions of the Collection Class Library. This chapter includes the following topics:

¹ Introduction to exception handling
¹ Preconditions and defined behavior
¹ Levels of exception checking
¹ List of exceptions
¹ The hierarchy of exceptions

Introduction to Exception Handling
The C++ exception-handling facilities allow a program to recover from an exception.
An exception is a user, logic, or system error that is detected by a function that
does not itself deal with the error, but passes the error to a handling function.
Exceptions can result from two major sources:

¹ The violation of a precondition
¹ The occurrence of an internal system failure or system restriction

In this chapter, two kinds of functions are discussed. A called function is a
Collection Class function that may throw an exception. A calling function is a
function that calls a Collection Class function. The calling function may be a
Collection Class function or a function you have defined.

Exceptions Caused by Violated Preconditions
A precondition of a called function is a condition that the function requires to be
true when it is called. The calling function must assure that this condition holds.
The called function implementation may assume that the condition holds without
further checking it. If a precondition does not hold, the called function's behavior is
undefined.

If you want to make your programs more robust and to locate errors in the test
phase, the functions your program calls should check to ensure that their
preconditions hold. The Collection Class Library enables this checking through
macro definitions. Because this checking often requires significant overhead, it is
turned off by default. You need only use it while you are testing the system and
verifying that preconditions are always met.

A call to a function that violates the function's preconditions has two possible
results:

¹ If the called function checks its preconditions, the function will throw an
exception.

¹ If the function does not check its preconditions, the behavior of the function is
undefined.

 Copyright IBM Corp. 1996, 1998 143

 Precondition and Defined Behavior

Exceptions Caused by System Failures and Restrictions
System failures and restrictions are different from precondition violations. You
cannot usually anticipate them, and you have no opportunity to verify that such
situations, for example storage overflow, will not occur. These exceptions need to
be checked for, and an exception should be thrown if they occur.

Precondition and Defined Behavior
Exceptions are not generally used to change the flow of control of a program under
normal circumstances. An example of using exceptions under normal
circumstances is a function that iterates through a collection, and exits from the
iteration by checking for the exception that is thrown when an invalid cursor is used
to access elements. When the iteration is complete, the cursor will no longer be
valid, and this exception will be thrown. This is not a good programming practice.
A function should explicitly test for the cursor being valid. To make this possible, a
function must efficiently test this condition (isValid(), for the cursor example).

There are situations where the test for a condition can be done more efficiently in
combination with performing the actual function. In such cases, it is appropriate, for
performance reasons, to make the situation regular (that is, not exceptional) and
return the condition as a IBoolean result. Consider a function that first tests
whether an element exists with a given key, and then accesses it if it exits:

if (c.containsElementWithKey (key)) {
 // ...

myElement = c.elementWithKey (key); // inefficient
 // ...

} else {
 // ...
 }

This solution is inefficient because the element is located twice, once to determine
if it is in the collection and once to access it. Consider the following example:

 try {
 // ...

myElement = c.elementWithKey (key); // bad: exception expected
 // ...

} catch (INotContainsKeyException) {
 // ...
 }

This solution is undesirable because an exception is used to change the flow of
control of the program. The correct solution is to obtain a cursor together with the
containment test, and then to use the cursor for a fast element access:

if (c.locateElementWithKey (key, cursor)) {
 // ...

myElement = c.elementAt (cursor); // most efficient
 // ...

} else {
 //...
 }

144 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 List of Exceptions

Levels of Exception Checking
Some preconditions are more difficult to check than others. Consider the following
possible preconditions:

1. A cursor for a linked collection implementation still points to an element of a
given collection.

2. A collection is not empty.

In the production version of a program, it may be less efficient to check the first
precondition than the second.

The Collection Class Library provides three levels of precondition checking. They
are selected by the following macro variable definitions (use, for example, compile
flag DEF(INO_CHECKS)):

INO_CHECKS Check for memory overflow. Other checks may be eliminated to
improve performance.

Default Perform all precondition checks, except the check that a cursor
actually points to an element of the collection.

IALL_CHECKS Perform all precondition checks, including the (costly) check that
a cursor actually points to an element of the collection. This
extra check can only fail for undefined cursors.

List of Exceptions
The Collection Class Library defines the following exceptions:

 IChildAlreadyExistsException
Occurs when you try to add a child to a tree using addAsChild() at a position that
already contains a child.

 ICursorInvalidException
Two cursor properties may lead to the ICursorInvalidException:

¹ Every time a cursor is created, you must specify the collection that it belongs
to. If a function takes a cursor as an argument (such as add(), setToFirst(),
and locate()), the function can only be applied to the collection that the cursor
belongs to. If the function is applied to another collection, the
ICursorInvalidException results.

¹ If a function takes a cursor as an input argument (such as elementAt(),
removeAt(), and replaceAt()), the cursor must be valid. A cursor is valid if it
actually refers to some element contained in the collection. You can use the
isValid() function to determine if a cursor is valid.

 IEmptyException
Occurs when a function tries to access an element of an empty collection.
Functions that might cause this exception include firstElement() and
removeFirstElement().

 Chapter 14. Exception Handling 145

 List of Exceptions

 IFullException
Occurs when a function tries to add an element to a bounded collection that is
already full. Functions that might cause this exception include add() and
addAsFirst().

 IIdenticalCollectionException
Occurs when the function addAllFrom() is called with the source collection being
the same as the target collection.

 IInvalidReplacementException
Occurs when, during a replaceAt() function, the replacing element has different
positioning properties (see “Replacing Elements” on page 93) than the positioning
properties of the element to be replaced.

 IKeyAlreadyExistsException
Occurs when a function attempts to add an element to a map or sorted map that
already has a different element with the same key. Functions that might cause this
exception include add and addAllFrom().

 INotBoundedException
Occurs when the function maxNumberOfElements() is applied to a collection that is
not bounded.

 INotContainsKeyException
Occurs when the function elementWithKey() is applied to a collection that does not
contain an element with the specified key.

 IOutOfMemory
Occurs when a function cannot obtain the space that it requires. This exception is
not the result of a precondition violation. Functions that add an element to a
collection, including add() and addAsFirst(), can cause this exception.

 IPositionInvalidException
Occurs when a function specifies a position that is not valid in a collection. The
functions that might cause this exception include elementAtPosition(),
removeAtPosition(), and setToPosition().

 IRootAlreadyExistsException
Occurs when the function addAsRoot() is called for a tree that already has a root.

 ICollectionResourceException
Occurs when the Collection is constructed and the creation of the internal Resource
object fails.

 ICollectionLockException
Occurs when an internal lock request fails.

146 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Exception Hierarchy

 ICollectionUnlockException
Occurs when an internal unlock request fails.

The Hierarchy of Exceptions
In the Collection Class Library, all exceptions are derived from the IException
class described in Chapter 20, “Exception and Trace Classes” on page 215. It
provides common functions to access information about an exception that has
occurred.

The direct subclasses of IException used in the Collection Class Library are:

 ICollectionResourceException

 ICollectionLockException

 ICollectionUnlockException

 IPreconditionViolation

 IResourceExhausted

The following figure shows the hierarchy of exceptions:

 Chapter 14. Exception Handling 147

 Exception Hierarchy

IException

ICollectionResourceException

ICollectionLockException

ICollectionUnlockException

IOutOfMemory

IPreconditionViolation

IResourceExhausted

IChildAlreadyExistsException

ICursorInvalidException

IEmptyException

IFullException

IIdenticalCollectionException

IInvalidReplacementException

IKeyAlreadyExistsException

INotBoundedException

INotContainsKeyException

IPositionInvalidException

IRootAlreadyExistsException

Figure 24. Hierarchy of Exceptions

148 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Collection Class Library Tutorials

Chapter 15. Collection Class Library Tutorials

This chapter provides a set of tutorial lessons that you can use to learn common
Collection Class Library features. Each lesson builds on the lessons you learned
and the library features demonstrated in prior lessons. A section at the end of the
chapter describes other tutorials provided with the Collection Class Library that can
help you with specific Collection Class Library techniques. Use this chapter if you
are beginning to use the library and are unclear on some of the concepts described
in earlier chapters of this section.

The lessons in this chapter demonstrate the following capabilities of the Collection
Class Library:

¹ Defining a simple collection
¹ Adding, removing, and iterating over elements
¹ Changing the element type
¹ Changing the collection
¹ Changing the default implementation

Each lesson has the following format:

¹ What the lesson covers: What you will learn from the lesson.

¹ Requirements: What capabilities must be built into or added to the program.

¹ Setup: What files you will need from previous lessons.

¹ Implementation: Step-by-step instructions for implementing the program
requirements. The implementation section includes the required code as well
as detailed descriptions of each aspect of the implementation.

¹ Source files: Source file listings showing the contents of, or the order of
declaration of functions within, individual source files. Where a source file is
not changed from one lesson to the next, it is not listed a second time.

¹ Running the program: A description of what happens when you run the
program, observations on the program's behavior, and guidance on optional
ways of enhancing or changing the program.

¹ What you have learned: A summary of the Collection Class features that were
covered by the lesson.

There are five lessons in this chapter. The following provides an overview of the
characteristics of the program used in each lesson, and the Collection Class
features the lesson demonstrates:

Lesson 1 A program that builds a collection of integer elements, and adds
three elements to the collection. Nothing is done with the
collection after these elements are added, and the program
produces no output. This lesson demonstrates how to define the
element and collection types with typedef s, how to instantiate a
collection, how to add elements to a collection, and how to
determine what Collection Class header file to include.

Lesson 2 An enhancement to Lesson 1 that implements a menu so that you
can add, list, or remove items, show stock information, or exit the
program. Not all these functions are fully implemented at this

 Copyright IBM Corp. 1996, 1998 149

 Lesson 1: Defining a Simple Collection

point. The lesson demonstrates how to iterate over a collection
and how to remove elements from a collection.

Lesson 3 An enhancement to Lesson 2 that changes the element type from
a built-in type to a class type. The lesson demonstrates how to
construct a collection whose elements are of class type, how to
determine what element type functions are required, and how to
define those functions.

Lesson 4 In this lesson, you change Lesson 3 to use a different collection.
The lesson demonstrates how to choose the correct collection for
a given application, how to implement various element and key
functions, how to use a cursor to iterate through elements with a
given key, and how to count the number of elements with a given
key.

Lesson 5 In this lesson, you change the implementation variant of the
collection. This does not change the program's external behavior
but in real applications changing an implementation variant can
affect performance.

Preparing for the Lessons
To set up the lessons, create five data sets beneath the same parent data set, and
name them lesson1 through lesson5. You will use these data sets to store the
files you create for each lesson.

Compiling the Lessons
You need to create a PDS member to compile the tutorial lessons. Use the data
sets for JCL described in “Source Files for the Tutorials” on page 174 as a starting
point for creating the JCL for the lessons.

If the compiler produces errors during compilation, check to make sure that you
have specified the required library and that you have typed the source code in
correctly. Some common errors are misplacing semicolons and failing to close
braces or brackets.

Lesson 1: Defining a Simple Collection of Integers
In this lesson, you write a program that builds a very simple collection of integer
elements and adds some elements to the collection. This lesson covers the
following Collection Class topics:

¹ Using a typedef to define the element type
¹ Using a typedef to define the collection type
¹ Instantiating the collection
¹ Adding elements to the collection
¹ Specifying the Collection Class header file to include

150 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Lesson 1: Defining a Simple Collection

 Requirements
The collection must consist of elements of an integer type. The integer type is to
be known as type Bicycle, so that later lessons can change the members of the
type. The program adds three integers to the collection. Their values are
unimportant. The collection is to be a bag.

 Setup
Change to the lesson1 data set, and use an editor to create and edit two files:

bike.h This file will contain declarations and typedefs for the element and
collection types.

main.C This file will contain the main() function.

 Implementation
The implementation should use typedef s to define the element and collection
types, so that if the element or collection type changes later, the changes will be
automatically reflected in any code that uses the typedef .

Defining the Element Type: Use a typedef to define a Bicycle as a synonym for
an int. By using a typedef , you make it easier to change the element type later,
without having to change anything outside the element's type (or class) definition:

// in bike.h
typedef int Bicycle;

Notes:

1. In a realistic C++ program using Collection Classes, you do not need to use a
typedef to define the element type, because it is unlikely that you would switch
from a built-in C++ type to a class type.

2. Unless otherwise indicated, you should enter each new block or line of code
below any code you have already entered.

Defining the Collection Type: Use a typedef to define a collection type called
MyCollectionType. The collection type refers to a bag collection whose elements
are Bicycles. By using a typedef , you make it easier to change the collection type
later, without having to change other parts of your code:

typedef IBag <Bicycle> MyCollectionType;

In this typedef , IBag is the default implementation for a bag, Bicycle is a template
argument representing the element type, and MyCollectionType is the type name
given to the type being defined (a bag of Bicycle elements).

Instantiating a Collection: Now that you have defined a typedef for both the
element and the collection types, you can instantiate a collection with a type
specifier and a name:

 MyCollectionType MyCollection;

Place this definition at global scope so that all functions, not only the main()
function defined in the next step, have access to the collection and its members.
Functions other than main() are defined in subsequent lessons.

 Chapter 15. Collection Class Library Tutorials 151

 Lesson 1: Defining a Simple Collection

Adding Elements: You can use Chapter 15, “Flat Collection Member Functions”
in the OS/390 C/C++ IBM Open Class Library Reference to determine what
functions you need to use to manipulate elements of a collection. If you consult
that chapter, you will find that the add() function is the function needed for this
lesson. The syntax for add() is stated as:

void add (Element const& element);

For a collection named MyCollection, you can add elements using the following
syntax:

 MyCollection.add(aBicycle);

Where aBicycle is a Bicycle (in this case an integer). To add three elements,
place code such as the following in main.C:

void main() {
 Bicycle a,b,c;
 a=458;
 b=12;
 c=365;
 MyCollection.add(a);
 MyCollection.add(b);
 MyCollection.add(c);
 }

Include Files: Above any typedef s or instantiations that use Collection Classes,
you must include the header file for any collection you are using. The chapter on
bags in the OS/390 C/C++ IBM Open Class Library Reference tells you what the
header file is for the default implementation of a bag. You should add the following
code to the start of bike.h, and include bike.h in main.C:

// in bike.h
 #include <ibag.h>

// in main.C
 #include "bike.h"

Source Files for Lesson 1
The files should now contain code similar to the following:

 bike.h
 #include <ibag.h>

typedef int Bicycle;
typedef IBag <Bicycle> MyCollectionType;

 MyCollectionType MyCollection;

 main.C
 #include "bike.h"

void main() {
 Bicycle a,b,c;
 a=458;
 b=12;
 c=365;
 MyCollection.add(a);
 MyCollection.add(b);
 MyCollection.add(c);
 }

152 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Lesson 2: Adding, Listing, and Removing Elements

Running the Program
Compile main.C and run the executable. The program does not produce any
output, so it appears to do nothing. In fact, it adds three elements to a collection of
integers. The collection is lost on program termination. The program is useless in
practical terms, but does demonstrate some basic Collection Class concepts. Later
lessons build on the code in this lesson, and provide greater functionality, including
output of elements.

Chapter 16, “Bag” in the OS/390 C/C++ IBM Open Class Library Reference defines
a number of element type functions as being required:

 ¹ Copy constructor
 ¹ Destructor
 ¹ Assignment
¹ Equality test (operator==)
¹ Ordering relation (operator<)

You did not have to define these functions in the above example, because for the
built-in type int, and by extension the user-defined type Bicycle, these functions
are already defined by the language.

What You Have Learned
This lesson showed you how to define elements and collections using typedef s,
how to instantiate a collection and elements, and how to add elements to that
collection.

Lesson 2: Adding, Listing, and Removing Elements
The first lesson showed you how to create a simple collection and add three
elements. This lesson moves the code for adding elements to a separate function,
and implements functions for listing and removing elements as well. These
functions are called from a main program that dispatches the appropriate function
based on the user's choice of a menu option.

This lesson covers the following Collection Class topics:

¹ Iterating over a collection using applicators (allElementsDo())
¹ Removing elements from a collection

 Requirements
The code in the main() function must be replaced by a menu system that gives the
user the following options:

1. Add an item
2. List all items
3. Remove an item
4. Show stock information

 5. Exit program

Options 1 to 3 must be implemented through functions. Option 5 can be
implemented by calling exit() or by exiting the scope of the menu selection loop
and main(). You do not need to implement the function to show stock information
in this lesson. Instead, you can implement a function that prints an error message
stating that the function is not yet implemented. For all options except the exit

 Chapter 15. Collection Class Library Tutorials 153

 Lesson 2: Adding, Listing, and Removing Elements

option, after the appropriate function returns, the menu should be redisplayed and
the user should be able to enter another selection.

 Setup
Copy the file bike.h from the lesson1 data set to the lesson2 data set, and then
change your current data set to the lesson2 data set. You will also create two
other files. The three files for this tutorial are:

bike.h Contains the element and collection typedefs.

lesson.C Contains functions for adding, removing, listing, and showing stock
information on items.

main.C Contains the main menu for the program.

 Implementation
You need to replace the body of the main() function with the menu handling and
function dispatching code. You will make use of I/O Stream input and output to
implement the functions that add, list, or remove items. One advantage of using
the I/O Stream classes instead of functions like printf() and scanf() is that, when
the element type is changed, you can define input and output operators for the
type, and the I/O Stream input and output functions will continue to work without
change.

Including the iostream.h Header File: You should include iostream.h at the start
of lesson.C so that you can use the cin, cout, and cerr streams that are
predefined by the iostream class. You should also include the header file bike.h
so that you can access the Bicycle class and associated functions.

 #include <iostream.h>
 #include "bike.h"

Adding Items: Before the definition of main(), define a function addItem() that
requests user input for the item, then adds the item to the collection. The item is
added using the add() function described in the first lesson. Here is one way to
implement such a function:

// in lesson.C
void addItem() {

 Bicycle tbike;
cout << "Enter item: ";
cin >> tbike;
while (cin.fail()) {

 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Input error, please re-enter: ";
cin >> tbike;

 }
 MyCollection.add(tbike);
 }

Note: You should also add a declaration for this and subsequent functions in
main.C.

The function uses a temporary Bicycle object to contain the input until the element
is copied into the collection. The function displays a prompt, reads input, and tests
for valid input. The while (cin.fail()) block clears any input errors and asks for

154 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Lesson 2: Adding, Listing, and Removing Elements

input again. Once the element is successfully read from input, it is added to the
collection.

Because tbike is actually an int in the current version, an operator>> is already
defined for it. Later, when you change the Bicycle type to a user-defined class,
you will have to add an operator>> for that class.

Listing Items: Before you can list all items, you must define a function that prints
a single item. This function can then be invoked by the allElementsDo() member
function of MyCollection. (allElementsDo() is described in “allElementsDo” in the
OS/390 C/C++ IBM Open Class Library Reference.) Any function invoked by
allElementsDo() must have a return type of IBoolean, and must have two
arguments: a const reference to the argument and a pointer to void. The pointer
to void is used to pass additional arguments to the applied function, if required by
the function. For the printing function in this lesson you do not need to pass
additional arguments, because the function does not use them. In such cases you
pass a void* second argument:

// in lesson.C
IBoolean printItem (Bicycle const& bike, void* /* Not used */) {

cout << bike << endl;
 return true;
 }

The printItem() function should always return true because it should display the
value of each element of the collection. If you wanted certain values of elements to
cause printing to halt, you would have the function return false for any such
element. A return value of false causes the allElementsDo() function to stop
iterating over the collection.

Just as there was no need to define an input operator for Bicycle, there is no need
to define an output operator either, as long as Bicycle represents an int.

Now define the function listItems() to call the printItem() function for each
element of the collection. Use the allElementsDo() function for the collection, and
use the printItem() function as argument. allElementsDo() then calls the
function for every element of the collection.

// in lesson.C
void listItems() {

MyCollection.allElementsDo(printItem);
 }

Removing Items: To remove an element from a collection, you need to use the
remove() member function. This function is described in Chapter 15, “Flat
Collection Member Functions” in the OS/390 C/C++ IBM Open Class Library
Reference. remove() returns true if the element was found in the collection and
was removed, or it returns false if the element was not found in the collection.
Your removal function should print an error if the element is not successfully
removed. In the version below, the condition that determines whether removal was
successful actually invokes the remove() function:

// in lesson.C
void removeItem() {

 Bicycle tbike;
cout << "Enter item to remove: ";
cin >> tbike;

 Chapter 15. Collection Class Library Tutorials 155

 Lesson 2: Adding, Listing, and Removing Elements

while (cin.fail()) {
 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Input error, please re-enter: ";
cin >> tbike;

 }
 if (!MyCollection.remove(tbike))

cerr << "Item not found!\n";
 }

Showing Stock Information: For now, you can define this function to display an
error message without changing the collection:

// in lesson.C
void showStock() {

cerr << "Function not implemented yet!\n";
 }

Main Menu: Finally, change the code in main() to display the menu items, accept
input, and take appropriate action. Because this code will remain relatively
unchanged for subsequent lessons, place it in a separate file, main.C, and include
lesson.C before the code of main(). A possible version of main.C is shown below.

Source Files for Lesson 2
You should have two source files defined at this point. Their names and sample
contents are:

 main.C
 #include <iostream.h>

#include <stdlib.h> // for use of exit() function
void addItem(), listItems(), showStock(), removeItem();

void main() {
enum Choices { Add, List, Stock, Remove, Exit };

 int menuChoice=0;
char* menu[5] = {"Add an item",

 "List items",
"Show stock information",
"Remove an item",

 "Exit" };
while (menuChoice!=5) {
cout << "\n\n\nSimple Stock Management System\n\n";
for (int i=0;i<5;i++)

cout << i+1 << ". " << menu[i] << '\n';
cout << "\nEnter a selection (1-5): ";
cin >> menuChoice;
while (cin.fail()) {

// get input again if nonnumeric was entered
 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Enter a selection between 1 and 5!\n";
cin >> menuChoice;

 }
switch (menuChoice) {

case 1: addItem(); break;
case 2: listItems(); break;
case 3: showStock(); break;
case 4: removeItem(); break;
case 5: exit(0);
default: cerr << "Enter a selection between 1 and 5!\n";

 }
 }
 }

156 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Lesson 2: Adding, Listing, and Removing Elements

 lesson.C
 // lesson.C
 #include <iostream.h>
 #include <ibag.h>
 #include "bike.h"

void addItem() {
 Bicycle tbike;

cout << "Enter item: ";
cin >> tbike;
while (cin.fail()) {

 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Input error, please re-enter: ";
cin >> tbike;

 }
 MyCollection.add(tbike);
 }

IBoolean printItem (Bicycle const& bike, void* /* Not used */) {
cout << bike << endl;

 return true;
 }

void listItems() {
MyCollection.allElementsDo(printItem);

 }

void removeItem() {
 Bicycle tbike;

cout << "Enter item to remove: ";
cin >> tbike;
while (cin.fail()) {

 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Input error, please re-enter: ";
cin >> tbike;

 }
 if (!MyCollection.remove(tbike))

cerr << "Item not found!\n";
 }

void showStock() {
cerr << "Function not implemented yet!\n";

 }

Running the Program
Compile main.C and lesson.C, link them, and run the program. You can enter
elements into the collection, list the elements, remove them, or exit from the
program. If you select the option to display stock information, an error message is
displayed and no action is taken.

Elements appear to be ordered: If you enter more than one integer into the
collection, and then list the collection's elements, you may find that the collection
has been sorted from the smallest to the largest element. Do not rely on this
ordering relation, because a Bag is an unordered, unsorted collection, and changes
to your code or to the Collection Class Library could change the order in which
elements are accessed.

Multiple equal elements are supported: If you add the number 7 to the
collection three times and list the items, the number 7 appears three times. If you
then remove the number 7 once, the number 7 still appears twice. A bag supports
multiple equal elements.

 Chapter 15. Collection Class Library Tutorials 157

 Lesson 3: Changing the Element Type

What You Have Learned
This lesson showed you how to use the allElementsDo() function to iterate over
elements of a collection, and how to provide a function to allElementsDo() that is
called for each iterated element. The lesson also demonstrated how to use the
remove() function to remove elements from a collection.

Lesson 3: Changing the Element Type
Now that you have a working program that allows you to add, list, or remove
elements from a collection, you are ready to change the element type to something
more complex than an integer.

This lesson covers the following Collection Class topics:

¹ Defining an element type as a class
¹ Determining what element type functions are required
¹ Defining those element type functions

 Requirements
The element type must be changed from the built-in integer type to a class type
with the following data members:

¹ A string representing the manufacturer or make of the bicycle
¹ A string representing the model of the bicycle
¹ An integer representing the type of bicycle: racing, touring, or mountain bike
¹ An integer representing the price of the bicycle

 Setup
Copy the files bike.h, lesson.C, and main.C from the lesson2 data set to the
lesson3 data set, and then change your current data set to the lesson3 data set.
Use an editor to modify these files, and to create a new file bike.C, which will
contain function definitions for functions declared in bike.h.

 Implementation
First move the typedef definition for the collection and the #include statement for
ibag.h from bike.h to lesson.C, where they are actually made use of.

You can use the IString class to handle the strings for make and model. This
class includes operators for element equality, ordering relation, and addition
(concatenation), all of which will be used in this or later lessons.

Defining the Element Type: In keeping with good object-oriented programming
practice, you should separate the member function definitions from the class
definition, by placing the class definition in bike.h and the definitions of member
functions in bike.C. You should compile each .C file separately, and link them
together.

Class Data Members: The following code defines the data members of Bicycle.
You should replace the typedef for the element with the declaration for class
Bicycle. Two header files are also included because they are required by
members of the class. Place the following code in bike.h.

158 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Lesson 3: Changing the Element Type

#include <istring.hpp> // access to IString class
#include <iostream.h> // access to iostream class

class Bicycle {
 public:
 IString Make;
 IString Model;
 int Type;
 int Price;

// ... Member functions to be declared later and defined in bike.C
 };

The following code defines an enumerator (used to determine the type of bicycle)
and an array of IString objects (used to display the types of bicycle). Place it in
bike.C:

enum bikeTypes { Racing, Touring, MountainBike };
IString btype[3]={ "Racing", "Touring", "Mountain Bike"};

Selecting What Element Type Functions to Implement: When you implement
the element type as a user-defined type (a class), you must define certain element
functions, and in some cases key-type functions, for that element. These functions
are used by Collection Class functions to locate, add, copy, remove, sort, or order
elements within their collection, and to determine whether two elements of a
collection are equal. For example, you may need to define element equality
through an operator==, so that Collection Class functions can determine whether
an element you try to add to the collection is identical to an element already
present in the collection. Provided you use the correct return type and calling
arguments, there is no right or wrong way to code many of these functions. An
equality function for elements consisting of two int data members, for example,
could return true (meaning that two elements are equal) if the difference between
the two data members is the same for both elements. In this case, the objects
(3,8) and (4,9) would be equal.

To determine what element and key-type functions you need to implement for a
given collection, you should consult the appropriate collection's chapter in the
OS/390 C/C++ IBM Open Class Library Reference. For this lesson, the collection
is a bag. When you are first developing a program, you should use the default
implementation of the collection, which is always the first implementation variant
listed under the chapter's “Template Arguments and Required Functions” section.
For each implementation variant, a list of required functions is provided, and you
must either implement these functions for your element class, or determine that
they are automatically generated by the compiler. In the case of the default
implementation of a Bag, the following required functions are shown, under the
heading “Element Type”:

 ¹ Copy constructor
 ¹ Destructor
 ¹ Assignment
 ¹ Equality test
 ¹ Ordering relation

For this lesson, you also need to implement input and output operators and a
default constructor (used by the input operator and other functions).

 Chapter 15. Collection Class Library Tutorials 159

 Lesson 3: Changing the Element Type

Default Constructor: The default constructor should initialize all data members to
blank strings or zero integers:

// in bike.h, within class declaration
Bicycle() : Make(""), Model(""), Type(0), Price(0) {}

Assignment Operator and Destructor: There is no need to define these
explicitly. The compiler generates a default assignment operator and destructor
that are suitable for the program.

Copy Constructor: This function is used by the Collection Classes and by the
input operator. Declare and define it as follows:

// in bike.h:
Bicycle(IString mk, IString md, int tp, int pr) :

Make(mk), Model(md), Type(tp), Price(pr) {}

Equality Test: The equality test (operator==) should return true if two bicycles
have the same make and model, and false if not:

// in bike.h:
IBoolean operator== (Bicycle const& b) const;

// in bike.C:
IBoolean Bicycle::operator== (Bicycle const& b) const

{ return ((Model==b.Model) && (Make==b.Make)); }

Ordering Relation: The ordering relation (operator<) should indicate whether the
first bicycle would appear before or after the second bicycle in an alphabetically
sorted list:

// in bike.h:
IBoolean operator< (Bicycle const& b) const;

// in bike.C:
IBoolean Bicycle::operator< (Bicycle const& b) const

{ return ((Make<b.Make) || (Make==b.Make && Model<b.Model)); }

You can use the < and == operators for IString objects because they are defined
for the IString class to indicate alphanumeric sorting order.

Input Operator: This operator is required by the addItem() and removeItem()
functions defined previously. Both this and the output operator are declared
outside the class definition, at the bottom of bike.h, and they are defined in bike.C.
The input operator stores the alphanumeric data members of Bicycle in char
arrays to avoid the overhead of constructing temporary IString objects.

// in bike.h:
istream& operator>> (istream& is, Bicycle& bike);

// in bike.C:
istream& operator>> (istream& is, Bicycle& bike) {

char make[40], model[40];
 char typeChoice;
 float price;
 int type=-1;

cin.ignore(1,'\n'); // ignore linefeed from previous input
cout << "\nManufacturer: ";
cin.getline(make, 40, '\n');
cout << "Model: ";
cin.getline(model, 40, '\n');

160 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Lesson 3: Changing the Element Type

while (type == -1) {
cout << "Racing, Touring, or Mountain Bike (R/T/M): ";
while (cin.fail()) {

 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Racing, Touring, or Mountain Bike (R/T/M): ";
cin >> typeChoice;

 }
switch (typeChoice) {

 case 'r':
case 'R': { type=Racing; break; }

 case 't':
case 'T': { type=Touring; break; }

 case 'm':
case 'M': { type=MountainBike; break; }
default: { cerr << "Incorrect type, please re-enter\n"; }

 }
 }

cout << "Price ($$.$$): ";
cin >> price;
while (cin.fail()) {

 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Enter a numeric value: ";
cin >> price;

 }
 price*=100;
 bike=Bicycle(make,model,type,price);
 return is;
 }

Output Operator: The output operator is required by the listItems() function,
and may later be required by other functions. It should display the make, model,
type, and price of a bicycle:

// in bike.h:
ostream& operator<< (ostream& os, Bicycle bike);

// in bike.C:
ostream& operator<< (ostream& os, Bicycle bike) {

return os << bike.Make
<< "\t" << bike.Model
<< "\t" << btype[bike.Type]
<< "\t" << float(bike.Price)/100;

 }

Source Files for Lesson 3
The program should now be placed in the following files. Some function bodies
have been replaced with ellipses for brevity. main.C remains unchanged and is not
shown.

 lesson.C
 // lesson.C
 #include <iostream.h>
 #include <ibag.h>
 #include "bike.h"

typedef IBag<Bicycle> MyCollectionType;
 MyCollectionType MyCollection;

void addItem() { /* ... */ }
IBoolean printItem (Bicycle const& bike, void* /* Not used */)

{ /* ... */ }
void listItems() { /* ... */ }
void removeItem() { /* ... */ }
void showStock() { /* ... */ }

 bike.h

 Chapter 15. Collection Class Library Tutorials 161

 Lesson 3: Changing the Element Type

#include <istring.hpp> // access to IString class
#include <iostream.h> // access to iostream class

class Bicycle {
 public:
 IString Make;
 IString Model;
 int Type;
 int Price;

Bicycle() : Make(""), Model(""), Type(0), Price(0) {}
Bicycle(IString mk, IString md, int tp, int pr) :
Make(mk), Model(md), Type(tp), Price(pr) {}
IBoolean operator== (Bicycle const& b) const;
IBoolean operator< (Bicycle const& b) const;

 };
istream& operator>> (istream& is, Bicycle& bike);
ostream& operator<< (ostream& os, Bicycle bike);

 bike.C
 #include <istring.hpp>
 #include "bike.h"

enum bikeTypes { Racing, Touring, MountainBike };
IString btype[3]={ "Racing", "Touring", "Mountain Bike"};

IBoolean Bicycle::operator== (Bicycle const& b) const
{ return ((Model==b.Model) && (Make==b.Make)); }

IBoolean Bicycle::operator< (Bicycle const& b) const
{ return ((Make<b.Make) || (Make==b.Make && Model<b.Model)); }

istream& operator>> (istream& is, Bicycle& bike) {
char make[40], model[40];

 char typeChoice;
 float price;
 int type=-1;

cin.ignore(1,'\n'); // ignore linefeed from previous input
cout << "\nManufacturer: ";
cin.getline(make, 40, '\n');
cout << "Model: ";
cin.getline(model, 40, '\n');
while (type == -1) {

cout << "Racing, Touring, or Mountain Bike (R/T/M): ";
cin >> typeChoice;
while (cin.fail()) {

 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Racing, Touring, or Mountain Bike (R/T/M): ";
cin >> typeChoice;

 }
switch (typeChoice) {

 case 'r':
case 'R': { type=Racing; break; }

 case 't':
case 'T': { type=Touring; break; }

 case 'm':
case 'M': { type=MountainBike; break; }
default: { cerr << "Incorrect type, please re-enter\n"; }

 }
 }

cout << "Price ($$.$$): ";
cin >> price;
while (cin.fail()) {

 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Enter a numeric value: ";
cin >> price;

 }
 price*=100;
 bike=Bicycle(make,model,type,price);
 return is;
 }

162 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Lesson 4: Changing the Collection

ostream& operator<< (ostream& os, Bicycle bike) {
return os << bike.Make

<< "\t" << bike.Model
<< "\t" << btype[bike.Type]
<< "\t" << float(bike.Price)/100;

 }

Running the Program
Compile and link bike.C, main.C and lesson.C, and then run the program.

If you add two bicycles with the same make and model, but different types or
prices, the second bicycle's entry will be identical to the first when the bicycles are
listed. The reason is that element equality is defined only in terms of the make and
model. When you add what the collection considers to be an equal element, the
existing element is duplicated by the add() function.

When you remove an item, the input operator asks you to enter all fields for the
item to remove. Again, because element equality is defined only for the make and
model fields, the information you provide for bicycle type and price is not used in
determining which element to remove. If you define a bicycle:

Smithson 37Q Racing $270.00

You can remove that bicycle's entry by removing:

Smithson 37Q Mountain Bike $399.99

These limitations will be corrected in the next lesson.

What You Have Learned
In this lesson, you moved from using built-in types as elements of a collection to
using user-defined or class types. When you create a collection using class-type
elements, you must define certain element functions. This lesson showed you how
to determine what element functions are required, and how to implement them.

Lesson 4: Changing the Collection
When you design an actual application using the Collection Class Library, you
should choose the collection best suited to your program at the design stage.
Nevertheless, requirements may change, and if you have followed the techniques
used in this lesson such as specifying the collection type with a typedef , you can
change the collection type without having to rewrite the entire application. Only
minor changes are required to existing code, and a few simple element or key-type
functions may need to be added or changed.

This section illustrates the following Collection Class concepts:

¹ Selecting the correct collection type
¹ Implementing a key
¹ Defining key access
¹ Defining key equality
¹ Defining a key hash
¹ Using a cursor to iterate through elements with a given key
¹ Counting the number of elements of a given key

 Chapter 15. Collection Class Library Tutorials 163

 Lesson 4: Changing the Collection

 Requirements
The program should be changed so that two bicycles of the same model and make
can have different type and price information. When users asks to delete a bicycle,
they should not have to enter the bicycle and price information; instead, a list of all
bicycles of the specified make and model should be displayed, and the user should
be able to select which bicycle to remove from the collection. The showStock()
function should also be implemented, so that it shows the number of a given make
and model of bicycle currently in the collection.

 Setup
Copy the files bike.h, bike.C, lesson.C, and main.C from the lesson3 data set to
the lesson4 data set, and then change your current data set to the lesson4 data
set. Use an editor to modify the files as described below.

 Implementation
The collection must have the following characteristics:

Key access, so that an element can be accessed using only its make and
model information (for the listing and removing functions)

No element order, because order is not specified as a requirement

Multiple elements with the same key, so that several bicycles of the same make
and model can be present in the collection

Element equality, so that elements with the same make and model can have
different price and type information

You can use Figure 8 on page 78 to determine what collection best meets the
requirements listed above. Begin by applying one requirement to the figure to
narrow down the number of possible collections. Apply a second requirement to
the remainder, and continue until you have found all valid collections. In this
example, there is one valid collection, selected as follows:

¹ Elements have a key (the make and model). This means that any of the
following collections may be a candidate:

 – Map
 – Relation
 – Sorted map
 – Sorted relation
 – Key set
 – Key bag

– Key sorted set
– Key sorted bag

¹ The order of elements is not important. This means that all sorted collections
can be removed from the list above, leaving:

 – Map
 – Relation
 – Key set
 – Key bag

¹ Multiple elements may have the same key. This leaves relation and key bag.

¹ Element equality is required, so that individual elements with the same key can
be distinguished. This leaves relation.

164 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Lesson 4: Changing the Collection

A relation differs from a bag in that it is instantiated using a key type as well as the
element type, and requires the following additional functions:

Element type: Key access

Key type: Equality test and hash function.

These functions are defined below.

Changing the Collection Type Definition: Before you redefine the functions in
lesson.C, you need to change the include file and typedef for the collection type so
that they use relation instead of bag:

 // lesson.C
#include <irel.h> // was ibag.h

 //...
typedef IRelation<Bicycle,IString> MyCollectionType;
// was typedef IBag<Bicycle> MyCollectionType;

Notice that IRelation takes two template arguments, an element type and a key
type. All collections that have a key must be defined with a template argument for
key type as well as one for element type.

Ordering Relation: A relation does not require an operator for ordering relation
(operator<). You defined this operator when the collection was implemented as a
bag. You should comment it out or remove it for this implementation. This function
is declared in bike.h and defined in bike.C.

Implementing a Key: The key consists of the make and model of the bicycle.
You can use an IString to implement the key. Because the return value of the
key() function must be a const reference, and because the key() function cannot
change the element, the key must be determined before the key() function is
called. The logical place to do this is in the element constructor (in bike.h),
because the overhead of generating the key only occurs once per element. You
can add a key data member to the collection, and have it initialized when the copy
constructor is called. In the example below, the key is named MMKey (which stands
for Make/Model Key):

// in bike.h:
class Bicycle {

IString MMKey; // add a private data member for the key
 public:

// public data members and member functions
Bicycle(IString mk, IString md, int tp, int pr);

 // ...
 };

// in bike.C:
Bicycle::Bicycle(IString mk, IString md, int tp, int pr) :

Make(mk), Model(md), Type(tp), Price(pr),
 MMKey(mk+md) {}

Defining Key Access: The key access function must be defined outside of the
element class. It has one argument, whose type is the element type. The key
access function must call a member function that returns the key, in this case a
function named getKey(). (The actual name does not matter.) The member
function accesses the private data member MMKey.

 Chapter 15. Collection Class Library Tutorials 165

 Lesson 4: Changing the Collection

// in bike.h:
class Bicycle {

 IString MMKey;
public: // ... data members and member functions

IString const& getKey() const;
 };

inline IString const& key (Bicycle const& bike)
{ return bike.getKey(); }

// in bike.C:
IString const& Bicycle::getKey() const { return MMKey; }

The key access function must be declared with the name key(), with a const
reference to the key as its return value, and a const reference to the element as its
argument.

Equality Test: Equality for elements should be defined such that the key (that is,
the make and model), the type, and the price are the same for two bicycles. The
operator== function in bike.C can be redefined as follows:

IBoolean Bicycle::operator== (Bicycle const&b) const {
return (MMKey==b.MMKey && Type==b.Type && Price==b.Price);

 }

Key Hash Function: The hash function provides a shortcut for Collection Class
search functions to find matches to a key. The search functions first call the hash
function on a key for which they need to locate an element. They use the hash
value returned to look for matches to that hash in a hash table. They then use the
full key to determine which of the hash function's matches have the correct key.
The hash key-type function is not a member function of the element's class. It is
called by the searching function, with a key argument (the key on which to derive
the hash) and an unsigned long (the maximum hash value). The return value is the
hash, and it cannot exceed the maximum hash value. The hash function should be
defined in lesson.C and must have the following return type and parameters:

unsigned long hash (IString const& keyName, unsigned long hashInput);

You can define the hash using the hashing function provided in istdops.h for char*
values:

unsigned long hash (IString const &aKey, unsigned long hashInput) {
return hash((const char*)aKey, hashInput);

 }

Using Cursors to Remove Items: A Collection Class cursor (not related to the
cursor used to move about a cursor screen) is a reference to an element in a
collection. For an overview of cursors, see “Cursors” on page 93.

The removeItem() function must be redefined so that it requests the make and
model of bicycle to remove, lists all matching bicycles, and lets the user choose
which match to remove. Once matching bicycles have been displayed, a cursor
can be used to locate the bicycle the user wishes to delete. The cursor is defined
as follows, immediately after the collection MyCollection is declared, in lesson.C:

MyCollectionType::Cursor thisOne (MyCollection);

After the user enters a make and model to search for, the removeItem() function
should iterate through all elements that match the key, by using
locateElementWithKey() to find the first matching element, and

166 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Lesson 4: Changing the Collection

locateNextElementWithKey() to find all subsequent matching elements. Both these
functions require a cursor as their second argument, and the cursor points to the
located element when the functions return. The first part of removeItem() can be
redefined as follows:

void removeItem() {
 Bicycle tbike;

int choice, cursct=1;
cout << "\nRemove an item";
cin >> tbike;
if (MyCollection.numberOfElementsWithKey(tbike.getKey()) > 0) {

 MyCollection.locateElementWithKey(tbike.getKey(), thisOne);
cout << cursct << ". " << MyCollection.elementAt(thisOne) << endl;
for (cursct=2;

 MyCollection.locateNextElementWithKey(
 tbike.getKey(), thisOne);
 cursct++)

{ cout << cursct << ". "
<< MyCollection.elementAt(thisOne) << endl; }

//... Remainder to be defined later
 }

In the above fragment, the user is asked for a bicycle make and model to remove.
If any elements match the make and model (this is determined by testing the
numberOfElementsWithKey() function for a nonzero return), all such elements are
located by key. The locateElementWithKey() function sets its cursor to point to the
first matching element, and the locateNextElementWithKey() function advances the
cursor from the current match to the next match in the collection. The elements are
accessed for output using the elementAt() function, which returns a reference to
the element pointed to by the cursor argument.

Once the matching elements have been displayed with a number beside each one,
the program should ask the user to enter a number matching the number of the
element to remove. The matching elements can then be iterated over again until
the number of elements iterated over matches the user's selection, and the element
pointed to by the cursor is then deleted. The following code excerpt is the second
part of the removeItem() function:

// Insert this at "...Remainder to be defined later" in removeItem().
cout << "\nEnter item to remove, or 0 to return: ";
cin >> choice;
if (choice<=0 || choice > cursct) return;

 MyCollection.locateElementWithKey(tbike.getKey(),thisOne);
// locate the first matching element again

for (cursct=2;
 cursct<=choice &&

MyCollection.locateNextElementWithKey // check for valid
(tbike.getKey(), thisOne); // next match

 cursct++)
; // null loop - header contains the code to be executed

 MyCollection.removeAt(thisOne);
 }
 else

cerr << "No bicycles of this make and model were found.\n";

// The closing brace below was already part of removeItem().
// Do not duplicate it.

 }

Note: The locateNextElementWithKey() function invalidates the cursor if it cannot
find a next element with the key provided. An invalidated cursor does not point to
any element of the collection. Some flat collection member functions that use
cursors require that the cursor be valid (locateNextElementWithKey() is one such
function). Before you use a cursor with such a function, you need to validate the

 Chapter 15. Collection Class Library Tutorials 167

 Lesson 4: Changing the Collection

cursor by using a function that takes a cursor as argument but does not require a
valid cursor on entry. locateElementWithKey() is one such function.

In both excerpts of removeItem() above, the elements with matching keys are
iterated over by code in the header of the loop. In the second case, the loop has
no body. You can use this coding style because all the locate... functions have
a return type of IBoolean, which can be used in condition tests such as those in
loop control expressions.

Showing Stock Information: showStock() must be rewritten so that, for a given
make and model, it displays the number of matching elements in the collection.
The numberOfElementsWithKey() function can be used:

void showStock() {
 Bicycle tbike;
 int count;

cout << "Stock information for a model";
cin >> tbike;

 count=MyCollection.numberOfElementsWithKey(tbike.getKey());
 if (count!=1)

cout << "Currently there are " << count << " bicycles ";
 else

cout << "Currently there is 1 bicycle ";
cout << "of this make and model in stock." << endl;

 }

Changing the Input Operator and addItem(): As the program now stands, the
input operator requests input for all data members of Bicycle, including type and
price information. This means that, when you select an item to remove or to show
stock information on, you must specify type and price information even though this
information is ignored. Therefore you need to move the request for type and price
information out of the operator>> definition in bike.C and into addItem(), so that
the user only needs to enter type and price information when an item is being
added to the collection. You also need to add the enumeration bikeTypes to
lesson.C so that addItem() has access to them.

See the “Source Files” section below for the changes required to addItem() and
operator>>.

Source Files for Lesson 4
The main program in main.C has not been changed. The following excerpts show
the layout of code between lesson.C and bike.h. Function bodies that remain
unchanged from the preceding lesson have been replaced by ellipses.

 bike.h
#include <istring.hpp> // access to IString class
#include <iostream.h> // access to iostream class

class Bicycle {
 IString MMKey;
 public:
 IString Make;
 IString Model;
 int Type;
 int Price;
 Bicycle();

Bicycle(IString mk, IString md, int tp, int pr);
IBoolean operator== (Bicycle const& b) const;

// IBoolean operator< (Bicycle const& b) const;
IString const& getKey() const;

 };

168 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Lesson 4: Changing the Collection

inline IString const& key (Bicycle const& bike)
{ return bike.getKey(); }

istream& operator>> (istream& is, Bicycle& bike);
ostream& operator<< (ostream& os, Bicycle bike);

 bike.C
 #include <istring.hpp>
 #include "bike.h"

enum bikeTypes { Racing, Touring, MountainBike };
IString btype[3]={ "Racing", "Touring", "Mountain Bike"};

Bicycle::Bicycle() : Make(""), Model(""), Type(0), Price(0) {}
Bicycle::Bicycle(IString mk, IString md, int tp, int pr) {

 Make=mk;
 Model=md;
 Type=tp;
 Price=pr;
 MMKey=Make+Model;
 }

// Comment out the ordering relation operator
// IBoolean Bicycle::operator< (Bicycle const& b) const
// { return ((Make<b.Make) || (Make==b.Make && Model<b.Model)); }
IBoolean Bicycle::operator== (Bicycle const&b) const {
return (MMKey==b.MMKey && Type==b.Type && Price==b.Price);

 }
IString const& Bicycle::getKey() const { return MMKey; }

istream& operator>> (istream& is, Bicycle& bike) {
char make[40], model[40];

 char typeChoice;
 float price=0;
 int type=-1;

cin.ignore(1,'\n'); // ignore linefeed from previous input
cout << "\nManufacturer: ";
cin.getline(make, 40, '\n');
cout << "Model: ";
cin.getline(model, 40, '\n');

 bike=Bicycle(make,model,type,price);
 return is;
 }

ostream& operator<< (ostream& os, Bicycle bike) {/* ... */} // unchanged

 lesson.C
 // lesson.C
 #include <iostream.h>

#include <irel.h> // was ibag.h
 #include "bike.h"

enum bikeTypes { Racing, Touring, MountainBike };
typedef IRelation<Bicycle,IString> MyCollectionType;

 MyCollectionType MyCollection;
MyCollectionType::Cursor thisOne (MyCollection);

IBoolean printItem (Bicycle const& bike, void* /* Not used */)
{ /* ... */ }

void addItem() {
 Bicycle tbike;
 char typeChoice;
 float price;
 int type=-1;

cout << "Enter item: ";
cin >> tbike;
while (type == -1) {

cout << "Racing, Touring, or Mountain Bike (R/T/M):";
cin >> typeChoice;

 Chapter 15. Collection Class Library Tutorials 169

 Lesson 4: Changing the Collection

while (cin.fail()) {
 cin.clear();
 cin.ignore(1000,'\n');

cerr << "Racing, Touring, or Mountain Bike (R/T/M): ";
cin >> typeChoice;

 }
switch (typeChoice) {

 case 'r':
case 'R': { type=Racing; break; }

 case 't':
case 'T': { type=Touring; break; }

 case 'm':
case 'M': { type=MountainBike; break; }
default: { cerr << "Incorrect type, please re-enter\n"; }

 }
 }

cout << "Price ($$.$$): ";
cin >> price;

 price*=100;
 tbike.Type=type;
 tbike.Price=price;
 MyCollection.add(tbike);
 }

void listItems() {/* ... */ }
void removeItem() {

 Bicycle tbike;
int choice, cursct=1;
cout << "\nRemove an item";
cin >> tbike;
if (MyCollection.numberOfElementsWithKey(tbike.getKey()) > 0) {

 MyCollection.locateElementWithKey(tbike.getKey(), thisOne);
cout << cursct << ". " << MyCollection.elementAt(thisOne) << '\n';
for (cursct=2;

 MyCollection.locateNextElementWithKey(
 tbike.getKey(), thisOne);
 cursct++)

{ cout << cursct << ". "
<< MyCollection.elementAt(thisOne) << '\n'; }

cout << "\nEnter item to remove, or 0 to return: ";
cin >> choice;
if (choice<=0 || choice > cursct) return;

 MyCollection.locateElementWithKey(tbike.getKey(),thisOne);
// locate the first matching element again

for (cursct=2;
 cursct<=choice &&

MyCollection.locateNextElementWithKey // check for valid
(tbike.getKey(), thisOne); // next match

 cursct++)
; // null loop - header contains the code to be executed

 MyCollection.removeAt(thisOne);
 }
 else

cerr << "No bicycles of this make and model were found.\n";
 }

void showStock() {
 Bicycle tbike;
 int count;

cout << "Stock information for a model";
cin >> tbike;

 count=MyCollection.numberOfElementsWithKey(tbike.getKey());
 if (count!=1)

cout << "Currently there are " << count << " bicycles ";
 else

cout << "Currently there is 1 bicycle ";
cout << " of this make and model in stock." << endl;

 }

unsigned long hash (IString const &aKey, unsigned long hashInput) {
return hash((const char*)aKey, hashInput);

 }

170 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Lesson 5: Changing the Implementation Variant

Running the Program
You can enter multiple bicycles of the same make and model, with different price or
type information, and all such models will appear when you select the “List items”
option. When you ask for stock information, the program displays the number of
elements in the collection that match the make and model information you specify.
When you remove an item, the program asks you for the make and model, displays
a list of matching items, and lets you specify which item to remove. The program
removes that item.

What You Have Learned
The Collection Class Library offers a wide range of collections with different
characteristics. In this lesson, you learned how to select an appropriate collection
based on the characteristics of the data being placed in the collection and on the
intended uses of the data. Many Collection Classes are accessed or sorted using
a key, and you learned how to define key access, equality, and hash functions, and
how to iterate through a key collection using a key cursor.

Lesson 5: Changing the Implementation Variant
You should pursue changing the default implementation to an implementation
variant only after the program is functionally complete and has been fully
debugged. The purpose of changing to a nondefault implementation variant is to
improve performance. This lesson shows you how to change the code defined in
“Lesson 3: Changing the Element Type” on page 158 so that it is functionally
equivalent, but uses IBagAsDilutedTable rather than IBag. The lesson assumes
that you have done some analysis of your code, and have determined that this
implementation variant may provide better performance. In the case of a
full-fledged application, once you change the implementation variant, you should
compile the program and time it against the original implementation to determine
whether there is a worthwhile gain in performance.

This section illustrates the following Collection Class concepts:

¹ Changing the implementation variant header file
¹ Changing the implementation variant template and template arguments
¹ Determining what functions are required by the implementation variant

 Requirements
The only implementation variant for a relation is the variant that allows you to use a
generic operations class.

If the collection were still a bag, a number of implementation variants would be
available. In the third lesson, you used the default implementation variant for a
bag, which is a List implementation. Other implementation variants are:

¹ Bag as Table
¹ Bag as Diluted Table
¹ Bag as Hash Table

For this lesson, you will use the code from the third lesson as a starting point, and
change the default Bag implementation.

 Chapter 15. Collection Class Library Tutorials 171

 Lesson 5: Changing the Implementation Variant

 Setup
Copy the files bike.h, bike.C, lesson.C, and main.C from the lesson3 directory
(not the lesson4 directory) to the lesson5 directory, and then change your current
directory to the lesson5 directory. Use an editor to modify the files as described
below.

 Implementation
To change the default implementation of a collection to another implementation
variant, you need to change the Collection Class file that you include, the collection
typedef, and potentially the element and key functions.

Implementation Variant Header Files: To determine the correct header file to
include, consult the “Class Implementation Variants” section of the chapter on Bag
in the OS/390 C/C++ IBM Open Class Library Reference. The header file to
include for IBagAsDilutedTable is shown as ibagdil.h. You therefore change the
header file to include as follows:

// in lesson.C
 // old:

/* #include <ibag.h> */
 // new:
 #include <ibagdil.h>

Templates for Implementation Variants: To determine the correct template to
instantiate for the collection typedef, see the implementation variant in the
appropriate collection chapter. In this case, you would look for “Bag as Diluted
Table” in Chapter 16, “Bag” in the OS/390 C/C++ IBM Open Class Library
Reference. The collection is shown there as:

 IBagAsDilutedTable <Element>
IGBagAsDilutedTable <Element, COps>

Because you are not defining a generic operations class, you need to use the first
implementation variant. You therefore change the typedef for the collection as
follows:

// old: typedef IBag <Bicycle> MyCollectionType;
 // new:

typedef IBagAsDilutedTable <Bicycle> MyCollectionType;

Element Type Functions: To determine the required element type functions, see
the “Element Type” section for the implementation variant. In the case of
IBagAsDilutedTable, the only element type function listed that was not listed for a
Bag is the default constructor, which is already defined in Bicycle for other
reasons. If other functions are required for a given implementation variant you
choose to use in an application, use the information on implementing a hash
function in Lesson 4 for hints on where to place and how to code such functions.

No further changes are required. For this lesson, the only implementation variant
that would require additional element type functions is IBagAsHshTable, and the
required additional function is a hash function, which is already described in
“Lesson 4: Changing the Collection” on page 163.

172 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Other Tutorials

Running the Program
The program should have the same behavior, for a given set of inputs, as the
program from “Lesson 3: Changing the Element Type” on page 158. In a complex
application, a change in performance might occur, but in all cases the behavior of a
correctly coded program should be identical for different implementation variants of
the same collection class.

What You Have Learned
Once a C++ program using the Collection Classes is functionally complete and
error-free, you can focus on performance. The key to good performance of
Collection Classes programs is to select the appropriate implementation variant of a
given collection. Although this lesson did not explain which implementation variant
to choose (since this is largely dependent on the class type being used in the
collection and on other factors beyond the scope of the lessons), it showed you
how to change the implementation variant once the appropriate variant has been
selected. See “Features of Provided Implementation Variants” on page 123 for
guidance on what implementation variants to select for a given application.

Errors When Compiling or Running the Lessons
If you code the programs in this chapter exactly as shown, they should compile
successfully, and should run without any errors except those related to incorrect
user input. Check your code for typographical mistakes or incorrectly placed code
if you get compiler errors.

If you implement element, key, input, or output functions in different ways than
those indicated, and your program does not compile successfully, or compiles but
ends with an exception message when run, you can use Chapter 16, “Solving
Problems in the Collection Class Library” on page 177 to determine the cause.
You can also use Chapter 16 to find errors related to using a different collection or
implementation variant from those specified in the lessons.

 Other Tutorials
The Collection Class Library tutorials provided with OS/390 C++ compiler can help
you to learn the concepts of the Collection Classes They are presented in the same
order as the Collection Class Library topics in this book. You should be familiar
with the information in the first three chapters of Part 3 before beginning the
tutorials.

Using the Default Classes
When you are learning to use a particular collection, you should first use the default
class of that collection, so that you can gain a fundamental understanding of the
collection before you approach the implementation variants of the collection.

You need to understand the topics covered in the following sections to successfully
complete the tutorials:

Tutorial 1 Use of default implementations (“Instantiation and Object Definition” on
page 89)

Tutorial 2 Adding, removing and replacing elements in a collection (“Adding,
Removing, and Replacing Elements” on page 90)

 Chapter 15. Collection Class Library Tutorials 173

 Other Tutorials

Tutorial 3 Use of a cursor, locating and accessing elements, and the use of
applicators (“Cursors” on page 93, “Using Cursors for Locating and
Accessing Elements” on page 94, “Iterating over Collections” on
page 96)

Tutorial 4 Use of exceptions (Chapter 14, “Exception Handling” on page 143)

After completing the above tutorials, you should be acquainted with the basic
features of the Collection Class Library. For a more thorough understanding of the
library, use the tutorials described below.

 Advanced Use
If you want to understand more advanced uses of the classes, use tutorials 5 and
6. You need to understand the topics covered in the following sections to
successfully complete the tutorials:

Tutorial 5 Exchanging implementation variants (Chapter 10, “Tailoring a Collection
Implementation” on page 121)

Tutorial 6 Using abstract base classes to write polymorphic functions (Chapter 11,
“Polymorphism and the Collections” on page 131)

Source Files for the Tutorials
Each tutorial includes seven files. There are four partitioned data sets for the
tutorials as a whole. The following table shows the PDS names, file names (where
? corresponds to the number of the tutorial, from 1 to 6), and the purpose of the
files in that data set:

PDS Name Member
Name

Purpose

CBC.SCLBTUT EXAMPLE? The C++ program file with sections
missing. Fill in the gaps in this file, as
well as the gaps in the .H file.

CBC.SCLBTUT TUTJCL The JCL to use to compile, link, and run
the EXAMPLE? tutorials. Use this JCL after
you have filled in the gaps in the
program.

CBC.SCLBTUT SXAMPLE? The solution of EXAMPLE?, with the gaps
filled in. Once you have tried out your
own solution, check the corresponding
SXAMPLE? file to see how closely your
solution matches the intended one.

CBC.SCLBTUT.H PERSON? The .H file with sections missing. Fill in
the gaps in this file, as well as the gaps in
the related C++ program file EXAMPLE?.

CBC.SCLBTUT.H SPERSON? The solution of PERSON?, with the gaps
filled in. Once you have tried out your
own solution, check the corresponding
SPERSON? file to see how closely your
solution matches the intended one.

CBC.SCLBTUTD TUTOR? The instructions for how to complete each
tutorial, and some questions on the
tutorial.

174 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Other Tutorials

The objective of the tutorials is to apply the information you have learned about the
Collection Class Library by adding the missing parts for each file. You can
compare your solutions to the solutions provided.

PDS Name Member
Name

Purpose

CBC.SCLBTUTD SOLUT? A set of hints on how to perform the steps
described in the related TUTOR? data set
member, and the answers to the
questions in that member.

 Chapter 15. Collection Class Library Tutorials 175

 Other Tutorials

176 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Cursor Usage

Chapter 16. Solving Problems in the Collection Class Library

This chapter helps you solve problems that you may encounter when you use the
Collection Class Library. The following table provides a short summary of each
problem, and directs you to a section containing hints for a solution.

Problem Area Problem Effect Page

Cursor Usage Unexpected results when using cursors 177

Element Functions and
Key-Type Functions

Error messages indicating a problem in
istdops.h

178

Key Access Function - How to
Return the Key (1)

Error messages indicating a problem in
istdops.h: a local variable or compiler
temporary is being used in a return
expression

179

Key Access Function - How to
Return the Key (2)

Unexpected results when adding an
element to a unique key collection

180

Definition of Key-Type
Functions

Link step returns error message CBC3013 180

Exception Tracing Unexpected exception tracing output on
standard error

181

Declaration of Template
Arguments and Element
Functions (1)

Compiler messages indicating that an
element type or one of its required
element functions is not declared

181

Declaration of Template
Arguments and Element
Functions (2)

Compilation errors from symbols being
defined multiple times

181

Declaration of Template
Arguments and Element
Functions (3)

Link errors from symbols being defined
multiple times

182

Default Constructor Compiler error messages indicating a
problem with constructors

182

 Cursor Usage

 Effect
You get unexpected results when using cursors. For example, the elementAt()
function fails for the given cursor or returns an unexpected element.

 Reason
You have used an undefined cursor. Cursors become undefined when an element
is added to or removed from the collection.

 Solution
Cursors that become undefined must be rebuilt with an appropriate operation (for
example, locate()) before they are used again. Rebuilding is especially important
for removing all elements with a given property from a collection. Elements cannot
be removed by coding a cursor iteration. Use the removeAll() function that takes a
predicate function as its argument.

 Copyright IBM Corp. 1996, 1998 177

 Element and Key-Type Functions

For more information about cursors, see “Cursors” on page 93 and “Removing
Elements” on page 91.

Element Functions and Key-Type Functions

 Effect
When compiled, your program causes a compiler error indicating a problem in
istdops.h. The following are examples of such errors:

Message if key is missing

CBC.SCLBH.H(ISTDOPS)(166:1) : (E) CBC3013:
"key" is undefined.

CBC.SCLBH.H(IDSTDOPS)(160:1) : (I) CBC3207:
The previous message applies to the definition of template
"IStdKeyOps<Parcel,ToyString>::key(const Parcel&) const".

Message if hash is missing

CBC.SCLBH.H(ISTDOPS)(152:1) : (E) CBC3070: .
Call does not match any argument list for "::hash".

CBC.SCLBH.H(ISTDOPS)(146:1) : (I) CBC3207:
The previous message applies to the definition of template
"IStdHshOps<ToyString>::hash(const ToyString&,unsigned long) const".

Message if == is missing

CBC.SCLBH.H(ISTDOPS)(81:1) : (E) CBC3054:
The "==" operator is not allowed between "const ToyString" and

 "const ToyString".
CBC.SCLBH.H(ISTDOPS)(80:1) : (I) CBC3207:
The previous message applies to the definition of template
"equal(const ToyString&,const ToyString&)".

Message if < is missing

CBC.SCLBH.H(ISTDOPS)(105:1) : (E) CBC3054:
The "<" operator is not allowed between "const ToyString"
and "const ToString".

CBC.SCLBH.H(ISTDOPS)(103:1) : (I) CBC3206:
The previous 2 messages apply to the definition of template
"compare(const ToyString&,const ToyString&)".

 Reason
Compiler error messages indicating a problem in istdops.h are related to the
element and key-type functions that you must define for your elements. These
functions depend on the collection and implementation variant you are using. The
compilation errors listed above occur when the key() function, the hash() function,
operator==, or operator< are required for your elements, but are defined with the
wrong interface or not defined at all. Whether arguments are defined as const is
significant. Compiler messages do not always point directly to the incorrect
function. For example, a compare function with non-const arguments results in the
compilation error:

The "<" operator is not allowed between "const ..".

178 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 How to Return the Key

 Solution
Verify which element and key-type functions are required for the implementation
variant of the collection you are using. You can find this information for each
collection in the section pertaining to the collection under the heading “Template
Arguments and Required Functions.”

For more information about element and key-type functions, see Chapter 9,
“Element Functions and Key-Type Functions” on page 101.

Note that the same problem may be produced if function declarations and
definitions are not properly separated between header files and source files. This
situation is described in detail in “Declaration of Template Arguments and Element
Functions (1)” on page 181.

Key Access Function - How to Return the Key (1)

 Effect
You get a compiler warning similar to:

Message if key is passed by value

CBC.SCLBH.H(ISTDOPS)(166:1) : (W) CBC3285:
The address of a local variable or compiler temporary is being used
in a return expression.

CBC.SCLBH.H(ISTDOPS)(160:1) : (I) CBC3207:
The previous message applies to the definition of template
"IStdKeyOps<Word,int>::key(const Word&) const".

 Reason
Compiler error messages indicating a problem in istdops.h are related to the
element and key-type functions that you must define for your elements. These
functions depend on the collection and implementation variant you are using. Your
global-name-space function key() returns the key by value instead of by reference.
A temporary variable is created for the key within the operator-class function key.
The operator class function key returns the key by reference. Returning a
reference to a temporary variable causes unpredictable results.

The key function must return a reference and must also take a reference argument.
If the key function calls other functions to access the key, it must call those
functions with a reference to the object as an argument, and those functions must
return a reference to the key.

 Solution
Verify that the global name-space function key correctly returns a key const&
instead of key .

For more information on element and key-type functions, see Chapter 9, “Element
Functions and Key-Type Functions” on page 101.

 Chapter 16. Solving Problems in the Collection Class Library 179

 Definition of Key-Type Functions

Key Access Function - How to Return the Key (2)

 Effect
You are adding an element into a unique key collection, such as a key set or a
map, and you are sure that the collection does not yet contain an element with the
same key. Nevertheless, you get unexpected results:
IKeyAlreadyExistsException, or the element is not added and the cursor is
positioned to a different element.

 Reason
This problem has the same cause as the problem described in “Key Access
Function - How to Return the Key (1)” on page 179. However, you did not get the
warning message described above, because you compiled with a lower warning
level.

 Solution
This problem has the same solution as that described in “Key Access Function -
How to Return the Key (1)” on page 179.

Definition of Key-Type Functions

 Effect
You are using a collection class with a key, and you get an error message during
the link step indicating a problem in istdops.h. The following are examples of such
errors:

Message if key() function is undefined

CBC.SCLBH.H(ISTDOPS)(176:1) : (E) CBC3013:
“key” function is undefined.

 Reason
You are using a collection class that requires the element class to provide a key
and you chose to use the method of using a global key() function. You are using
collection class methods in a source file but the header file with the same name as
the source file does not contain a declaration (prototype) of the global key function.

While compiling the source file, which uses methods of the collection class, the
OS/390 C++ compiler has created or modified a temporary source file in the
tempinc directory. During the link step, this source file is compiled to resolve
references to template code. The error message you encounter refers to this
compilation. The source file in the tempinc directory contains include directives for
the collection class template code. It also contains include directives for a header
file of the same name as the source file that uses the collection class methods.
The template code in istdops.h requires that the global key() function be known at
compilation time. The only file that is included at this time is the header file with
the same name as your source file. The problem is that the source file is not
included at this time, so a definition or declaration of the global key() function in
this file is not recognized by the compiler.

180 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Template Arguments and Element Functions

 Solution
You must declare the global key() function in the header file with the same name
as the source file that uses the collection class methods. The definition of the
global key() function should be in the source file. If you are not sure which header
file is meant by the message, look in the source file found in the tempinc directory.

 Exception Tracing

 Effect
You get unexpected exception tracing output on standard error, even though the
related exception causing the output is caught.

 Reason
For each exception raised, the trace function write() of class IException::TraceFn
is called and writes information about the raised exception to standard error. This
trace function write() is called whether the related exception is caught or not.

 Solution
To suppress the trace output, provide your own IException::TraceFn::write()
tracing function by subclassing IException::TraceFn and register the subclass with
setTraceFunction().

Declaration of Template Arguments and Element Functions (1)

 Effect
You get compiler messages when processing templates indicating that an element
type or one of its required element functions is not declared.

 Reason
The element type or element function is defined locally to the source file that
contains the template instantiation with the element type as its argument. For more
information, see the section on template instantiation in the OS/390 C/C++
Language Reference.

 Solution
Move the corresponding declarations to a separate header file and include the
header file from the source file.

Declaration of Template Arguments and Element Functions (2)

 Effect
You get compilation errors from symbols being defined multiple times.

 Chapter 16. Solving Problems in the Collection Class Library 181

 Default Constructor

 Reason
The template instantiation needs to include the type declarations it received as
arguments. Your header files containing type declarations used in template classes
may automatically be included several times.

 Solution
Protect your header files against multiple inclusion by using the following
preprocessor macros at the beginning and end of your header files:

 #ifndef _MYHEADER_H_
#define _MYHEADER_H_ 1

...
 #endif

Where _MYHEADER_H_ is a string, unique to each header file, representing the
header file's name.

Declaration of Template Arguments and Element Functions (3)

 Effect
You get link errors from symbols being defined multiple times.

 Reason
The template instantiation needs to include the type declarations it received as
arguments. Your header files containing type declarations used in template classes
might automatically be included several times.

 Solution
Verify that you did not define functions in the header files that declare types used in
templates. If you did, you must move them from the header file into a separate
source file or make them inline.

 Default Constructor

 Effect
You get a compiler error similar to the following:

Message for missing default constructor

CBC.SCLBH.H(ITBSEQ)(25:1) : (E) CBC3222:
"IGTabularSequence<ToyString,IStdOps<ToyString> >::Node" needs a
constructor because class member "ivElement" needs a constructor

 initializer.
 Names namesOfExtinct(animals.numberOfDifferentKeys());

CBC.SCLBH.C(ANIMALS)(55:57) : (I) CBC3207:
The previous message applies to the definition of template

 "ITabularSequence<ToyString>".

182 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Default Constructor

 Reason
Compiler error messages indicating a problem with constructors for a collection are
typically related to the constructors defined for your element. Here the default
constructor for the element is missing.

 Solution
Define the default constructor for the element class.

For more information about element and key-type functions, see Chapter 9,
“Element Functions and Key-Type Functions” on page 101. The element and
key-type functions required for each collection are listed for each collection type in
sections entitled “Template Arguments and Required Functions.” Ensure that you
used the prelinker before trying to link your text decks.

 Chapter 16. Solving Problems in the Collection Class Library 183

 Default Constructor

184 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Compatible Items

 Chapter 17. Compatibility Information

This chapter tells you how the changes to the Collection Class Library can affect
existing programs and how you develop, compile, and link future applications that
use the library.

“Compatible Items” describes changes that do not affect compatibility with prior
releases. These changes mainly affect the internal implementation structure of the
library. However some of these changes also affect how you use the collections.
For these changes, source code compatibility with former releases is maintained in
nearly all cases.

“Incompatible Items” on page 186 identifies situations in which you need to
recompile existing applications.

You should also read OS/390 C/C++ SOM-Enabled Class Library User's Guide and
Reference. This book provides information on which libraries to use if you do not
want to re-compile and re-link your existing applications when future releases of the
Collection Class Library may become available.

 Compatible Items
This section deals with items of former releases that are compatible with the new
release.

Reference Classes
Within the new release reference classes are no longer necessary for
polymorphic use of the collections. As shown in Figure 10 on page 84, the
concrete collection classes are now directly derived from the abstract class
hierarchy. A linkage of abstract and concrete classes through reference
classes is therefore superfluous. Nevertheless you can continue using the
reference class syntax in existing programs.

IIterator, IConstantIterator
The classes IIterator and IConstantIterator are now called IApplicator
and IConstantApplicator. The new names express more precisely what
the purpose of objects from these classes is: They do not iterate over a
collection themselves but they provide a function that is applied to the
elements of a collection during iteration with allElementsDo().

The classes IIterator and IConstantIterator are still available but not
recommended.

forCursor macro
Instead of the forCursor macro the forICursor macro is introduced. The
forCursor macro is still available but - as with the Iterator classes - you
should prefer using the new version.

IECOps
Up to now all implementation variants of the collections bag, set, sorted bag
and sorted set used the element operation class IECOps. In the new release
these collections require only class ICOps which is a subset of IECOps.
That means, in the new release class IECOps is no longer needed, yet it is
still available.

 Copyright IBM Corp. 1996, 1998 185

 Incompatible Items

Naming Conventions
New names have been introduced for the implementation variants as well
as for the corresponding header files. The old names can still be used in
existing programs. Consider the key set as example:

Old Names New Names

IKeySet ikeyset.h IKeySet iks.h

IKeySetAsAvlTree iksavl.h

IKeySetOnBSTKeySortedSet iksbst.h IKeySetAsBstTree iksbst.h

IHashKeySet ihshks.h IKeySetAsHshTable ikshsh.h

IKeySetOnSortedLinkedSequence ikssls.h IKeySetAsList ikslst.h

IKeySetOnSortedTabularSequence ikssts.h IKeySetAsTable ikstab.h

IKeySetOnSortedDilutedSequence ikssds.h IKeySetAsDilTable iksdil.h

 Incompatible Items
This section lists items that are not compatible with the new collection class library
release.

New class hierarchy
The structure of the Collection Classes changed in C/C++ for MVS/ESA
Version 3 Release 1 Modification 1. All classes, including the concrete
classes, are now related in an abstract hierarchy.

The abstract hierarchy makes use of virtual inheritance. When you
subclass from a Collection Class and implement your own copy constructor,
you must initialize the virtual base class IACollection<Element> in your
derived classes. Therefore, if you subclassed from a concrete Collection
Class that was shipped with C/C++ for MVS/ESA Version 3 Release 1
Modification 0, and are migrating to the Collection Classes that are shipped
with OS/390 Release 3 C/C++, you will have to change the implementation
of your copy constructor by adding the virtual base class initialization.

newCursor method
As opposed to former releases the return type of the newCursor method is
now for any collection a pointer to the abstract cursor class ICursor
(ICursor*).

Deriving from Reference Classes
Deriving from reference classes without overriding existing collection class
member functions is still possible. Yet, you can no longer override existing
collection class functions and use your derived collection class in a
polymorphic way without additional effort. For further information, see
Chapter 11, “Polymorphism and the Collections” on page 131.

Changed Implementation for Bag and Sorted Bag
The implementation of Bag and Sorted Bag has been changed in OS/390
C/C++ Release 3. In the previous releases, the Bag implementation was
based on Key Set, and the Sorted Bag implementation was based on Key
Sorted Set. Now they are based on Key Bag and Key Sorted Bag,
respectively. This means that the implementation variants AVL Tree and B*
tree are no longer available. For compatibility, these implementation

186 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Incompatible Items

variants are mapped to the List implementation. The default
implementation of Bag and Sorted Bag has changed from AVL Tree to the
List implementation. The old implementations are still available in the C++
SOM (RRBC) library. For a description of the new implementations, see
Figure 13 on page 123.

 Chapter 17. Compatibility Information 187

 Incompatible Items

188 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

Part 4. Application Support Class Library

This part tells you how to use the Application Support classes.

Chapter 18. Application Support Class Library 191
Organization of Classes . 191
IBase Class . 194
IVBase Class . 194
String and Buffer Classes . 195
Thread Safety . 195
MBCS and National Language Support . 195

Chapter 19. String Classes . 199
Introduction to the String Classes . 199
What You Can Do with Strings . 200
IStringTest Class . 212

Chapter 20. Exception and Trace Classes . 215
Introduction to the Exception Classes . 215
Catching Exceptions Thrown by Class Library Functions 217
Throwing Your Own Exceptions Using the Exception Classes 218
Macros Used with the Exception Classes . 219
Using the ITrace Class . 222

Chapter 21. Date and Time Classes . 225
IDate Class . 225
ITime Class . 227
ITimeStamp Class . 229

Chapter 22. Controlling Threads and Protecting Data 231
Accessing the Current Thread . 232
Starting a Thread . 232
Protecting Data . 234

Chapter 23. The IBM Open Class Notification Framework 235
Notifiers and Observers . 235
Notification Protocol . 236
IBM C++ Notification Class Hierarchy . 237

Chapter 24. Using the Binary Coded Decimal Class 239
Header File and Constants for IBinaryCodedDecimal 239
Constructing IBinaryCodedDecimal Objects . 240
IBinaryCodedDecimal Input and Output . 240
Mathematical Operators for IBinaryCodedDecimal 240
Converting IBinaryCodedDecimal Objects . 241
Number of Digits of an IBinaryCodedDecimal Object 242
Precision of an IBinaryCodedDecimal Object . 242
IBinaryCodedDecimal Object Exceptions . 242

| Chapter 25. Using the Decimal Class . 243
| Header File . 243

 Copyright IBM Corp. 1996, 1998 189

| Constructing Decimal Objects . 243
| Decimal Class Input and Output . 244
| Operators for Decimal Class . 244
| Converting Decimal Objects . 245
| Number of Digits in a Decimal Object . 246
| Precision of a Decimal Object . 246
| Decimal Object Exceptions . 247

190 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Class Organization

Chapter 18. Application Support Class Library

The Application Support Class Library was developed by IBM, originally as part of
the User Interface Class Library on C Set ++ for OS/2. Because these classes did
not have the graphical-user-interface orientation of other classes in the User
Interface Class Library, the classes were separated from the User Interface Class
Library into a library of their own. On some operating systems, this class library is
known as the “Data Types and Exceptions Class Library.”

Organization of Classes
Figure 25 on page 192 shows the organization of the Application Support classes
that are derived from IBase and those that are derived from IException. Five other
classes do not inherit from any classes and are used to support the derived
classes. See Table 7 on page 194 for information on the names of these classes
and the classes they support. The purposes of the principal classes are described
below. Classes are listed alphabetically.

IApplication You can use this class to maintain a static pointer to the
C++ object representing the currently executing application.

IBase The base class of most of the other classes in the
Application Support Class Library. This class provides an
output operator and conversion functions for the library,
and typedef synonyms used by other library classes to
make programming easier. You do not need to create
objects of the IBase class; it is described for completeness
only.

IBaseErrorInfo The IBaseErrorInfo class is an abstract base class that
defines the interface for its derived classes. These classes
retrieve error information and text that is then put into an
exception object.

IBinaryCodedDecimal The IBinaryCodedDecimal and decimal classes allow you
to represent numerical quantities accurately in business
and commercial applications for financial application.

IBuffer Objects of the buffer classes contain the actual character
contents of objects of the string classes. All manipulation
of string characters is done in the buffer object referenced
by the string object. IBuffer is the buffer class for
single-byte character set objects.

IDate This class provides support for date information. You can
construct IDate objects in a number of ways, and then use
IDate methods to determine the day of the week, month or
year, compare two dates, test a date for certain
characteristics, and obtain the names of days or months
that are dependent on the national-language locale setting
in effect at run time.

IDBCSBuffer This class is the buffer class for multiple-byte character
sets. Multiple-byte character sets are used for handling
languages such as Japanese, Chinese, and Korean, which

 Copyright IBM Corp. 1996, 1998 191

 Class Organization

ITimeStamp

IObserver
List

IVBase

INotifier

IException

ITime

IObserver::
Cursor

IDBCSBuffer

IAssertion
Failure

ICLib
ErrorInfo

IInvalid
Parameter

IGUI
ErrorInfo

ISystem
ErrorInfo

IXLib
ErrorInfo

IOutOfSystem
Resource

IOutOfWindow
Resource

IStringTest
MemberFn

IOutOf
Memory

IString

I0String

IDate

IObserver

IBuffer

IAccess
Error

IErrorInfo

IDeviceError

IStringParser

IStandard
Notifier

IInvalid
Request

IBase

IStringParser::
Skip

IResource
Exhausted

ITrace IStringTest

decimalProxy decimalResult

decimalBase

decimal

| Figure 25. Organization of Application Support Class Library. Some class names have been split into two lines to fit
| in their boxes. Note that IGUIErrorInfo, IXLibErrorInfo, and IOutOfSystemResource are not supported on OS/390
| C/C++. The classes IDecimalUtil, decimalBase, decimalProxy, and decimalResult are meant for internal use by the
| Application Support Classes. Do not use them directly.

contain more symbols than can be represented by the 256
characters of the single-byte character set.

IException The IException class is the base class from which all
exception objects thrown in the library are derived.

IObserver This class, along with the IObserverList, INotifier,
IStandardNotifier, and IObserver::Cursor classes, lets
you register observers with class objects so that you can
be notified when a change to such an object takes place.

192 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Class Organization

IPrivateResource You can use this class to define a resource that is used
within a single process.

IRefCounted This class lets you maintain a count of all references to
objects of the IRefCounted class.

ISharedResource You can use this class to define a resource that can be
shared across multiple processes.

IString This class gives you a greater flexibility in handling strings
than traditional C-style character arrays. The IString
class supports both single- and multiple-byte character
sets. With IString objects, you can code string-handling
operations much more quickly. For example, you can
concatenate two strings simply by using the + operator, or
compare them using the == operator.

IStringTest This class is provided so that you can define your own
version of the matching function used by IString search
and compare methods.

IThread You can use this class to implement multithreaded
applications.

ITime You can use this class to create time-of-day objects and to
compare them, add them together, extract specific
information from them, or write them to an output stream.

ITimeStamp You can use this class to create timestamp objects and to
compare them, add them together, extract specific
information from them, or write them to an output stream.

ITrace Objects of the ITrace class provide module tracing.
Whenever an exception is thrown by the library, trace
records are output with information about the exception.
You can use environment variables to redirect the trace
output to a file.

IVBase This class is a virtual base class used to derive other
classes such as the buffer classes.

I0String This class is identical to the IString class, except in its
method of indexing strings. In the IString class, the first
character of a string is at position 1, whereas the same
string when stored in an I0String object has its first
character at position 0. I0String is provided for
programmers who are used to the C string-handling
approach of treating strings as starting at position 0.
IString and I0String objects are easily interchanged, and
they support the same set of methods and operators.

One of the most important classes from a programmer's perspective is the IString
class. This class can make your programming much more productive if you do any
amount of string handling. The IString class provides a simpler, safer, and more
flexible way of handling strings than traditional C-style character arrays and the
functions of the string.h library. The IString class has associated classes that
give you even greater flexibility in how you index strings and in how you test for
pattern matches in the searching and replacing functions the class provides.

 Chapter 18. Application Support Class Library 193

 IVBase Class

Table 7. Support Classes for Application Support Classes

Class Name Supports These Classes

IStringEnum IString
I0String
IBuffer
IDBCSBuffer

IMessageText IBase

IException::TraceFn IException

IExceptionLocation IException

 IBase Class
The IBase class provides:

¹ An output operator for the library
¹ Conversion functions for the library
¹ Handling of the message text file
¹ Types for the library

 ¹ Synonyms

You do not need to create objects of the IBase class. This class is introduced at
the root of the class hierarchy for the following reasons:

¹ To define the local type Boolean and the enumeration values true and false.
This definition enables these identifiers to be referenced without their scope
qualifier IBase:: within declarations and member function definitions of classes
derived from IBase.

¹ To provide basic functions applicable to many of the classes in IBM Open
Class Library. These functions are asString(), asDebugInfo(), and
operator<<(ostream&). Note that asString() and asDebugInfo() do not work
correctly if they are invoked through a pointer or reference to an IBase object,
because the functions are not virtual. IVBase redeclares these as virtual
functions. This means that, if you invoke these functions against an IVBase* or
IVBase& object, the implementation for the actual class of the pointed-to or
referenced object is invoked.

 IVBase Class
The IVBase class:

¹ Ensures generic behavior for library classes that have virtual functions
¹ Allows derived classes to access the type and value names of the IBase class

All functions in the IVBase class should be overridden in derived classes because
the IVBase class does not have access to any useful information about objects of
its derived classes.

194 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 MBCS and National Language Support

String and Buffer Classes
You can store and manage strings using the string and buffer classes. There are
two type of string classes, two types of buffer classes, and two support classes.
The two string classes, IString and I0String, are the main classes. The buffer
and support classes are used to implement the string classes.

The buffer classes, IBuffer and IDBCSBuffer, contain the actual contents of the
string objects. The IDBCSBuffer class supports characters of the multiple-byte
character set (MBCS). The name of the class is IDBCSBuffer instead of
IMBCSBuffer for compatibility reasons, because OS/2 implements a double-byte
character set (DBCS) buffer, IDBCSBuffer. If you are using the string classes,
MBCS support is automatic and transparent.

IBuffer and IDBCSBuffer are purely internal classes used in the implementations of
IString and I0String. They are only used in protected sections of the IString
class. They are described in this guide because you may want to understand them
if you are deriving classes from IString.

The support classes, IStringEnum and IStringTest, provide data types and testing
functions that are used in the string and buffer classes.

 Thread Safety
The Application Support Class Library is thread safe at the class level. The class
library protects the use of internal static and global data with locks. This means
that while it is safe to have multiple threads manipulating different objects of the
same class, it is not safe to have multiple threads manipulating the same object. If
an object must be shared across threads, then you must protect access to it using
appropriate serialization/coordination techniques.

For more information, see Chapter 22, “Controlling Threads and Protecting Data”
on page 231.

| Note: To run in a multi-threaded environment, the OS/390 UNIX kernel must be
available and active.

MBCS and National Language Support
The library provides multiple-byte character set (MBCS) support and national
language support (NLS). You can use one source file for your application code and
provide MBCS and NLS support by using separate resource files for the languages
you support. The benefits of this organization include the following:

¹ The application is easy to maintain, because a single version of the application
is used. This reduces the cost of maintaining your code.

¹ The application is easy to upgrade because only the source code is upgraded
and then linked to the separate language files for different languages. This
reduces the time and cost of upgrading your code because different language
versions can be generated at the same time.

Because message strings are defined in message catalogs, they can be translated
easily to your local language without changes to the source code.

 Chapter 18. Application Support Class Library 195

 MBCS and National Language Support

You should note the following when creating an MBCS-enabled application:

¹ String manipulation is MBCS-enabled. The string classes support mixed strings
that contain both SBCS and MBCS characters. Use the string testing functions
to determine if a character is single byte or multiple byte.

¹ The IDBCSBuffer class ensures that the search functions do not match the
second or any subsequent bytes of an MBCS character and that the bytes of
an MBCS character will not be split.

National Language Support

OS/390 C/C++ provides national language support using the XPG/4 programming
model, and using the locale-sensitive functions of the C runtime library.

When you enable NLS, member functions of the IString, IDate, ITime, and
ITimeStamp classes become locale sensitive, in both SBCS and MBCS
environments. The classes provide the following capabilities:

IString Character string handling in SBCS and MBCS environments
IDate Date formatting and manipulation functions
ITime Time formatting and manipulation functions
ITimeStamp Date and time formatting and manipulation functions

While the interfaces of these classes do not change when you enable NLS, the
underlying semantics change to reflect locale requirements. For example, the
compare family of IString functions no longer perform bitwise comparisons, but
instead perform comparisons based on the string collation sequence defined by the
current locale.

Turning on Internationalization Semantics
To turn on the internationalization semantics, use the ICLUI_I18N environment
variable:

GO step parameter ENVAR(ICLUI_I18N=ON)

To turn off the internationalization semantics, set ICLUI_I18N=OFF. The semantics
are off by default.

You can also turn internationalization on or off from within your program, using the
IString class. The IString class provides three member functions that allow you to
programmatically turn internationalization on or off, and test for internationalization:

static void enableInternationalization(Boolean enable = true);
static void disableInternationalization();
static Boolean isInternationalized();

Aside from the three new IString functions, the interfaces of the IString, IDate, and
ITime classes have remained the same.

Setting the Locale
To use national language support you must set the locale for your program, using
the setlocale function:

 setlocale(LC_ALL,"");

196 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 MBCS and National Language Support

The setlocale function call should be the first call in main(), before any IString
variables are defined. Your program should call setlocale() only once.

You can provide the locale information for setlocale() in the LANG environment
variable. When your program runs, it then reads the locale information from the
LANG environment variable. For example, to have your program use the Japanese
locale, set the locale information for Japan before running the program:

GO step parameter ENVAR(LANG=Ja_Jp.IBM-932)

You can also set locales for specific categories of information. See the OS/390
C/C++ Run-Time Library Reference description of the setlocale() function for
more information.

Note: Any references to locale that occur before the call to setlocale() will use
the C locale by default. For more information on setting locales, see the section on
locales in the OS/390 C/C++ Programming Guide.

Warning: In the XPG/4 model, the locales are process scoped. In a
multi-threaded environment, you will get unpredictable results if another
setlocale() call is made in a different thread.

 Chapter 18. Application Support Class Library 197

 MBCS and National Language Support

198 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 String Classes

 Chapter 19. String Classes

The string classes define a data type for strings and provide member functions that
let you perform a variety of data manipulation and management activities. They
provide capabilities far beyond those available with standard C strings and the
string.h library functions.

The string classes have the following capabilities:

¹ String buffers are handled automatically.
¹ Strings can contain both SBCS and MBCS characters.
¹ Strings can be indexed by character or by word.
¹ Strings can contain null characters. (There are no restrictions on the contents

of a string object.)

Member functions of the string classes allow you to:

¹ Use strings in input and output
¹ Access information about strings

 ¹ Compare strings
¹ Test the characteristics of strings
¹ Search for characters or words within a string
¹ Manipulate and edit strings
¹ Convert strings to and from numeric types
¹ Format strings by adding or removing white space

Introduction to the String Classes
There are two string classes: IString and I0String. They are identical except for
the method each uses to index its characters. The characters of an IString object
are indexed beginning at 1. I0String characters are indexed beginning at 0. See
“Indexing of Strings” on page 200 for more information on the indexing of the string
classes. The string class you should use depends on which indexing scheme you
prefer or find easier to implement.

Objects of IString and objects of I0String can be freely intermixed in a program.
Objects of one class can be assigned objects of the other. Arguments that require
an object of one will accept objects of the other. You will only notice a difference
between an IString and an I0String when you are using functions that use or
return a character index value.

In this chapter, only the IString class is presented. However, for every function of
the IString class, there is a corresponding and identically named function of the
I0String class. The I0String version of each function accepts the same
arguments and has the same return type as the IString version, except that all
parameters of type IString become I0String. Any other differences between the
IString and I0String versions of the function are noted in the function descriptions
in the OS/390 C/C++ IBM Open Class Library Reference.

 Copyright IBM Corp. 1996, 1998 199

 What You Can Do with Strings

 String Buffers
When you create an object of a string class, the actual characters that make up the
string are not stored in the string object. Instead, the characters are stored in an
object of a buffer class.

The use of a buffer object is transparent to you when using the string classes. A
correctly sized buffer is automatically created when you create a string object. The
buffer is destroyed when a string object is destroyed. When you manipulate or edit
a string, you are actually manipulating and editing the buffer object that contains
the characters of the string.

Multiple-Byte Character Set Support
Objects of the IString class and the I0String class can contain a mixture of
single-byte characters and multiple-byte characters. All member functions allow for
the mixture. The searching functions will not match a single-byte character with the
second or subsequent byte of a multiple-byte character. Functions that return
substrings will never separate the bytes of a multiple-byte character.

Although the multiple-byte characters are supported, you must be careful not to
alter the contents of a string in a way that would corrupt the data. For example, the
statement:

 IString[n]='x';

would be an error if the nth byte of the IString was part of a multiple-byte
character.

Indexing of Strings
Objects of the string classes are arrays of characters. There are two types of
indexes used with the arrays. The first is a character index: each character is
numbered from left to right starting at the number 1 in the IString class and the
number 0 in the I0String class. Therefore in the IString “The dog is brown,” the
letter “i” has an index value of 9. In the I0String “The dog is brown,” the letter “i”
has an index value of 8.

The second type of index is the word index. In the word index, each
white-space-delimited word is numbered from left to right starting at the number 1.
The word index is the same for IString objects and I0String objects. Therefore in
the IString “The dog is brown,” the word “is” has an index value of 3. In the
I0String “The dog is brown,” the word “is” also has an index value of 3.

The only difference between objects of the IString class and objects of the
I0String class is the starting value for the character index.

What You Can Do with Strings
This section describes the wide range of string handling capabilities provided by the
IString class. If you have a particular task you want to learn about from the list
below, you can look that task up now and find references to appropriate IString
functions. If you want an overview of all the capabilities of the IString class, read
the entire section. The tasks are:

200 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Creating and Copying Strings

¹ Creating and copying strings
¹ Doing string input and output

 ¹ Concatenating strings
¹ Finding words or substrings within strings
¹ Replacing, inserting, and deleting substrings
¹ Determining string lengths and word counts

 ¹ Extending strings
¹ Converting between strings and numeric data
¹ Converting between strings and different base notations
¹ Testing the characteristics of strings

 ¹ Formatting strings

Many of the IString operators and functions are overloaded to support both
IStrings and arrays of characters as return types and arguments. For example,
the comparison operators (==, >, <, >=, <=, !=) all support either two IString
operands or one IString and one array of characters operand. The array of
characters operand can be on either side of the comparison operator. See the
descriptions of individual member functions in the OS/390 C/C++ IBM Open Class
Library Reference to determine what combinations of IString and array of
characters are supported for a given function or operator.

Creating and Copying Strings
You can create IStrings using constructors, and you can copy IStrings using
copy constructors, assignment operators, and substring functions.

 IString Constructors
You can use IString constructors that construct null strings, that accept a numeric
argument and convert it into a string of numeric characters, or that translate one or
more characters into an IString. You can also create a single string out of up to
three separate buffers, whose contents are concatenated into the created IString
object. The following example shows some of the above ways of creating IString
objects:

 #include <istring.hpp>
 #include <iostream.h>

void main() {
IString Number1(123); // --> Number1 ="123"
IString Number2(123.12); // --> Number2 ="123.12"
IString Character('a'); // --> Character ="a"
IString String1("a"); // --> String1 ="a"
IString String2("and"); // --> String2 ="and"
IString String3("a\0d"); // --> String3 ="a"

 }

Note that the last string (String3) is initialized with only the first byte of quoted text.
The null character in the char* constructor argument is interpreted by the compiler
as a terminating null. However, the IString class does support null bytes within
strings. To construct String3 as the example intended, you could write:

 //...
 IString String3("and");
 String3[2]='\0';

If this string is later copied to another string, the null character and following
characters are also copied:

 IString String4=String3;
String4[2]='N'; // --> String4 ="aNd"

 Chapter 19. String Classes 201

 Creating and Copying Strings

 Copying IStrings
The IString assignment operator and copy constructor both copy one string to
another string. One of the strings can be an array of characters, or both may be
IString objects. The IString assignment operator and copy constructor offer the
following advantages over the strcpy and strdup functions provided by the C
string.h library:

¹ When an IString object is copied, a new copy of the string is not made.
Instead, the two strings point to the same buffer location. The object is only
copied if one of the strings is changed. This means that, for strings that are
copied but where neither the source string nor the copy is subsequently
changed, performance is improved by the amount of time it would have taken
to make the new copy.

¹ The notation is simple and intuitive. To copy String1 into String2, you simply
code String2=String1. With strings defined using the traditional char* method,
such an assignment merely copies a pointer to the original string. With IString
objects, the assignment copies each byte of the string into the new string.

¹ You do not have to determine the length of the source string and allocate
sufficient storage to store it in the target string before the assignment. IString
takes care of allocating the storage for you, whether the target string is being
constructed within the assignment or has already been constructed. This
reduces the risk of memory violations. In the following example, String2 is
constructed and initialized, and then copied to (its original contents are
overwritten), while String3 is copy-constructed to contain a copy of String1.
Notice that String2's length is extended by the assignment operation.

IString String1="A longer string than String2";
IString String2="A short string";
IString String3=String1; // initialized to String1
String2=String1; // extended to fit String1

¹ The string being copied can contain null characters anywhere within it, and the
entire string will be copied.

¹ If you accidentally create an array of characters without the terminating null, the
strcpy function may continue copying past the storage allocated for the string.
This can cause storage violations, or, at the least, it can corrupt the data in the
target string. The length of IString objects is not determined by a terminating
null, so storage violations and corrupt target strings are less likely.

Creating Substrings of Strings
You can use the subString function to return a new IString object containing a
portion of another IString. This function lets you create an IString containing the
leftmost characters, rightmost characters, or characters in the string's middle. The
following example shows calls to subString that create substrings with leftmost,
rightmost, or middle characters:

 CLB3ASST
// Using the subString method of IString

 #include <iostream.h>
 #include <istring.hpp>

202 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 String I/O

void main() {
IString All("This is the entire string.");

// Left -> subString(1, length)
 IString Left=All.subString(1,5);

// Middle -> (startpos, length)
 IString Middle=All.subString(6,14);

// Right -> (string length - (substring length - 1))
 IString Right=All.subString(All.length()-6);

cout << "<" << All << ">\n"
<< "<" << Left << ">\n"
<< "<" << Middle << ">\n"
<< "<" << Right << ">" << endl;

 }

This program produces the following output:

<This is the entire string.>
<This >
<is the entire >
<string.>

Doing String Input and Output
The IString class overloads the input and output operators of the I/O Stream Class
Library so that you can extract IString objects from streams and insert IString
objects into them. The input operator reads characters from the input stream until
a white-space character or EOF is encountered. The IString class also defines a
member function to read a single line from an input stream. The following example
shows uses of the input and output operators for IString and the lineFrom
function:

 CLB3ASIO
//Using the IString I/O operators and the lineFrom function

 #include <istring.hpp>
 #include <iostream.h>

void main() {
IString Str1, Str2, Str3;
Str1="Enter some text:";

 char test[80];

// Write prompt
cout << Str1;
// Get input
cin >> Str2;
// This only reads in one word of text, so we should
// check to see if this was the only word on the line:
if (cin.peek()!='\n') {

// there's more text on this line so ignore it
 cin.ignore(1000,'\n');
 }

// Change prompt
Str1.insert("more ",Str1.indexOf(" text:"));
// Write prompt again
cout << Str1;
// Get line of input

 Str3=IString::lineFrom(cin,'\n');
// Write output
cout << "First word of first input: " << Str2 << '\n'

<< "Full text of second input: " << Str3 << endl;
 }

 Chapter 19. String Classes 203

 Finding Words or Substrings

This example produces the output shown below in regular type, given the input
shown in bold:

Enter some text:Here is my first string
Enter some more text:Here is my second string
First word of first input: Here
Full text of second input: Here is my second string

Note that, although null characters are allowed within an IString object, a null
character in an input string is treated as the end of the input, and a null character in
an IString being written to an output stream ends the output of that IString.

 Concatenating Strings
The IString class defines an addition operator (+) to allow you to concatenate two
words together. An addition assignment operator (+=) lets you assign the result of
the concatenation to the left operand. The copy() member function lets you create
an IString consisting of multiple copies of itself or of another string. The following
example shows ways of concatenating text onto the start or end of an IString:

 CLB3ACON
// Concatenating strings

 #include <iostream.h>
 #include <istring.hpp>

void main() {
IString Str1="Let ";
IString Str2="us ";
IString Str3="concatenate ";
IString Str4="repeatedly ";

IString Str5=Str1+Str2; // Add Str1 and Str2 and store in Str5;
Str5+=Str3; // Add Str3 to Str5
Str4.copy(3); // Copy Str4 several times onto itself
Str5+=Str4; // Add Str4 to Str5
cout << Str5 << endl; // Write String 5

 }

This program produces the following output:

Let us concatenate repeatedly repeatedly repeatedly

Finding Words or Substrings within Strings
A wide range of functions are available to let you find words, substrings, patterns,
or individual characters within a string. You can even do wildcard searches: for
example, you can search through a string to find a substring that begins with the
letters "Ar" followed by one or more characters, followed by the letters "rk".

The following example shows a number of the searching functions available for
IString objects. Comments describe the type of search operation being carried
out.

 CLB3ASRC
// Searching for substrings

 #include <iostream.h>
 #include <istring.hpp>

204 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Finding Words or Substrings

void main() {
IString Str1="This string contains some sample text in English.";
IString Str2=Str1.subString(27); // positions 27 and following:

// "sample text in English."
cout << "The string under consideration is:\n\n"

<< Str1 << "\n\n";

// 1. Count the number of occurrences of a substring within the string

cout << "The substring \"in\" occurs "
 << Str1.occurrencesOf("in")

<< " times in the string.\n";

// 2. Find the first occurrence of a substring:
// (Note that the substring can be a char, char*, or IString value)

cout << "The letter 'x' first occurs at position "
<< Str1.indexOf('x') << ".\n";

// 3. Find the first occurrence of any letter of those specified:

cout << "One of the letters q, r, or s first appears at position "
<< Str1.indexOfAnyOf("qrs") << ".\n";

// 4. Find the first occurrence of any letter other than those specified:

cout << "The first letter that is not in \"Think\" "
<< "appears at position "
<< Str1.indexOfAnyBut("Think") << ".\n";

// 5. Find the index of a word

cout << "The third word starts at position "
<< Str1.indexOfWord(3) << ".\n";

// 6. Find a match to a phrase, and return the position of the
// first matching word

cout << "The phrase \"" << Str2 << "\" starts at word number "
<< Str1.wordIndexOfPhrase(Str2) << " of the string.\n";

// 7. Do a wildcard search to see if the string starts with "Th",
// contains "co", and ends with "sh."

cout << "Does the string match the wildcard search string "
 << "\"Th*co*sh.\"?\n";

if (Str1.isLike("Th*co*sh.")) cout << "Yes.";
else cout << "No.";

cout << endl;
 }

This program produces the following output:

The string under consideration is:

This string contains some sample text in English.

The substring "in" occurs 3 times in the string.
The letter 'x' first occurs at position 36.
One of the letters q, r, or s first appears at position 4.
The first letter that is not in "Think" appears at position 4.
The third word starts at position 13.
The phrase "sample text in English." starts at word number 5 of the string.
Does the string match the wildcard search string "Th*co*sh."?
Yes.

 Chapter 19. String Classes 205

 Replacing, Inserting, and Deleting

Replacing, Inserting, and Deleting Substrings
The ability to manipulate the contents of an IString is one of the greatest
advantages of the IString class over the traditional method of using string.h
functions to manipulate arrays of characters. Consider, for example, a function that
perform the following changes on a string. Issues that you need to address when
using arrays of characters, but that are handled for you by the IString class, are
shown in parentheses:

1. Replace all occurrences of Blue with Yellow (string must be expanded by two
characters for each replacement, and text after the replacement must be shifted
out).

2. Replace all occurrences of Orange with Pink (string must be shortened by two
characters for each replacement).

3. Delete the sixth word of the string. (How are words delimited? By spaces?
Carriage returns? Tab characters? What about multiple adjacent whitespace
characters?)

4. Insert the word Dark as the fourth word or at the end of the string if the string
has fewer than three words. (String must be extended. How are words
delimited? Do you add a space before or after the word?).

You can easily handle the above requirements using IString member functions.
The sample function fixString() below implements the requirements. Numbered
comments correspond to the numbers of the requirements:

 CLB3AREP
// Inserting, deleting and replacing substrings

 #include <iostream.h>
 #include <istring.hpp>

 void fixString(IString&);

void main() {
IString Str1="Light Blue and Green are nice colors. ";
Str1+="But so are Red and Orange.";
cout << Str1 << endl;

 fixString(Str1);
cout << Str1 << endl;

 }

void fixString(IString &myString) {
myString.change("Blue", "Yellow"); // 1. Change Blue to Yellow
myString.change("Orange", "Pink"); // 2. Change Orange to Pink
myString.removeWords(6,1); // 3. Remove words, starting at word 6,

// for a total of 1 word.
 int Word4=myString.indexOfWord(4);

if (Word4>0) // 4. Insert "Dark" as fourth word
myString.insert("Dark ",Word4-1); // or at end of string if string

else // has fewer than 4 words. The
myString+=" Dark"; // insertion occurs 1 byte before

} // word 4 (otherwise it inserts
// in the middle of word 4).

This program produces the following output:

Light Blue and Green are nice colors. But so are Red and Orange.
Light Yellow and Dark Green are colors. But so are Red and Pink.

206 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Numeric Conversions

Determining String Lengths and Word Counts
You can determine not only the length of a string, but the number of words within
the string, or the length of a particular word in the string. The length of a string is
not affected by any null characters you insert in the middle of the string. (The
strlen function of string.h treats any null character in an array of characters as a
terminating null.)

The following descriptions assume that ThisString contains the text “This string
has five words.”

The length and size functions both return the length of an IString. For example,
ThisString.size() returns the value 26, as does ThisString.length().

To determine the number of words in a string, use the numWords member function.
For example, ThisString.numWords() returns the value 5.

To determine the length of a particular word, use the lengthOfWord member
function. For example, ThisString.lengthOfWord(3) returns the value 3.

 Extending Strings
With arrays of characters, unless you allocate more storage than originally required
for a string, you can only extend a string by allocating a new chunk of storage,
moving the existing string into the new area, and extending it there.

IString objects are automatically extended for you whenever an IString operator
or function requires the extension. This lets you spend more time coding useful
function, and less time trying to track down the source of memory violations or data
corruption. You can even use the subscript operator to assign a value to a position
beyond the end of the string. The following example, by indexing past the end of
ShortString, causes the string to be padded with blanks up to position 119, and
the letter “a” is added at position 120:

IString ShortString="A short string";
 ShortString[120]='a';

The + and += operators, the assignment operator, and all member functions that
change the contents of a string automatically allocate additional storage for the
string if that storage is required. This can drastically reduce the amount of
string-handling code you need to write.

Converting between Strings and Numeric Data
The IString class provides a number of as... functions that convert from IString
objects to numeric types. You can also convert from numeric types to IString
objects by using the versions of the IString constructor that take numeric values
as arguments. The following example shows various IString functions that convert
between strings and numbers:

 CLB3ACV2
// Conversion between IString and numeric values

 #include <iostream.h>
 #include <istring.hpp>

 Chapter 19. String Classes 207

 Base Conversions

void main() {
IString NumStr=1.4512356919E1; // Initialized with a float value
int Integer=NumStr.asInt(); // Convert to integer value
float Float=NumStr.asDouble(); // C++ conversion rules allow asDouble's

// result to be converted to float
double Double=NumStr.asDouble(); // Convert to double value
NumStr=688; // Assign another integer value

cout.precision(20); // Set precision of cout stream
cout << "Integer: " << Integer << "\nFloat: " << Float

<< "\nDouble: " << Double << "\nString: " << NumStr << endl;
 }

This program produces the following output:

Integer: 14
Float: 14.512356758117676
Double: 14.512356919
String: 688

You can also change the base notation of IString objects containing integer
numbers, by using the d2... functions, which convert from decimal to binary,
hexadecimal, or character representations. Conversion functions are described in
the next section.

Converting between Strings and Different Base Notations
You can use the format conversion functions to change the way the data in a string
is represented. These functions are overloaded so that each function has two
versions. The nonstatic version replaces the value of the string with the converted
value. The static version preserves the original string and returns a new string
object containing the converted value. For example:

aString.c2b(); // Changes value of aString
IString binaryDigits = IString::c2b(aString);

// Preserves value of aString

The conversion functions check the format of the source string to make sure it is
compatible with the source format implied by the function name. For example, if
you use the b2d function to convert a string from binary to decimal, the function first
checks that the string contains only the digits ‘0’ and ‘1’. If it contains any
characters other than those allowed by the source type, the format conversion
functions always return 0.

The following example shows the use of the conversion functions. If you examine
both the example and the output provided below, you can see how to use the
functions.

 CLB3ACV1
// IString conversion functions

 #include <istring.hpp>
 #include <iostream.h>

enum Bases {Bin, Dec, Hex, Char};
IString Base[4]={"binary", "decimal", "hex", "character"};

 IString NumStr;

void Show(int From, int To, IString& Result) {
cout << NumStr << " in " << Base[From] << " is "

<< Result << " in " << Base[To] << '.' << endl;
 }

208 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Testing String Characteristics

void main() {
 IString NewStr;
 NumStr="122";
 NewStr=IString::d2b(NumStr); Show(Dec,Bin,NewStr);
 NewStr=IString::d2x(NumStr); Show(Dec,Hex,NewStr);
 NewStr=IString::d2c(NumStr); Show(Dec,Char,NewStr);
 NumStr="Hat";
 NewStr=IString::c2b(NumStr); Show(Char,Bin,NewStr);
 NewStr=IString::c2d(NumStr); Show(Char,Dec,NewStr);
 NewStr=IString::c2x(NumStr); Show(Char,Hex,NewStr);
 NumStr="5F";
 NewStr=IString::x2b(NumStr); Show(Hex,Bin,NewStr);
 NewStr=IString::x2d(NumStr); Show(Hex,Dec,NewStr);
 NewStr=IString::x2c(NumStr); Show(Hex,Char,NewStr);
 NumStr="0110100001101001";
 NewStr=IString::b2d(NumStr); Show(Bin,Dec,NewStr);
 NewStr=IString::b2x(NumStr); Show(Bin,Hex,NewStr);
 NewStr=IString::b2c(NumStr); Show(Bin,Char,NewStr);
 }

The output from this program resembles the following. Depending on the code
page and character set (ASCII or EBCDIC) of the system you are running the
program on, the values may vary.

122 in decimal is 01111010 in binary.
122 in decimal is 7A in hex.
122 in decimal is : in character.
Hat in character is 110010001000000110100011 in binary.
Hat in character is 13140387 in decimal.
Hat in character is C881A3 in hex.
5F in hex is 01011111 in binary.
5F in hex is 95 in decimal.
5F in hex is ¬ in character.
0110100001101001 in binary is 26729 in decimal.
0110100001101001 in binary is 6869 in hex.
0110100001101001 in binary is ÇÑ in character.

Testing the Characteristics of Strings
The IString class lets you test your strings to determine characteristics such as
the following:

¹ Whether they represent valid hexadecimal, decimal, or binary values
¹ Whether they contain only letters, letters and numbers, uppercase letters,

lowercase letters, or punctuation characters
¹ Whether they contain all SBCS or DBCS characters

This list covers only a few of the testing functions provided by IString.

The testing functions return a value of type Boolean or IBoolean, indicating either
True or False for the tested characteristic. For example, the function
isBinaryDigits() returns false for the IString value “1101121101.” All testing
functions return a value of false for null IString.

The testing functions all have names beginning with is..., because they ask a
question, such as “is the IString made up only of binary digits?” For a complete
list of the testing functions, see the OS/390 C/C++ IBM Open Class Library
Reference. The following example shows how you can use a subset of these
functions:

 Chapter 19. String Classes 209

 Testing String Characteristics

 CLB3ATST
// Evaluating strings using the IString is... methods

 #include <istring.hpp>
 #include <iostream.h>

void evaluate(IString& StringToTest) {
 if (StringToTest.isPrintable())

cout << "Evaluating the string " << StringToTest << ":" << endl;
 else

cout << "Evaluating an unprintable string:" << endl;
 if (StringToTest.isDigits())

cout << " Contains only digits 0-9." << endl;
 if (StringToTest.isAlphabetic())

cout << " Contains only alphabetic characters." << endl;
 if (StringToTest.isAlphanumeric())

cout << " Contains only alphabetic and numeric characters." << endl;
 if (StringToTest.isBinaryDigits())

cout << " Contains only zeros and ones." << endl;
 if (StringToTest.isHexDigits())

cout << " Contains only hex digits 0-9, a-f, A-F." << endl;
 if (StringToTest.isControl())

cout << " Contains only ASCII values 00-1F, 7F." << endl;
 if (StringToTest.isLowerCase())

cout << " Contains only lowercase letters a-z." << endl;
 if (StringToTest.isUpperCase())

cout << " Contains only uppercase letters a-z." << endl;
 if (StringToTest.isSBCS())

cout << " Contains only SBCS characters." << endl;
 }

void main() {
 IString Str[6];

Str[0]="12345"; // numeric, hexadecimal
Str[1]="abcde"; // alphabetic, hexadecimal
Str[2]="10101"; // numeric, binary
Str[3]="abCde"; // alphabetic, hexadecimal
Str[4]="xyz12"; // alphanumeric, lowercase
Str[5]="\x04\x06\x11\x12"; // control, unprintable

for (int i=1;i<6;i++) evaluate(Str[i]);
 }

The output from this program resembles the following. Depending on the code
page and character set (ASCII or EBCDIC) of the system you are running the
program on, the results may vary.

Evaluating the string abcde:
Contains only alphabetic characters.
Contains only alphabetic and numeric characters.
Contains only hex digits 0-9, a-f, A-F.
Contains only lowercase letters a-z.
Contains only SBCS characters.

Evaluating the string 10101:
Contains only digits 0-9.
Contains only alphabetic and numeric characters.
Contains only zeros and ones.
Contains only hex digits 0-9, a-f, A-F.
Contains only SBCS characters.

Evaluating the string abCde:
Contains only alphabetic characters.
Contains only alphabetic and numeric characters.
Contains only hex digits 0-9, a-f, A-F.
Contains only SBCS characters.

Evaluating the string xyz12:
Contains only alphabetic and numeric characters.
Contains only SBCS characters.

Evaluating an unprintable string:
Contains only ASCII values 00-1F, 7F.
Contains only SBCS characters.

210 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Formatting Strings

 Formatting Strings
You can insert padding (white space) into strings so that each string in a group of
strings has the same length. The center, leftJustify, and rightJustify functions
all do this; their names indicate where they place the existing string relative to the
added white space. You provide the final desired length of the string, and the
function adds the correct amount of white space (or removes characters if the string
is longer than the final length you specify). For example:

 CLB3AST1
// Padding IStrings

 #include <istring.hpp>
 #include <iostream.h>

void main() {
IString s1="Short", s2="Not so short",

s3="Too long to fit in the desired field length";
 s1.rightJustify(20);
 s2.center(20);
 s3.leftJustify(20);

cout << s1 << '\n' << s2 << '\n' << s3 << endl;
 }

This program produces the following output:

 Short
Not so short

Too long to fit in t

If a string is too wide, you can strip leading or trailing blanks using the strip...
functions:

 CLB3AST2
// Using the strip... functions of IString

 #include <istring.hpp>
 #include <iostream.h>

void main() {
IString s1, s2, s3, Long=" Lots of space here ";
s1 = s2 = s3 = Long;

 s1.stripLeading();
 s2.stripTrailing();
 s3.strip();

cout << ">" << Long << "<\n"
<< ">" << s1 << "<\n"
<< ">" << s2 << "<\n"
<< ">" << s3 << "<" << endl;

 }

This program produces the following output:

> Lots of space here <
>Lots of space here <
> Lots of space here<
>Lots of space here<

 Chapter 19. String Classes 211

 IStringTest Class

You can also change the case of an IString to all uppercase or all lowercase:

 CLB3AST3
// Changing the case of IStrings

 #include <iostream.h>
 #include <istring.hpp>

void main() {
IString Upper="MANY of THESE are UPPERCASE CHARACTERS";
IString Lower="Many of these ARE lowercase characters";

 Upper.change("MANY","NONE").lowerCase();
 Lower.change("Many","None").upperCase();

cout << Upper << '\n' << Lower << endl;
 }

This program produces the following output:

none of these are uppercase characters
NONE OF THESE ARE LOWERCASE CHARACTERS

Other IString Capabilities
This section has described only a portion of the functionality of the IString class.
Many functions described here are overloaded to provide a wider range of
functionality, and many of the functions of the IString class were not described
here. See the OS/390 C/C++ IBM Open Class Library Reference for complete
descriptions of all the public IString functions.

 IStringTest Class
The IStringTest class lets you define the matching function used in the searching
and testing functions of the string and buffer classes. When a search string is
passed to a searching or testing function, the search string and the string object are
compared on a character-by-character basis. The characters are considered to
match if they are identical. The IStringTest class allows you to define when
characters are considered to match.

For example, you can implement a string test that locates a given occurrence of a
particular character in a string:

 CLB3AIST
// Using the IStringTest class

 #include <istring.hpp>
 #include <iostream.h>

class Nth : public IStringTest {
char key; // Specifies the character to look for
unsigned count; // Specifies which occurrence to find

 public:
 //

// Construct an Nth object as follows:
// 1. Create an IStringTest instance whose function type is user,
// with a null character to start;
// 2. Initialize the count to n
// 3. Initialize the key to c

 //
Nth(char c, unsigned n)
: IStringTest(user,0), count(n), key(c) { }

212 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 IStringTest Class

 //
// test function: accepts an int (the character to look for)
// checks if the character matches the key
// if so, decrements count
// eventually, count will equal zero if enough matches are found,
// so "return !count" will return true (-1)
// otherwise, "return !count" will return a value other than -1

virtual Boolean test (int c) const
 {

if (c == key) // if it matches,
((Nth*)this)->count--; // decrement count
return !count; // return complement of count

// will be true (-1) if count==0
 }
 };

void main() {
IString text="this is a test string";
cout << "The fourth appearance of the letter t in the string:\n"

<< text << '\n' << "is at position "
<< text.indexOf(Nth('t',4)) << endl;

 }

This program produces the following output:

The fourth appearance of the letter t in the string:
this is a test string
is at position 17

A derived template class, IStringTestMemberFn, is provided to support the use of
the IStringTest class with any function that accepts its objects as an argument.

A constructor for IStringTest accepts a pointer to a C function. The C function
must accept an integer as an argument and return a Boolean. Such functions can
be used anywhere an IStringTest can be used. Note that this is the type of the
standard C library functions that check the type of C characters, for example,
isalpha() and isupper().

 Chapter 19. String Classes 213

 IStringTest Class

214 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Exception Classes

Chapter 20. Exception and Trace Classes

This chapter outlines some of the ways that you can use the exception and trace
classes. The exception classes are a set of classes that allow you to catch
exceptions based on their type. The trace class ITrace allows you to conveniently
put trace statements in your programs.

Introduction to the Exception Classes
There are three primary ways to use the exception classes:

1. Certain functions in IBM class libraries throw exceptions that are objects of the
exception classes. If you are familiar with the characteristics of the exception
classes, you can take advantage of the exception classes to make your code
that uses the IBM class libraries more robust.

2. You can both throw and catch objects of the exception classes in your own
code. The exception classes provide a convenient way to package information
about an exception.

3. You can derive your own classes from the exception classes.

Characteristics of the Exception Classes
The exception classes have the following characteristics:

¹ A stack of exception message text strings. These strings allow you to describe
the exception in detail.

¹ An error ID that lets you uniquely identify what error caused the exception.
¹ A severity code that lets you determine whether the exception can be

recovered from or not.
¹ Information about where the exception was thrown.

The exception classes' member functions allow you to:

¹ Add information about where the exception was thrown
¹ Add text to the description of the exception
¹ Get the error ID of the exception
¹ Determine if the exception is recoverable
¹ Log the exception data
¹ Set the error ID of the exception
¹ Set the severity of the exception
¹ Set a trace function

Derivation of the Exception Classes
The exception classes consist of a base class IException and a set of derived
classes:

 ¹ IAccessError
 ¹ IAssertionFailure
 ¹ IDeviceError
 ¹ IInvalidParameter
 ¹ IInvalidRequest
 ¹ IResourceExhausted
 ¹ IDecimalDataError

 Copyright IBM Corp. 1996, 1998 215

 Exception Classes

In addition, IResourceExhausted has the following derived classes:

 ¹ IOutOfMemory
 ¹ IOutOfSystemResource
 ¹ IOutOfWindowResource

Note: OS/390 C/C++ does not support the IOutOfWindowResource class. It is listed
here because versions of the class library on other operating systems do support it.

Because all these classes are derived from the IException class, a single catch
statement can catch all of the exceptions that are objects of the exception classes.
The following catch statement, for example, will catch any exception that is an
object of one of the exception classes:

 catch(IException &ie){
 // ...

// code for all exception class exceptions
 }

On the other hand, if you wanted to deal with each kind of exception separately,
you could have catch statements that looked like this:

 catch(IAccessError &ia){
 // ...

// code for IAccessError exceptions
 }
 catch(IAssertionFailure &iaf){
 // ...

// code for IAssertionFailure exceptions
 }
 // ...

Situations in Which the Exception Classes Are Used
The following table lists the exception classes and the situations in which they are
typically thrown:

Exception Class Thrown When ...

IAccessError A logical error occurs, such as "resource not found"

IAssertionFailure The expression in an IASSERT macro evaluates to false

IDeviceError A hardware-related error occurs

IInvalidParameter An invalid parameter is passed

IInvalidRequest An object is in the wrong state for a function

IResourceExhausted A resource is exhausted or currently unavailable

IOutOfMemory Memory is exhausted

IDecimalDataError The integral part of a IBinaryCodedDecimal object is truncated as
the result of any mathematical operation.

Note: IDecimalDataError applies only to the IBinaryCodedDecimal class.

216 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Catching Exceptions Thrown by Class Library Functions

Catching Exceptions Thrown by Class Library Functions
Under certain circumstances, member functions of the Collection and Application
Support Class Libraries will throw exceptions that are objects of the exception
classes. You can take advantage of this fact to make your code that uses these
classes more robust.

An Example of the Subscript Operator Throwing an Exception
The subscript operator of the IString class can throw exceptions that are objects
of the exception classes. If you use the subscript operator on an IString object
that is declared const , the operator will throw an InvalidRequest exception if the
index is out of the bounds of the IString object.

In the following piece of code, an IString object is declared const , and then the
subscript operator is used with an index beyond the size of the object.

 CLB3ASUB
// Example that causes a subscript out of bounds exception

 #include <iostream.h>
 #include <iexcept.hpp>
 #include <istring.hpp>

void main() {
 try {

const IString ConstStr = "OFF";
cout << ConstStr[4] << endl;

 }
 catch(IException &ie)
 {

cout << "Type of exception is: " << ie.name() << endl;
cout << "Location of exception is: "

<< ie.locationAtIndex(0)->fileName() << endl;
 if (ie.isRecoverable())

cout << "Exception is recoverable" << endl;
 else

cout << "Exception is unrecoverable" << endl;
 }
 }

Because the index is beyond the size of the IString object, the subscript operator
throws an exception. When this code is run, the following output is produced:

Type of exception is: IInvalidRequest
Location of exception is: istring5.C
Exception is recoverable

Member functions in the Collections and User Interface class libraries also throw
exceptions that are objects of the exception classes. If you call such functions
within try blocks followed by a catch statement for IException exceptions, you
can:

¹ Make your code more robust by detecting and dealing with exceptions that
occur in class library calls.

¹ Determine why exceptions are occurring by examining the information that is
passed back in the exception class object.

 Chapter 20. Exception and Trace Classes 217

 Throwing Your Own Exceptions

Throwing Your Own Exceptions Using the Exception Classes
In addition to catching exception class exceptions that are thrown by class library
functions, you can also throw them in your own code. Throwing exception class
exceptions in your own code has the following advantages:

¹ The exception classes provide a convenient package for exception information.
¹ If you use one of the predefined exception classes or derive one of your own

from IException, you can use the same catch statement to catch exceptions
that are generated by both class library functions and your own functions.

Consider the following simple example. The getFirstChar function calls the
IASSERTSTATE macro with a get call as an argument. If the get call fails, it returns
zero and the IASSERTSTATE macro throws an IInvalidRequest exception.

 CLB3AOPE
// Using the IASSERTSTATE macro

 #include <iostream.h>
 #include <fstream.h>
 #include <iexcept.hpp>

void openFile(fstream& fs, char *filename){
 fs.open(filename, ios::in);
 }

char getFirstChar(fstream& fs) {
 char c;
 IASSERTSTATE(fs.get(c));
 return c;
 }

void main() {
 char c;

char * filename = "source.dat";
 fstream fs;
 openFile(fs, filename);
 try {

c = getFirstChar(fs);
cout << "Here is first character: " << c << endl;

 }
 catch(IException &ie)
 {

cout << "Type of exception is: " << ie.name() << endl;
cout << "Location of exception is: "

<< ie.locationAtIndex(0)->fileName() << endl;
 if (ie.isRecoverable())

cout << "Exception is recoverable" << endl;
 else

cout << "Exception is unrecoverable" << endl;
 }
 }

Suppose that this example is run, and the source.dat file is not available. The call
to open in the OpenFile function will fail. When getFirstChar is called within the try
block, an exception will be thrown by the IASSERTSTATE macro. This exception will
be caught by the catch statement in main, and the output will look something like
this:

Type of exception is: IInvalidRequest
Location of exception is: iopen.C
Exception is recoverable

218 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Exception Classes Macros

Macros Used with the Exception Classes
The exception classes support a set of macros that allow you to manage the
exception classes conveniently. You can use these macros to throw exceptions
and to declare and define subclasses of IException or one of its subclasses.

ITHROW
Accepts as input an object of any IException subclass. It expands to
add the location information to the instance, logs all instance data, and
then throws the exception.

IRETHROW
Accepts as input a predefined instance of any subclass of IException
that has been previously thrown and caught. Like the ITHROW macro,
it also captures the location information, and logs all instance data
before rethrowing the exception.

IASSERTSTATE
This macro accepts an expression to be tested as input. The
expression is asserted to be true, meaning that you anticipate that it is
true and are stating so to the compiler. If it evaluates to false, it invokes
the IExcept__assertState function, which creates an IInvalidRequest
exception. Location information is added to the exception, which is then
logged and thrown.

IASSERTPARM
This macro accepts an expression to be tested as input. The
expression is asserted to be true. If it evaluates to false, it invokes the
IExcept__assertParameter function, which creates an
IInvalidParameter exception. Location information is added to the
exception, which is then logged and thrown.

IEXCLASSDECLARE
Creates a declaration for a subclass of IException or one of its
subclasses.

IEXCLASSIMPLEMENT
Creates a definition for a subclass of IException or one of its
subclasses.

IEXCEPTION_LOCATION
Expands to create an instance of the IExceptionLocation class.

INO_EXCEPTIONS_SUPPORT
Provided in support of compilers that lack exception handling
implementation. If it is defined, the ITHROW macro ends the program
after capturing the location information and logging it, instead of
throwing an exception. This macro may not work correctly on all
compilers.

ITHROWGUIERROR
This macro takes as its only argument the name of the GUI function that
returned an error code. It calls the IGUIError::throwGUIError function,
which creates an IGUIErrorInfo instance and uses it to create an
IAccessError instance, adds location information, logs out the exception
data, and throws the exception. The exception severity is set to
recoverable. Only use this macro if the error information that is
retrievable by the IGUIErrorInfo class is available.

 Chapter 20. Exception and Trace Classes 219

 Exception Classes Macros

Note: This macro and the IGUIErrorInfo class are not supported on
OS/390 C/C++. They are described because versions of C Set ++ on
other operating systems do support them.

ITHROWGUIERROR2
This macro takes three arguments:

¹ The name of the GUI function that returned an error code
¹ One of the values of the IErrorInfo::ExceptionType enumeration,

which indicates the type of exception to be created
¹ One of the values of the IException::Severity enumeration, which

indicates the severity of the exception

Only use this macro if the error information that is retrievable by the
IGUIErrorInfo class is available.

Note: This macro and the IGUIErrorInfo class are not supported on
OS/390 C/C++. They are described because versions of the exception
classes on other operating systems do support them.

ITHROWSYSTEMERROR
This macro takes four arguments:

¹ The error ID returned from the system function
¹ The name of the system function that returned an error code
¹ One of the values of the IErrorInfo::ExceptionType enumeration,

which indicates the type of exception to be created
¹ One of the values of the IException::Severity enumeration, which

indicates the severity of the exception

Why Use the Macros?
You can manage exceptions that are objects of the exception classes directly. You
can call member functions directly to create objects, and query and set their values.
You can also explicitly derive your own classes from the existing exception classes.
Often, however, it is more convenient to use the macros provided by the exception
classes.

Consider the example that used the IASSERTSTATE macro:

// Using the IASSERTSTATE macro

 #include <iostream.h>
 #include <fstream.h>
 #include <iexcept.hpp>

void openFile(fstream& fs, char *filename){
 fs.open(filename, ios::in);
 }

char getFirstChar(fstream& fs) {
 char c;
 IASSERTSTATE(fs.get(c));
 return c;
 }

void main() {
 char c;

char * filename = "source.dat";
 fstream fs;
 openFile(fs, filename);
 try {

c = getFirstChar(fs);
cout << "Here is first character: " << c << endl;

 }

220 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Exception Classes Macros

 catch(IException &ie)
 {

cout << "Type of exception is: " << ie.name() << endl;
cout << "Location of exception is: "

<< ie.locationAtIndex(0)->fileName() << endl;
 if (ie.isRecoverable())

cout << "Exception is recoverable" << endl;
 else

cout << "Exception is unrecoverable" << endl;
 }
 }

This code could be rewritten to invoke the exception class member functions
directly:

 CLB3AMAC
// Invoking the IException member functions directly

 #include <iostream.h>
 #include <fstream.h>
 #include <iexcept.hpp>

void openFile(fstream& fs, char *filename){
 fs.open(filename, ios::in);
 }

char getFirstChar(fstream& fs) {
 char c;

if (!fs.get(c)) {
IInvalidRequest ir(" ", 0, IException::recoverable);

 IExceptionLocation il("imac.C","getFirstChar",5);
 ir.addLocation(il);
 throw(ir);
 }
 return c;
 }

void main() {
 char c;

char * filename = "source.dat";
 fstream fs;
 try {

c = getFirstChar(fs);
cout << "Here is first character: " << c << endl;

 }
 catch(IException &ie)
 {

cout << "Type of exception is: " << ie.name() << endl;
cout << "Location of exception is: "

<< ie.locationAtIndex(0)->fileName() << endl;
 if (ie.isRecoverable())

cout << "Exception is recoverable" << endl;
 else

cout << "Exception is unrecoverable" << endl;
 }
 }

Notice how the single IASSERTSTATE in the getFirstChar function is replaced with a
test of the return value of get, the definition of an IInvalidRequest object, the
definition of an IExceptionLocation object, and an explicit throw statement. You
can see that the version of the program that uses the IASSERTSTATE macro is
simpler and easier to code.

 Chapter 20. Exception and Trace Classes 221

 Using the ITrace Class

Using the ITrace Class
The ITrace class provides a set of facilities that allow you to put trace statements
in your code conveniently. The most convenient way to use ITrace is through the
macros that it supports.

Using the Trace Macros to Control Trace Output
The ITrace class is convenient to use because it allows you to turn trace
statements on and off easily. By defining certain macros and by using the macros
in the ITrace class to create trace output, you can selectively turn tracing on and
off. There are three special trace macros:

 ¹ IC_TRACE_RUNTIME
 ¹ IC_TRACE_DEVELOP
 ¹ IC_TRACE_ALL

By defining or not defining these macros, you can specify whether or not the trace
macros are expanded, and thus whether or not your program produces trace
output.

If IC_TRACE_RUNTIME is defined, the following macros are expanded:

IMODTRACE_RUNTIME
This macro takes one argument that is the name of the current module.
It creates an ITrace object using the module name as the name of the
trace and the current line number as the line number.

IFUNCTRACE_RUNTIME
This macro takes no arguments. It creates an ITrace object using the
function name as the name of the trace and the current line number as
the line number.

Note: On OS/390 the function name is always the value f, because the
OS/390 C++ compiler does not support the __FUNCTION__ macro.

ITRACE_RUNTIME
This macro takes a single argument. This argument is written to the
trace location.

If IC_TRACE_DEVELOP is defined, all of the macros that are expanded when
IC_TRACE_RUNTIME is defined, are also expanded. In addition, the following macros
are expanded:

IMODTRACE_DEVELOP
This macro takes one argument. Typically you use the argument to
name the current module. This macro creates an ITrace object using
the module name as the name of the trace and the current line number
as the line number.

IFUNCTRACE_DEVELOP
This macro takes no arguments. It creates an ITrace object using the
function name as the name of the trace and the current line number as
the line number.

Note: On OS/390 the function name is always the value f, because the
OS/390 C++ compiler does not support the __FUNCTION__ macro.

222 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Using the ITrace Class

ITRACE_DEVELOP
This macro takes a single argument. This argument is written to the
trace location.

If IC_TRACE_ALL is defined, all of the trace macros are expanded.

Capturing Trace Output in a File
The ITrace class allows you to send trace output to standard output, or to capture
it in a file. To capture trace output in a file, you must define the following
environment variables before starting your application:

 ICLUI_TRACETO=FILE
 ICLUI_TRACEFILE=<file>

where <file> is the name of the target output file.

An Example of Using ITrace
The following piece of code shows one way that you could use the trace macros to
produce trace output for your programs. In this code, the macros
IFUNCTRACE_DEVELOP and ITRACE_DEVELOP are used to create trace statements that
indicate that the flow of control has passed through the functions openFile and
getFirstChar.

 CLB3ATRC
// Producing trace output with the ITrace class

 #define IC_TRACE_DEVELOP

 #include <iostream.h>
 #include <fstream.h>
 #include <iexcept.hpp>
 #include <itrace.hpp>

void openFile(fstream& fs, char *filename){
 IMODTRACE_DEVELOP("openFile(fstream&,char*)");
 fs.open(filename, ios::in);

ITRACE_DEVELOP("after open statement");
 }

char getFirstChar(fstream& fs) {
 char c;
 IMODTRACE_DEVELOP("getFirstChar(fstream&)");
 fs.get(c);

ITRACE_DEVELOP("after get statement");
 return c;
 }

void main() {
 char c;

char * filename = "source.dat";
 fstream fs;
 //

// static functions to enable tracing and direct
// tracing output to standard output

 //
 ITrace::enableTrace();
 ITrace::writeToStandardOutput();
 openFile(fs, filename);

c = getFirstChar(fs);
cout << "Here is first character: " << c << endl;

 }

 Chapter 20. Exception and Trace Classes 223

 Using the ITrace Class

Notice that, in this code, the static functions enableTrace and
writeToStandardOutput are used to enable tracing and to direct the trace output to
standard output.

Because the macro IC_TRACE_DEVELOP is defined, the trace macros produce trace
output. In addition, the trace output has been explicitly directed to standard output,
so the output of the code looks like this:

+openFile(fstream&,char*)
>after open statement

-openFile(fstream&,char*)
+getFirstChar(fstream&)
>after get statement

-getFirstChar(fstream&)
Here is first character: t

Suppose that you wanted to turn off the trace output in this program. One way to
do it is to modify the code so that the macro IC_TRACE_DEVELOP is not defined. If
you do this, the trace macros are not expanded, and no trace output is produced.
The output of this code with IC_TRACE_DEVELOP not defined looks like this:

Here is first character: t

224 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Creating an IDate Object

Chapter 21. Date and Time Classes

The IDate and ITime classes are independent classes that provide you with data
types to store and manipulate date and time information. Because the IDate and
ITime classes are independent, when an ITime object's time passes 23:59:59
(24-hour format) or 11:59:59 (12-hour format), it has no effect on the value of any
IDate object.

The ITimeStamp class provides you with a data type to store and manipulate
timestamp information, where a timestamp represents a specific point in time; for
example, combined date and time.

With these classes, you can create date, time, and timestamp objects, and use
member functions to do the following:

¹ Write date, time, or timestamp objects to an output stream
¹ Access detailed information about dates, times, or timestamps
¹ Compare dates, times, or timestamps
¹ Test the characteristics of date or time objects
¹ Add or subtract days from a date object
¹ Add or subtract hours, minutes, or seconds from a time or timestamp object
¹ Convert between date formats or between time formats.

 IDate Class
The IDate class uses Gregorian calendar dates. The Gregorian calendar is in
general use and consists of the 12 months, January to December.

IDate also supports the Julian date format, which contains the year in positions 1
and 2, and the day of the year in postions 3 through 5. If the day of the year is
less than three digits, zeros are added on the left to increase the size to three
digits. For example, February 14, 1965 is 65045 as a Julian date. (February 14 is
the 45th day of the year.)

The IDate class returns the names of the days and months in the language defined
by the current locale. For information on defining the locale, see the standard C
library function setlocale().

Creating an IDate Object
You can create an IDate object using different IDate constructors. For example:

IDate OneDay(IDate::June,30,1994); // Month, day, year
IDate AnotherDay(23,IDate::April,1961); // Day, month, year
IDate SomeDay(940616); // Julian date format
IDate Yesterday(1994,177); // Year, day of year

The constructors accepting a month use the IDate enumeration Month, whose
members are named January through December (the months of the year in English).

 Copyright IBM Corp. 1996, 1998 225

 Testing and Comparing IDate Objects

Changing an IDate Object
You can add days to, or subtract days from, an IDate object. You can also
subtract one date from another, in which case the result is the number of days
between the two dates. For example:

IDate Day1, Day2;
 int NumDays;
 Day1=IDate::today();

Day2=Day1+1; // Day2 is one day after Day1
Day2+=2; // Day2 is now three days after Day1

 NumDays=Day2-Day1; // NumDays=3

Note that you cannot add two IDate objects together, because such an addition
does not make sense. However, you can add two ITime objects together.

Information Functions for IDate Objects
The IDate class defines information functions that you can use to obtain specifics
about an IDate object. For example, you can find out what day of the week,
month, or year an IDate object's date falls on, or what the name of the day or
month is for the current locale. You can also find out what today's date is. The
following example shows some of the IDate information functions:

 CLB3ADTF
// Information functions for IDate class

 #include <iostream.h>
 #include <istring.hpp>
 #include <idate.hpp>

void main () {
 IDate Day1(27,IDate::May,1964);

cout << Day1.dayName() << " "
<< Day1.monthName() << " "
<< Day1.dayOfMonth() << " out of "
<< IDate::daysInMonth(Day1.monthOfYear(), Day1.year()) << " days in month, "
<< IDate::daysInYear(Day1.year()) << " days in year "
<< Day1.year() <<'.' << endl;

 }

This program produces the following output:

Wednesday May 27 out of 31 days in month, 366 days in year 1964.

Testing and Comparing IDate Objects
You can compare two IDate objects to determine whether they are equal, or
whether one is later than the other. The following operators are defined: ==, !=, <,
<=, >, >=. For example, the expression if ((Day1>Day2) && (Day1!=Day3)
evaluates to true if Day1 is January 1 1994, Day2 is June 3 1968, and Day3 is July
12 1941.

You can also check whether a particular year is a leap year, or whether a particular
combination of day, month, and year is valid. The isLeapYear() function returns
true if its integer argument is a leap year. The isValid() function accepts
combinations of day, month, and year (or day of year and year), and returns true if
the provided date is valid. For example, it returns true for the first date below, and
false for the second date:

if (IDate::isValid(IDate::June, 30, 1990)) // ...
if (IDate::isValid(1965,366) // ... False (No day number 366 in 1965)

226 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 ITime Information Functions

 ITime Class
The ITime class refers to time in the 24-hour format by specifying time units (hours,
minutes, seconds) past midnight. If you want to display ITime objects in the
12-hour format, you must convert them to IStrings using the asString function
with a char* argument of "%r". (This argument is a format string. All format
specifiers of the strftime() function of the standard C library are supported by the
IString conversion function.)

Note: Objects of the ITime class are precise only up to the nearest second, and
cannot be used for more precise timings.

Creating an ITime Object
You can create an ITime object and initialize it to a number of seconds past or
before midnight, or to a number of hours, minutes, and optionally seconds past
midnight:

 ITime Time1(33556), // 09:19:16
// 33556 = 9 hours (32400 seconds), 19 minutes (1140 seconds),
// 16 seconds (adds up to 33556)

 Time2(-33556), // 14:40:44
// (9 hours, 19 minutes and 16 seconds BEFORE midnight)
Time3(12,00), // 12:00:00 (noon)

 Time4(3,3,3); // 03:03:03

The constructors translate incorrect times into valid ITime objects using modulo
arithmetic. For the seconds past midnight format, any number whose absolute
value is greater than or equal to 86400 is divided by 86400, and the remainder is
used to calculate the time. For the hours, minutes, and optional seconds format,
excess minutes and seconds are added to the hours and minutes values,
respectively, and if the hour exceeds 23 it is divided by 24 and the remainder is
taken. For example:

ITime Time1(133556), // 13:05:56 (13356-86400=47156 seconds after midnight)
Time2(-133556), // 10:54:04 (13356-86400=47156 seconds BEFORE midnight)
Time3(10,119,60), // 12:00:00 (noon) (10 hours plus 119 minutes plus 60 seconds)
Time4(33,33); // 09:33:00 (33 hours - 24 hours = 9 hours)

Changing an ITime Object
You can add or subtract two times. Four operators are provided: +, +=, -, and -=.
The following example shows the use of these operators:

ITime Start(12:00), Duration(2:00),
 Done=Start+Duration; // Done=14:00

Start=Done-Duration; // Start=12:00 still
 Start+=Duration; // Start=14:00

Start-=Duration; // Start=12:00 again

Information Functions for ITime Objects
Three of the information functions return an &itime2's hour, minute, or second
settings; the other information function returns the current time as determined by
the system clock. For example:

 ITime Time1(ITime::now());
cout << Time1.hours() << " o'clock occurred "

<< Time1.minutes() << " minutes and "
<< Time1.seconds() << " seconds ago." << endl;

This displays a result such as the following:

12 o'clock occurred 16 minutes and 23 seconds ago.

 Chapter 21. Date and Time Classes 227

 ITime Output Formats

Comparing ITime Objects
Functions are defined to let you compare ITime objects for equality, inequality, or
relative position in time. The following operators are defined: ==, !=, <, <=, >, >=.
In the following example, a message is displayed if enough time elapses between
the first and second calls to the now() member function:

 #include <itime.hpp>
 #include <iostream.h>
 ITime First(ITime::now());

void main() {
 ITime Second=ITime::now();

if (First<Second) // Some time has passed
cout << "You must be debugging me!" << endl;

 }

This message usually does not print when the program is run outside of a
debugging session. However, if you debug the program and step through each line
slowly, the message may be displayed, because the first ITime object is initialized
during program initialization (before main is called) while the second ITime object is
initialized within main .

Writing an ITime Object to an Output Stream
ITime defines an output operator that writes an ITime object to an output stream in
the format hh:mm:ss. If you want to write the object out in a different format, you
should convert the object to an IString using the asString member function. This
member function accepts a char* argument containing a format specifier. The
format specifier is the same one as used by the C library function strftime. The
following program displays some valid specifiers and the output they produce:

 CLB3ATIM
// Examples of ITime output

 #include <istring.hpp>
 #include <itime.hpp>
 #include <iostream.h>

#include <iomanip.h> // needed for setw(), to set output stream width

void main() {
 char* FormatStrings[]={

"%H : %M and %S seconds", // %H, %M, %S - 2 digits for hrs/mins/secs
"%r", // %r - standard 12-hour clock with am/pm
"%T", // %T - standard 24 hour clock
"%T %Z", // %Z - local time zone code
"%1M past %1I %p" // %1... - One digit for hour/minute
}; // %p - am/pm

cout.setf(ios::left,ios::adjustfield); // Left-justify output

cout << setw(30) << "Format String" // Title text
<< setw(40) << "Formatted ITime object" << endl;

for (int i=0;i<5;i++) { // Show each time
 IString Formatted=ITime::now().asString(FormatStrings[i]);

cout << setw(30) << FormatStrings[i]
<< setw(40) << Formatted << endl;

 }
 }

Note: The format specifier %n, where n is an integer, is not supported by strftime
on OS/390. As a result, if you use a format specification string containing %n in
ITime output, the format specification string may appear in place of the desired
output.

228 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 ITimeStamp Information Functions

The program produces output that looks like the following:

Format String Formatted ITime object
%H : %M and %S seconds 16 : 13 and 04 seconds
%r 04:13:04 PM
%T 16:13:04
%T %Z 16:13:04 EST
%1M past %1I %p 13 past 4 PM

 ITimeStamp Class
An ITimeStamp object can be created from an IDate object, an IDate and ITime
object, or a value that represents the number of seconds from the reference date
01/01/2000 00:00:00. If the timestamp is referring to a point in time before the
reference date, a negative value must be used.

Creating an ITimeStamp Object
You can create an ITimeStamp object using different ITimeStamp constructors. For
example:

IDate ADate(IDate::December, 5, 1963); // Create an IDate object
ITime ATime(10, 11, 12); // Create an ITime object

ITimeStamp TmStamp1(ADate); // 12/05/1963 midnight
ITimeStamp TmStamp2(ADate, ATime); // 12/05/1963 10:11:12 am
ITimeStamp TmStamp3(4000.0); // 01/01/2000 01:06:40 am
ITimeStamp TmStamp4(-4000.0); // 12/31/1999 22:53:20 pm
ITimeStamp TmStamp5; // same as ITimeStamp TmStamp5(0.0);

// 01/01/2000 00:00:00 am

Changing an ITimeStamp Object
You can add seconds to, or subtract seconds from, an ITimeStamp object. You can
also subtract one ITimeStamp object from another, in which case the result is the
number of seconds between the two timestamps. For example:

ITimeStamp TmStamp1, TmStamp2;
 double diff;

TmStamp1 = ITimeStamp::currentTimeStamp();
TmStamp2 = TmStamp1 + 4000.0; // 4000.0 seconds after TmStamp1
TmStamp2 -= 1000.0; // go back 1000.0 seconds
diff = TmStamp2 - TmStamp1; // should be 3000.0 seconds different

// (if there is no rounding error)

Note: You cannot add two ITimeStamp objects together, as such an addition does
not make sense. Also, all the operations are done using floating point arithmetic.
As a result, some error due to rounding may occur.

Information Functions for ITimeStamp Objects
The ITimeStamp class defines information functions that you can use to obtain
specific information about an ITimeStamp object. For example, you can determine
the number of seconds separating the ITimeStamp object from the reference date
(01/01/2000 00:00:00). You can also find out what the current timestamp is.

Conversion operators have been provided that allow you to convert an existing
ITimeStamp object to an IDate object or an ITime object. Once the object has been
converted, the IDate or ITime information functions may be then be used. See
“Information Functions for IDate Objects” on page 226 and “Information Functions
for ITime Objects” on page 227 for more information.

The following example shows some of the ITimeStamp information functions:

 Chapter 21. Date and Time Classes 229

 Comparing ITimeStamp Objects

 ITimeStamp RefDate;
ITimeStamp TmStamp = ITimeStamp::currentTimeStamp();

IDate ADate = TmStamp;
ITime ATime = TmStamp;

double Seconds = TmStamp.asSeconds();

cout << TmStamp << " is " << Seconds << " seconds apart from" << endl;
cout << RefDate << endl;
cout << ATime.hours() << ":" << ATime.minutes() << ":";
cout << ATime.seconds() << "," << ADate.dayOfYear();
cout << " days in year " << ADate.year() << endl;

This example produces the following output:

05/15/1996 17:50:56 is -1.14502e+08 seconds apart from
 01/01/2000 00:00:00

17:50:56, 136 days in year 1996

Comparing ITimeStamp Objects
You can compare two ITimeStamp objects to determine whether they are equal, or
whether one is later than the other. The following operators are defined: ==, !=, <,
<=, >, and >=.

Note: Since all the operations are done using floating point arithmetic, be aware
that some rounding error may occur.

The following example illustrates this point:

 ITimeStamp TmStamp1(12345.54321);
ITimeStamp TmStamp2 = TmStamp1 + 9753.6802 - 9753.6802;

if (TmStamp1 == TmStamp2)
 {

printf("TmStamp1 == TmStamp2\n");
printf("TmStamp1 = %30.20f\n", TmStamp1.asSeconds());
printf("TmStamp2 = %30.20f\n', TmStamp2.asSeconds());

 }
 else
 {

printf("TmStamp1 != TmStamp2\n");
printf("TmStamp1 = %30.20f\n", TmStamp1.asSeconds());
printf("TmStamp2 = %30.20f\n", TmStamp2.asSeconds());

 }

This examples displays the following output:

TmStamp1 != TmStamp2
 TmStamp1 = 12345.54321000000000000000
 TmStamp2 = 12345.54320999999800000000

230 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

Chapter 22. Controlling Threads and Protecting Data

The Application Support Class Library provides classes to implement multithreaded
applications. This means that your application can run multiple threads
concurrently, and each thread will execute regardless of whether the other threads
give up control. A thread is defined to be the smallest unit of execution within a
process which maintains the processor state and program stack.

The primary class you use to handle threads is IThread. Objects of this class
represent separate threads of execution and provide the ability to start and stop the
thread, set various thread attributes, and determine the default environment for the
thread.

Generally, you use objects of this class in one of the following ways:

¹ To apply thread functions to the current thread. In most cases, these functions
are applied to the IThread object reference returned by the static member
function IThread::current.

¹ To create additional threads of execution by creating new objects of this class
and starting them.

The IThread class provides both GUI and non-GUI member functions. The GUI
member functions are not supported on the OS/390 and OS/400 platforms. All
non-GUI member functions are supported, with the following exceptions:

¹ suspend() and resume() are not supported

An exception of type invalidRequest will occur if you call either of these
functions.

¹ Thread priority functions are not supported

The following functions through which thread priority can be manipulated
have been made NO-OPs.

priorityLevel() const;
virtual IApplication::PriorityClass
priorityClass() const;
&setPriority (IApplication::PriorityClass priority, unsigned level);
&adjustPriority (int delta);

¹ Changing stack size for threads is not supported

These functions are NO-OPs. System default stack size is used for all
threads.

In addition to the IThread class, you can use the ICurrentThread class to set and
query attributes for the currently executing thread and wait until another thread has
terminated. You are limited to a single object of this class. This class provides
functions that you can only apply to the current thread of execution. To obtain a
reference to the object, use the static function IThread::current.

All non-GUI member functions of ICurrentThread are supported, with the following
exceptions:

waitForAnyThread();
&waitForAllThreads();

 Copyright IBM Corp. 1996, 1998 231

 Starting a Thread

An exception of type invalidRequest will occur if you call either of these
functions.

Accessing the Current Thread
There is only a single object of the ICurrentThread class for each application, and it
can be accessed using the following statement:

ICurrentThread& curThread = IThread::current();

This object accesses information held on a per-thread basis. The member also
accesses some functions that can be applied only to the current thread.

Starting a Thread
Use the IThread class to start a thread of execution. Once started, the IThread
object provides a means of querying and stopping the thread. The thread and the
IThread object are independent; therefore, when the IThread object is destroyed,
the thread is unaffected. You can start additional threads using IThread::start.

The function to be dispatched on a separate thread can be either a member
function or a nonmember function. If you create an object of IThread with the
function, a thread is created and dispatched immediately. Alternatively, you can
create an object of the class and later dispatch it. This allows you to set arguments
that affect the execution of the thread prior to dispatching.

Starting Nonmember Functions
The IThread class dispatches nonmember functions with either of the following two
function prototypes:

void (_Optlink *)(void *)

void (_System *)(unsigned long)

To start a thread with the default environment and default options, the following
statements are needed:

void threadFn(void *pvParms); //Function to run on separate thread
void *pv; //Argument for threadFn function

IThread thread(threadFn, pv); //Dispatch thread with default environment

Starting a Member Function
Use the IThread class to start member functions. Direct support is provided for
starting member functions that have no arguments, but you can also start functions
that have arguments.

To start a member function that takes no arguments, use the following steps:

1. Create an object of the template class IThreadMemberFn.
2. Start a thread and pass the object as an argument.

The following example shows how to execute the function AClass::longFn on a
separate thread. Create an object of the template class with the class that contains
the member function. Create the object of the template class with the operator new
function so that the object is deleted automatically when the thread ends. The two

232 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Starting a Thread

arguments on the constructor are the object for which the member function is called
and the member function itself, as shown in the following example:

/* function to run is ... void AClass::longFn() */
AClass object; //Object to run member function against

IThreadMemberFn<AClass> *aMemberFn =
new IThreadMemberFn<AClass>(object

, AClass::longFn);
IThread thread(aMemberFn); //Dispatch thread

To start a member function that takes arguments, use the following steps:

1. Derive a class from the IThreadFn class.

2. Define a constructor that takes an object of the class and the arguments you
want to pass.

3. Override the ICurrentApplication::run member function to call the member
function.

4. Create an object of the derived class.

5. Start a thread and pass the object as an argument.

The following example shows how to start a function:

1. Write the class declaration. The class is derived from the IThreadFn class. It
has a single constructor that requires an object of the AClass class and the two
parameters. The class overrides the virtual function run and calls the required
member function, as shown in the following example:

class AClass
{
 public:

void longFn(int, IString);
/* ... rest of class declaration ... */

};

//This class runs the member function
// AClass::longFn(...) on a separate thread

class AThreadLongFn : public IThreadFn
{
 public:

AThreadLongFn(AClass &obj, int i, IString str)
: object(obj)
, value(i)
, string(str) { }

virtual void run() { object.longFn(value, string); }
 private:
 AClass &object;
 int value;
 IString string;
};

2. Create an object and dispatch it. As before, create the object using operator
new so that it is deleted automatically:

AClass object; //Object to run member function against
int number = 6;
IString greeting("Hello");

/* function to run is ... void AClass::longFn(int, IString) */
 //Create object
 AThreadLongFn *aMemberFn = new AThreadLongFn(object, number, greeting);
IThread thread(aMemberFn); //Dispatch thread

 Chapter 22. Controlling Threads and Protecting Data 233

 Protecting Data

 Protecting Data
If your applications have multiple threads, you typically need to serialize their
access to certain resources. Mutexes and semaphores enable separate threads
and processes to synchronize access to shared resources. Semaphore objects
ensure that two processes do not write to the same file at the same time, and
mutex objects ensure that two threads do not update static data simultaneosly.
The Application Support Class Library provides several classes to assist you. Use
the IPrivateResource class to serialize access to a resource within a single
process. The ISharedResource class provides a lock that can be used between
processes.

Note: Shared locks are process scoped. In a multi-threading environment, it is
the programmer's responsibility to serialize the acquisition of shared locks. That
means that only one thread within a process should be waiting to acquire the
shared lock at any given time.

The simplest way to serialize access to a function is to provide a static object of the
IPrivateResource class. You can use this object in association with the
IResourceLock class to control access. In the following example, the function
guarantees that only one thread accesses it at one time:

static IPrivateResource resourceKey; //Key must exist when function
 // called
void serializedFunction()
{
IResourceLock resLock(resourceKey); //Create lock
/* ... serialized code ... */
} //Lock freed with resLock destructed

When a thread calls serializedFunction, it is blocked until any other thread
executing the function exits it. The IResourceLock class constructor takes a
timeout parameter which defaults to -1 in the OS/390 environment.

Timeout value on the lock() member function is not supported. A default value of
-1 is assumed, which means the thread must wait until the lock is obtained. This
can lead to deadlock problems if the thread currently executing fails to exit.

| Note: The kernel must be active to use the lock() member functions. In a
| non-OS/390 UNIX environment, all lock() member functions are NO-OPs.

234 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Notifiers and Observers

Chapter 23. The IBM Open Class Notification Framework

This chapter provides an overview of the IBM class notification framework. You
use this framework when coding with the IBM Open Class Library or to implement
event and attribute notification for nonvisual parts.

Using the notification framework, registered observer objects can observe any
changes being made to other objects. When one object is observing another, it
receives all the notifications for every action applied to that object. The observers
then select which notifications to ignore.

The notification framework contains the following entities:

¹ Notifier objects that support the notifier protocol defined by the INotifier class

¹ Observer objects that support the observer protocol defined by the IObserver
class

¹ Notification IDs, which are defined for parts that have been enabled for event
notification

¹ Notification event objects defined by the INotificationEvent class

Notifiers and Observers
Notifier objects enable other objects in the system to register dependence upon the
state of the notifier objects’ properties. To register dependence, objects add an
observer object to the notifier object by using the following function in the IObserver
class:

virtual IObserver
 &handleNotificationsFor (INotifier& aNotifier,

const IEventData& userData = IEventData()),

The IObserver class also supports removing an observer from a notifier via the
following:

virtual IObserver
 &stopHandlingNotificationsFor (INotifier& aNotifier);

Notifier objects are responsible for publishing their supported notification events,
managing the list of observers, and notifying observers when an event occurs. To
notify observers of attribute changes or events, notifiers use the following member
function defined by the INotifier class:

virtual INotifier
 ¬ifyObservers (const INotificationEvent& anEvent) = 0;

The INotifier abstract base class defines the notifier protocol and requires its
derived classes to completely implement its interface. To ensure that all notifier
objects can coexist, no data is stored in any notifier object.

A notifier adds observers to an observer list and uses this list to notify observers in
a first-in, first-notified manner.

The IObserver class defines the protocol that accepts event signals from the notifier
object by overriding the member function in the IObserver class as follows:

 Copyright IBM Corp. 1996, 1998 235

 Notification Protocol

 virtual IObserver
&dispatchNotificationEvent (const INotificationEvent&)=0;

Because a single list of observers is kept for each notifier, all observers in the list
get called when any notification occurs within the notifier. Each observer must test
to determine if a given notification event should be processed. Normally, this is
done by checking notificationId in an INotificationEvent object.

Notifier objects publish the notification events that they support by providing a
series of unique identifiers in their interface. These notification IDs are static string
constants that are defined in the notifier. The string is in the form of the class
name followed by the event name, such as MyString::textChanged. Each
notification event provides a unique public static notification ID.

Events are typically a notification of changes in the attributes or intrinsic data that
can be accessed in a notifier object. Attributes can represent any logical property
of a part, such as the balance of an account, or the size of a shipment.

A notification event is the data provided to an observer object when a change
occurs in the attributes of an object. Included in this data is the identity of the
attribute being changed and the part in which the change has occurred. Also,
some of the data supplied to the observer can be the actual data being changed in
the notifier object.

A notification event can also include observer-specific data. The caller that
registers the observer with a notifier provides this data as the userData parameter
on the following call in the IObserver class:

virtual IObserver
 &handleNotificationsFor (INotifier& aNotifier,

const IEventData& userData = IEventData()),

The notifier passes this data to that observer anytime it notifies the observer of an
event.

Note: The notification framework in the Application Support Class Library is thread
safe. However, it does not inherently support notification between threads.
A notification ultimately causes a function call from notifier to observer. This
does not work when there is a thread boundary between the notifier and
observer. You would have to use some other means to get notifications
from one thread to another. Operating system message posting is one
method. You could have the second thread post messages back to the first
who could then pass the notifications to the observers on its thread.

 Notification Protocol
Concrete classes that inherit from the INotifier class implement its protocol. This
includes the following:

¹ Enabling, disabling, and querying the ability to signal events. In general,
notifiers are created disabled and must be enabled before they can signal
events. This allows notifier objects to delay the setup to support notification
until the notifier is enabled. The following member functions in the INotifier
class enable you to enable and disable notification:

virtual INotifier
 &enableNotification (Boolean enabled = true) = 0,
 &disableNotification () = 0;

236 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Notification Class Hierarchy

¹ Managing the collection of observers, including adding and removing observers.
These are defined by the following protected members in INotifier:

virtual INotifier
 &addObserver (IObserver& anObserver,

const IEventData& userData) = 0,
 &removeObserver (const IObserver& anObserver) = 0,
 &removeAllObservers () = 0;

¹ Within the notifier object, calling the following member function every time an
event of interest occurs:

 notifyObservers(const INotificationEvent&)

While the classes providing notification must call this function, in many cases it
makes sense that the responsibility be delegated to another class. For
instance, in the IBM Open Class Library, this responsibility is typically delegated
to handler style objects.

¹ The protected member INotifier::addObserver accepts a piece of typeless data
as a const IEventData& that is forwarded to the IObserver instance with any
notification request. This enables a piece of data to be maintained for each
instance of an observer.

The IStandardNotifier class provides the concrete implementation of the notifier
protocol and provides the base support for nonvisual notifiers. This class inherits
from a notifier class that supports registration of and notification to observer
objects.

IBM C++ Notification Class Hierarchy
 IBase
 |

 | |
 IVBase INotificationEvent
 |

 | |
 INotifier IObserver
 |
IStandardNotifier

Within this partial hierarchy, note the following:

¹ The INotifier abstract class defines the notifier protocol.
¹ The IObserver abstract class defines the observer protocol.
¹ The INotificationEvent class implements the notification event object.
¹ The IStandardNotifier class is a concrete implementation of the notifier protocol.
¹ Nonvisual notifiers would normally be derived from IStandardNotifier.

 Chapter 23. The IBM Open Class Notification Framework 237

 Notification Class Hierarchy

238 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Header File and Constants for IBinaryCodedDecimal

Chapter 24. Using the Binary Coded Decimal Class

This chapter describes the IBinaryCodedDecimal class you use to represent
numerical quantities accurately in business and commercial applications for
financial calculations.

The IBinaryCodedDecimal class allows representation of up to 31 significant digits,
including integral and fractional parts. The fractional part of a dollar can be
represented accurately by two digits following the decimal point. You do not have
to use floating-point arithmetic, which is more suitable for scientific and engineering
computations. These computations often use numbers much larger than the largest
that the IBinaryCodedDecimal object can store.

The same declarations and operators that you use on other data types, such as
float, can be applied to IBinaryCodedDecimal objects. You can declare typedefs,
arrays, and structures that have IBinaryCodedDecimal objects. You can apply
arithmetic, relational, assignment, comma, conditional, equality, logical, primary,
and unary operators on the IBinaryCodedDecimal object. You can pass
IBinaryCodedDecimal objects in function calls.

Header File and Constants for IBinaryCodedDecimal
You must include this statement in any file that uses the IBinaryCodedDecimal
class:

 #include <idecimal.hpp>

The file must be included before any use of the IBinaryCodedDecimal object.

Constants Defined in idecimal.hpp
Table 8 lists the binary coded decimal constants that the Binary Coded Decimal
Class Library defines:

Table 8. Constants Defined in idecimal.hpp

Constant Name Description

DEC_DIG The maximum number of significant digits that
IBinaryCodedDecimal can hold.

DEC_MIN The minimum value that IBinaryCodedDecimal can
hold.

DEC_MAX The maximum value that IBinaryCodedDecimal can
hold.

DEC_EPSILON The smallest incremental or decremental value that
IBinaryCodedDecimal can hold.

DFT_DIG The default number of digits (15) for the default
constructor.

DFT_PREC The default number of precision (5) for the default
constructor.

DFT_LNG_DIG The default number of digits (20) for a long type.

 Copyright IBM Corp. 1996, 1998 239

 Operators for IBinaryCodedDecimal

Constructing IBinaryCodedDecimal Objects
You can use the IBinaryCodedDecimal constructor to construct
IBinaryCodedDecimal objects or arrays of IBinaryCodedDecimal objects. The
following example shows how to construct an IBinaryCodedDecimal object to have
a value (12) with DFT_LNG_DIG, number of digits (20) and number of precisions (0):

 IBinaryCodedDecimal a(12L);

The following example shows how to construct an IBinaryCodedDecimal object to
have a value INT_MAX with number of digits (16) and number of precisions (5):

 IBinaryCodedDecimal b(16,5,INT_MAX);

IBinaryCodedDecimal Input and Output
You can use the input and output operators for the I/O Stream Library to perform
input and output operations on IBinaryCodedDecimal. See Part 2, “The I/O Stream
Class Library” on page 23 for more in-depth information on using the I/O Stream
Library.

Mathematical Operators for IBinaryCodedDecimal
The IBinaryCodedDecimal class defines a set of operators with the same
precedence as the corresponding real operators. With these operators, you can
code expressions on IBinaryCodedDecimal objects such as the expressions shown
in the example below:

 IBinaryCodedDecimal value1("123.78");
 IBinaryCodedDecimal value2("345.12");
 IBinaryCodedDecimal value3("77.457");

IBinaryCodedDecimal Sum, Average;

Sum = value1 + value2;
Sum += Sum + value3; // Sum should have value 546.357
Average = Sum / 3; // Average should have value 182.119

If accuracy of IBinaryCodedDecimal is important, use the char * contractor instead
of the floating type contractor. For example, use

 IBinaryCodedDecimal accurateBCD("12345.6789");
// this will store exactly 12345.6789

instead of

 IBinaryCodedDecimal roughBCD(12345.6789);
// this will store something close to 12345.6789
// (might be 12345.6788999999999..., depends on the
// floating type representation)

 Relational Operators
You can use the relational operators < > <= >= for IBinaryCodedDecimal objects
and compare IBinaryCodedDecimal objects with other arithmetic types (integer,
float, double, and long double):

IBinaryCodedDecimal BCD_1(15);
IBinaryCodedDecimal BCD_2(-15);

 if (BCD_1 < BCD_2)
 ...

240 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Converting IBinaryCodedDecimal Objects

 Equality Operators
You can use equality operators with IBinaryCodedDecimal objects to compare
IBinaryCodedDecimal objects for equality:

IBinaryCodedDecimal BCD_1(15);
IBinaryCodedDecimal BCD_2(-15);

 if (BCD_1 != BCD_2)
 ...

Converting IBinaryCodedDecimal Objects
The IBinaryCodedDecimal class defines a set of conversion operators. With these
operators you can convert IBinaryCodedDecimal objects to other data types.

IBinaryCodedDecimal Object to a IBinaryCodedDecimal Object
If the value of an IBinaryCodedDecimal object that is to be converted to another
IBinaryCodedDecimal object is not within the range of values that can be
represented exactly, the value of the IBinaryCodedDecimal object to be converted is
truncated. If truncation occurs in the fractional part, there is no exception raised. If
assignment causes truncation in the integral part, then there is an exception in
which a IDecimalDataError object is thrown. This exception occurs when an
integral value is lost during conversion to a different type, regardless of what
operation requires the conversion:

 IBinaryCodedDecimal targ_1(4,2);
 IBinaryCodedDecimal targ_2(4,2);
 IBinaryCodedDecimal op_1("1234.56");
 IBinaryCodedDecimal op_2("12.34");

targ_1=op_1; // An exception is generated because the integral
// part is truncated; targ_1=("34.56").

targ_2=op_2; // No exception is generated because neither the
// integral nor the fractional part is truncated;

 // targ_2=("12.34").

An exception occurs on assignment to a smaller target only when the integral part
is truncated.

When one IBinaryCodedDecimal object is assigned to another IBinaryCodedDecimal
object with a smaller precision, the result is truncation of the fractional part:

 IBinaryCodedDecimal x("123.4567");
 IBinaryCodedDecimal y(7,1);

y = x; // y = ("123.4")

When one IBinaryCodedDecimal object is assigned to another IBinaryCodedDecimal
object with a smaller integral part, the result is truncation of the integral part. An
exception occurs:

 IBinaryCodedDecimal x("123456.78");
 IBinaryCodedDecimal y(5,2);

y = x; // y = ("456.78")

When one IBinaryCodedDecimal object is assigned to another IBinaryCodedDecimal
object with a smaller integral part, and smaller precision, the result is truncation of
the integral, and fractional parts. An exception occurs:

 Chapter 24. Using the Binary Coded Decimal Class 241

 IBinaryCodedDecimal Object Exceptions

 IBinaryCodedDecimal x("123456.78");
 IBinaryCodedDecimal y(4,1);

y = x; // y = ("456.7")

Number of Digits of an IBinaryCodedDecimal Object
When you use the member function digitsOf() with an IBinaryCodedDecimal
object, you can find out the total number of digits n in an IBinaryCodedDecimal
object:

 int n;
IBinaryCodedDecimal x(5, 2);
n = x.digitsOf(); // the result is n=5

Precision of an IBinaryCodedDecimal Object
When you use the member function precisionOf() with an IBinaryCodedDecimal
object, you can find out the number of decimal digits p in an IBinaryCodedDecimal
object:

 int p;
IBinaryCodedDecimal x(5, 2);
p=x.precisionOf(); // The result is p=2

IBinaryCodedDecimal Object Exceptions
The IDecimalDataError exception class is thrown whenever the integral part is
truncated as the result of any mathematical operation.

242 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Constructing Decimal Objects

| Chapter 25. Using the Decimal Class

| This chapter describes the decimal class you use to represent numerical quantities
| accurately in business and commercial applications for financial calculations.

| OS/390 C++ supports the decimal data type through the IBinaryCodedDecimal class
| as well as the decimal class. Use the decimal class to improve the performance of
| your applications relative to using the IBinaryCodedDecimal class. The decimal
| class is compatible with the decimal data type in C. This class permits you to
| represent up to 31 significant digits, including integral and fractional parts.

| You can declare typedefs, arrays, and structures that have decimal objects. You
| can apply arithmetic, relational, assignment, equality, and unary operators on the
| decimal object. You can pass decimal objects in function calls.

| Header File
| You must include this statement in any file that uses the decimal class:

| #include <idecimal.hpp>

| The file must be included before any use of the decimal object.

| Constructing Decimal Objects
| You can use the decimal constructor to construct decimal objects or arrays of
| decimal objects. Use the template specifier decimal<w,p> to declare decimal
| objects. The template specifier decimal<w,p> designates a decimal number with w
| digits, and p decimal places. In the specifier, w is the total number of digits for the
| integral and decimal parts combined. p is the number of digits for the decimal part
| only. For example, decimal <5,2> represents a number, such as 123.45, where
| w=5 and p=2. Specifying the value for p is optional. If omitted, OS/390 C++ creates
| a default value of 0 for p.

| In the specifier, w and p have a range of allowed values according to the following
| rules:

| 1 ≤ w ≤ 31
| 0 ≤ p ≤ w

| You can construct a decimal object using an integer, a char *, a decimal object,
| or another IBinaryCodedDecimal object. The following example shows how you can
| construct a decimal type:

| decimal<10,2> x("4.67"); // char *
| decimal<5,0> y(7); // integer
| decimal<5> z=y; // another decimal object
| decimal<18,10> *ptr; // pointer
| decimal<8,2> arr[100]; // array
| IBinaryCodedDecimal a(12) //another IBinaryCodedDecimal object
| decimal<10,3> b(a);

| In the previous example:

| ¹ x has a value of +4.67.

 Copyright IBM Corp. 1996, 1998 243

 Operators for Decimal Class

| ¹ y and z have a value of +7.

| ¹ ptr is a pointer to type decimal<18,10> .

| ¹ arr is an array of 100 elements, where each element is of type decimal<8,2>.

| ¹ b has the value of the decimal object a, +12.

| Decimal Class Input and Output
| You can use the input and output operators for the I/O Stream Library to perform
| input and output operations on decimal. See Part 2, “The I/O Stream Class
| Library” on page 23 for more in-depth information.

| Operators for Decimal Class

| Arithmetic Operators
| The decimal class defines a set of arithmetic operators with the same precedence
| as the corresponding non-overloaded operators. With these operators, you can
| perform arithmetic calculations between two decimal objects, or between a decimal
| object and an integer.

| decimal<5,2> x("9.45");
| decimal<8,3> y(-3);
| decimal <20,13> sum = x + y;

| Intermediate Results
| Use one of the following tables to calculate the size of the result. The tables
| summarize the intermediate expression results with the four basic arithmetic
| operators when applied to the decimal types. Most of the time, you can use
| Table 9 to calculate the size of the result. It assumes no overflow. If overflow
| occurs, use Table 10 on page 245 to determine the resulting type.

| Both tables assume the following:

| ¹ x has type decimal<w₁,p₁>

| ¹ y has type decimal<w₂,p₂>

| ¹ decimal<w,p> is the resulting type

| You can use Table 10 on page 245 to calculate the size of the result, whether
| there is an overflow or not.

| Table 9. Intermediate Results (without overflow in w or p)

| Expression| <w,p>

| x * y| w = w₁ + w₂ p = p₁ + p₂

| x / y| w = 31 p = 31 - ((w₁ - p₁) + p₂)

| x + y| p = max(p₁, p₂) n; = max(w₁ - p₁, w₂ - p2;) + p + 1

| x - y| same rule as addition

244 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Converting Decimal Objects

| Table 10. Intermediate Results (in the general form)

| Expression| <w,p>

| x * y| w = min(w₁ + w₂, 31)
| p = min(p₁ + p₂, 31 - min((w₁ - p₁)
| + (w₂ - p₂), 31))

| x / y| w = 31
| p = max(31 - ((w₁ - p₁) + p₂), 0)

| x + y| ir
| = min(max(w₁ - p₁, w₂ - p₂) + 1, 31)
| p = min(max(p₁, p₂), 31 - ir)
| w = ir + p

| x - y| same rule as addition

| Relational Operators
| You can use the relational operators < > <= >= for decimal objects. You can
| compare two decimal objects, or a decimal object with an integer.

| decimal<5,2> x("10.0");
| decimal<8,3> y("-2.3");
| if (x < y)
| ...

| Equality Operators
| You can use the equality operators != == for decimal objects. You can compare
| two decimal objects or a decimal object with an integer for equality.

| decimal<5,2> x(15);
| decimal<5,2> y(-15);
| if (x != y)
| ...

| Converting Decimal Objects
| The decimal class defines a set of conversion operators and functions. With these
| operators and functions, you can convert decimal objects to and from other data
| types.

| If the value that is to be converted is not within the range of values that can be
| represented exactly, OS/390 C++ truncates this value. If truncation occurs in the
| fractional part, OS/390 C++ does not raise an exception. If assignment causes
| truncation in the integral part, OS/390 C++ raises an exception. This exception
| occurs when an integral value is lost during conversion to a different type,
| regardless of the operation that requires the conversion.

| Decimal Object to a Decimal Object
| The following is an example of converting a decimal object to another decimal
| object:

| decimal <5,2> x(3);
| decimal <31,15> y;
| y = x;

 Chapter 25. Using the Decimal Class 245

 Precision of an Object

| Decimal Object to an IString Object
| OS/390 C++ provides a member function, asString(), to convert a decimal object
| to an IString object. The following is an example of such a conversion:

| decimal<5,2> x("3.46");
| IString y = x.asString();

| Decimal Object from a char * Type
| The following is an example of converting a char * type to a decimal object:

| char * x = "1234.5";
| decimal<5,2> y;
| y = x;

| Decimal Object from an Integer Type
| The following is an example of converting an integer to a decimal object:

| int x=3;
| decimal<3,1> y=x;

| Decimal Object to and from IBinaryCodedDecimal Object
| The following is an example of converting a decimal object from an
| IBinaryCodedDecimal object:

| IBinaryCodedDecimal y(12);
| decimal<5,2> x(y);

| OS/390 C++ provides a member function, asBCD(), to convert a decimal object to
| an IBinaryCodedDecimal object. The following is an example of such a conversion:

| decimal<5,2> x("3.46");
| IBinaryCodedDecimal y = x.asBCD();

| Number of Digits in a Decimal Object
| When you use the member function digitsOf() with a decimal object, you can find
| out the total number of digits w in a decimal object:

| int w;
| decimal<5,2> x;
| w = x.digitsOf(); // the result is w=5

| Precision of a Decimal Object
| When you use the member function precisionOf() with a decimal object, you can
| find out the number of decimal digits p in a decimal object:

| int p;
| decimal<5,2> x;
| p=x.precisionOf(); // The result is p=2

246 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Decimal Object Exceptions

| Decimal Object Exceptions
| OS/390 C++ decimal instructions produce the following exceptions:

| ¹ Data exception (interrupt code hex '7')

| This may be caused by invalid sign or digit codes in a packed decimal number
| operated on by packed decimal instructions.

| ¹ Decimal-overflow exception (interrupt code hex 'A')

| This exception may be caused when nonzero digits are lost because the
| destination field in a decimal operation is too short to contain the result.

| CEE3210S The system detected a Decimal-overflow exception.

| ¹ Decimal-divide exception (interrupt code hex 'B')

| This exception may be caused when, in decimal division, the divisor is zero, or
| the quotient exceeds the specified data-field size. The decimal divide is
| indicated if the sign codes of both the divisor and dividend are valid, and if the
| digit or digits used in establishing the exception are valid.

| Note: The following unhandled divide message does not distinguish between
| a decimal-divide condition and a fixed divide-by-zero condition:

| CEE3211S The system detected a Decimal-divide exception.

| Both are mapped into the same error message.

| ¹ SIGFPG exception

| During the conversion of char * to the decimal object, there is a possibility that
| the value of the integer part cannot be represented by the decimal type. In that
| case, the result of the conversion is undefined and OS/390 C++ raises a SIGFPG
| exception.

 Chapter 25. Using the Decimal Class 247

 Decimal Object Exceptions

248 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

Part 5. Glossary, Bibliography and Index

 Copyright IBM Corp. 1996, 1998 249

250 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Glossary

This glossary defines terms and abbreviations that are
used in this book. Included are terms and definitions
from the following sources:

¹ American National Standard Dictionary for
Information Systems, ANSI/ISO X3.172-1990,
copyright 1990 by the American National Standards
Institute (ANSI/ISO). Copies may be purchased
from the American National Standards Institute,
1430 Broadway, New York, New York 10018. Such
definitions are indicated by the symbol ANSI/ISO
after the definition.

¹ IBM Dictionary of Computing, SC20-1699. These
definitions are indicated by the registered trademark
IBM after the definition.

¹ X/Open CAE Specification, Commands and Utilities,
Issue 4. July, 1992. These definitions are indicated
by the symbol X/Open after the definition.

¹ ISO/IEC 9945-1:1990/IEEE POSIX 1003.1-1990.
These definitions are indicated by the symbol ISO.1
after the definition.

¹ The Information Technology Vocabulary, developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol
ISO-JTC1 after the definition; definitions taken from
draft international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol ISO Draft
after the definition, indicating that final agreement
has not yet been reached among the participating
National Bodies of SC1.

A
abstract class . (1) A class with at least one pure
virtual function that is used as a base class for other
classes. The abstract class represents a concept;
classes derived from it represent implementations of the
concept. You cannot have a direct object of an abstract
class. See also base class. (2) A class that allows
polymorphism. There can be no objects of an abstract
class; they are only used to derive new classes.

abstract code unit . See ACU.

abstract data type . A mathematical model that
includes a structure for storing data and operations that
can be performed on that data. Common abstract data
types include sets, trees, and heaps.

abstraction (data) . A data type with a private
representation and a public set of operations (functions
or operators) which restrict access to that data type to
that set of operations. The C++ language uses the
concept of classes to implement data abstraction.

access . An attribute that determines whether or not a
class member is accessible in an expression or
declaration.

access declaration . A declaration used to restore
access to members of a base class.

access mode . (1) A technique that is used to obtain a
particular logical record from, or to place a particular
logical record into, a file assigned to a mass storage
device. ANSI/ISO. (2) The manner in which files are
referred to by a computer. Access can be sequential
(records are referred to one after another in the order in
which they appear on the file), access can be random
(the individual records can be referred to in a
nonsequential manner), or access can be dynamic
(records can be accessed sequentially or randomly,
depending on the form of the input/output request). IBM.
(3) A particular form of access permitted to a file.
X/Open.

access resolution . The process by which the
accessibility of a particular class member is determined.

access specifier . One of the C++ keywords: public,
private, and protected, used to define the access to a
member.

ACU (abstract code unit) . A measurement used by
the OS/390 C/C++ compiler for judging the size of a
function. The number of ACUs that comprise a function
is proportional to its size and complexity.

addressing mode . See AMODE.

address space . (1) The range of addresses available
to a computer program. ANSI/ISO. (2) The complete
range of addresses that are available to a programmer.
See also virtual address space. (3) The area of virtual
storage available for a particular job. (4) The memory
locations that can be referenced by a process. X/Open.
ISO.1.

aggregate . (1) An array or a structure. (2) A
compile-time option to show the layout of a structure or
union in the listing. (3) An array or a class object with
no private or protected members, no constructors, no
base classes, and no virtual functions. (4) In
programming languages, a structured collection of data
items that form a data type. ISO-JTC1.

 Copyright IBM Corp. 1996, 1998 251

alert . (1) A message sent to a management services
focal point in a network to identify a problem or an
impending problem. IBM. (2) To cause the user's
terminal to give some audible or visual indication that
an error or some other event has occurred. When the
standard output is directed to a terminal device, the
method for alerting the terminal user is unspecified.
When the standard output is not directed to a terminal
device, the alert is accomplished by writing the alert
character to standard output (unless the utility
description indicates that the use of standard output
produces undefined results in this case). X/Open.

alert character . A character that in the output stream
should cause a terminal to alert its user via a visual or
audible notification. The alert character is the character
designated by a '\a' in the C and C++ languages. It is
unspecified whether this character is the exact
sequence transmitted to an output device by the system
to accomplish the alert function. X/Open.

This character is named <alert> in the portable
character set.

alias . (1) An alternate label; for example, a label and
one or more aliases may be used to refer to the same
data element or point in a computer program.
ANSI/ISO. (2) An alternate name for a member of a
partitioned data set. IBM. (3) An alternate name used
for a network. Synonymous with nickname. IBM.

alias name . (1) A word consisting solely of
underscores, digits, and alphabetics from the portable
file name character set, and any of the following
characters: ! % , @. Implementations may allow other
characters within alias names as an extension. X/Open.
(2) An alternate name. IBM. (3) A name that is defined
in one network to represent a logical unit name in
another interconnected network. The alias name does
not have to be the same as the real name; if these
names are not the same; translation is required. IBM.

alignment . The storing of data in relation to certain
machine-dependent boundaries. IBM.

alternate code point . A syntactic code point that
permits a substitute code point to be used. For
example, the left brace ({) can be represented by X'B0'
and also by X'C0'.

American National Standard Code for Information
Interchange (ASCII) . The standard code, using a
coded character set consisting of 7-bit coded characters
(8 bits including parity check), that is used for
information interchange among data processing
systems, data communication systems, and associated
equipment. The ASCII set consists of control characters
and graphic characters. IBM.

Note: IBM has defined an extension to ASCII code
(characters 128–255).

American National Standards Institute (ANSI/ISO) .
An organization consisting of producers, consumers,
and general interest groups, that establishes the
procedures by which accredited organizations create
and maintain voluntary industry standards in the United
States. ANSI/ISO.

AMODE (addressing mode) . In MVS, a program
attribute that refers to the address length that a program
is prepared to handle upon entry. In MVS, addresses
may be 24 or 31 bits in length. IBM.

angle brackets . The characters < (left angle bracket)
and > (right angle bracket). When used in the phrase
“enclosed in angle brackets,” the symbol < immediately
precedes the object to be enclosed, and > immediately
follows it. When describing these characters in the
portable character set, the names <less-than-sign> and
<greater-than-sign> are used. X/Open.

anonymous union . A union that is declared within a
structure or class and does not have a name. It must
not be followed by a declarator.

ANSI/ISO. See American National Standards Institute.

API (application program interface) . A functional
interface supplied by the operating system or by a
separately orderable licensed program that allows an
application program written in a high-level language to
use specific data or functions of the operating system or
the licensed program. IBM.

application . (1) The use to which an information
processing system is put; for example, a payroll
application, an airline reservation application, a network
application. IBM. (2) A collection of software
components used to perform specific types of
user-oriented work on a computer. IBM.

application generator . An application development
tool that creates applications, application components
(panels, data, databases, logic, interfaces to system
services), or complete application systems from design
specifications.

application program . A program written for or by a
user that applies to the user's work, such as a program
that does inventory control or payroll. IBM.

archive libraries . The archive library file, when
created for application program object files, has a
special symbol table for members that are object files.

argument . (1) A parameter passed between a calling
program and a called program. IBM. (2) In a function
call, an expression that represents a value that the
calling function passes to the function specified in the
call. Also called parameter. (3) In the shell, a
parameter passed to a utility as the equivalent of a

252 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Decimal Object Exceptions

single string in the argv array created by one of the
exec functions. An argument is one of the options,
option-arguments, or operands following the command
name. X/Open.

argument declaration . See parameter declaration.

arithmetic object . (1) An integral object, a bit field, or
floating-point object. (2) A real object or objects having
the type float, double, or long double.

array . In programming languages, an aggregate that
consists of data objects with identical attributes, each of
which may be uniquely referenced by subscripting. IBM.

array element . A data item in an array. IBM.

ASCII. See American National Standard Code for
Information Interchange.

Assembler H . An IBM licensed program. Translates
symbolic assembler language into binary machine
language.

assembler language . A source language that includes
symbolic language statements in which there is a
one-to-one correspondence with the instruction formats
and data formats of the computer. IBM.

assembler user exit . In the OS/390 Language
Environment a routine to tailor the characteristics of an
enclave prior to its establishment.

assignment expression . An expression that assigns
the value of the right operand expression to the left
operand variable and has as its value the value of the
right operand. IBM.

atexit list . A list of actions specified in the OS/390
C/C++ atexit() function that occur at normal program
termination.

auto storage class specifier . A specifier that enables
the programmer to define a variable with automatic
storage; its scope restricted to the current block.

automatic call library . Contains modules that are
used as secondary input to the prelinker or the binder to
resolve external symbols left undefined after all the
primary input has been processed.

The automatic call library can contain:

¹ Object modules, with or without binder control
statements

 ¹ Load modules

¹ OS/390 C/C++ run-time routines (SCEELKED)

automatic library call . The process in which control
sections are processed by the binder or loader to

resolve references to members of partitioned data sets.
IBM.

automatic storage . Storage that is allocated on entry
to a routine or block and is freed on the subsequent
return. Sometimes referred to as stack storage or
dynamic storage.

B
background process . (1) A process that does not
require operator intervention but can be run by the
computer while the workstation is used to do other
work. IBM. (2) A mode of program execution in which
the shell does not wait for program completion before
prompting the user for another command. IBM. (3) A
process that is a member of a background process
group. X/Open. ISO.1.

background process group . Any process group,
other than a foreground process group, that is a
member of a session that has established a connection
with a controlling terminal. X/Open. ISO.1.

backslash . The character \. This character is named
<backslash> in the portable character set.

base class . A class from which other classes are
derived. A base class may itself be derived from
another base class. See also abstract class.

based on . The use of existing classes for
implementing new classes.

binary expression . An expression containing two
operands and one operator.

binary stream . (1) An ordered sequence of
untranslated characters. (2) A sequence of characters
that corresponds on a one-to-one basis with the
characters in the file. No character translation is
performed on binary streams. IBM.

bind . To combine one or more control sections or
program modules into a single program module,
resolving references between them, or to assign virtual
storage addresses to external symbols.

binder . The DFSMS/MVS program that processes the
output of language translators and compilers into an
executable program (load module or program object). It
replaces the linkage editor and batch loader in the
MVS/ESA or OS/390 operating system.

bit field . A member of a structure or union that
contains a specified number of bits. IBM.

bitwise operator . An operator that manipulates the
value of an object at the bit level.

 Glossary 253

 Decimal Object Exceptions

blank character . (1) A graphic representation of the
space character. ANSI/ISO. (2) A character that
represents an empty position in a graphic character
string. ISO Draft. (3) One of the characters that belong
to the blank character class as defined via the
LC_CTYPE category in the current locale. In the POSIX
locale, a blank character is either a tab or a space
character. X/Open.

block . (1) In programming languages, a compound
statement that coincides with the scope of at least one
of the declarations contained within it. A block may also
specify storage allocation or segment programs for
other purposes. ISO-JTC1. (2) A string of data
elements recorded or transmitted as a unit. The
elements may be characters, words or physical records.
ISO Draft. (3) The unit of data transmitted to and from
a device. Each block contains one record, part of a
record, or several records.

block statement . In the C or C++ languages, a group
of data definitions, declarations, and statements
appearing between a left brace and a right brace that
are processed as a unit. The block statement is
considered to be a single C or C++ statement. IBM.

boundary alignment . The position in main storage of
a fixed-length field, such as a halfword or doubleword,
on a byte-level boundary for that unit of information.
IBM.

braces . The characters { (left brace) and } (right
brace), also known as curly braces. When used in the
phrase “enclosed in (curly) braces” the symbol {
immediately precedes the object to be enclosed, and }
immediately follows it. When describing these
characters in the portable character set, the names
<left-brace> and <right-brace> are used. X/Open.

brackets . The characters [(left bracket) and] (right
bracket), also known as square brackets. When used in
the phrase enclosed in (square) brackets the symbol [
immediately precedes the object to be enclosed, and]
immediately follows it. When describing these
characters in the portable character set, the names
<left-bracket> and <right-bracket> are used. X/Open.

break statement . A C or C++ control statement that
contains the keyword “break” and a semicolon. IBM. It
is used to end an iterative or a switch statement by
exiting from it at any point other than the logical end.
Control is passed to the first statement after the
iteration or switch statement.

built-in . (1) A function that the compiler will
automatically inline instead of making the function call,
unless the programmer specifies not to inline. (2) In
programming languages, pertaining to a language
object that is declared by the definition of the
programming language; for example, the built-in

function SIN in PL/I, the predefined data type INTEGER
in FORTRAN. ISO-JTC1. Synonymous with predefined.
IBM.

byte-oriented stream . See orientation of a stream.

C
C library . A system library that contains common C
language subroutines for file access, string operators,
character operations, memory allocation, and other
functions. IBM.

C or C++ language statement . A C or C++ language
statement contains zero or more expressions. A block
statement begins with a { (left brace) symbol, ends with
a } (right brace) symbol, and contains any number of
statements.

All C or C++ language statements, except block
statements, end with a ; (semicolon) symbol.

c89 utility . A utility used to compile and bind an
OS/390 UNIX application program from the OS/390
shell.

C++ class library . A collection of C++ classes.

C++ library . A system library that contains common
C++ language subroutines for file access, memory
allocation, and other functions.

callable services . A set of services that can be
invoked by a OS/390 Language
Environment-conforming high level language using the
conventional OS/390 Language Environment-defined
call interface, and usable by all programs sharing the
OS/390 Language Environment conventions.

Use of these services helps to decrease an
application's dependence on the specific form and
content of the services delivered by any single
operating system.

call chain . A trace of all active routines and
subroutines.

caller . A routine that calls another routine.

cancelability point . A specific point within the current
thread that is enabled to solicit cancel requests. This is
accomplished using the pthread_testintr() function.

carriage-return character . A character that in the
output stream indicates that printing should start at the
beginning of the same physical line in which the
carriage-return character occurred. The carriage-return
is the character designated by '\r' in the C and C++
languages. It is unspecified whether this character is the
exact sequence transmitted to an output device by the

254 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

system to accomplish the movement to the beginning of
the line. X/Open.

case clause . In a C or C++ switch statement, a CASE
label followed by any number of statements.

case label . The word case followed by a constant
expression and a colon. When the selector evaluates
the value of the constant expression, the statements
following the case label are processed.

cast expression . A cast expression explicitly converts
its operand to a specified arithmetic, scalar, or class
type.

cast operator . The cast operator is used for explicit
type conversions.

cataloged procedures . A set of control statements
placed in a library and retrievable by name. IBM.

catch block . A block associated with a try block that
receives control when an exception matching its
argument is thrown.

char specifier . A char is a built-in data type. In the
C++ language, char, signed char, and unsigned char
are all distinct data types.

character . (1) A letter, digit, or other symbol that is
used as part of the organization, control, or
representation of data. A character is often in the form
of a spatial arrangement of adjacent or connected
strokes. ANSI/ISO. (2) A sequence of one or more
bytes representing a single graphic symbol or control
code. This term corresponds to the ISO C standard
term multibyte character (multibyte character), where a
single-byte character is a special case of the multibyte
character. Unlike the usage in the ISO C standard,
character here has no necessary relationship with
storage space, and byte is used when storage space is
discussed. X/Open. ISO.1.

character array . An array of type char. X/Open.

character class . A named set of characters sharing
an attribute associated with the name of the class. The
classes and the characters that they contain are
dependent on the value of the LC_CTYPE category in
the current locale. X/Open.

character constant . (1) A constant with a character
value. IBM. (2) A string of any of the characters that
can be represented, usually enclosed in apostrophes.
IBM. (3) In some languages, a character enclosed in
apostrophes. IBM.

character set . (1) A finite set of different characters
that is complete for a given purpose; for example, the
character set in ISO Standard 646, 7-bit Coded

Character Set for Information Processing Interchange.
ISO Draft. (2) All the valid characters for a
programming language or for a computer system. IBM.
(3) A group of characters used for a specific reason; for
example, the set of characters a printer can print. IBM.
(4) See also portable character set.

character special file . (1) A special file that provides
access to an input or output device. The character
interface is used for devices that do not use block I/O.
IBM. (2) A file that refers to a device. One specific type
of character special file is a terminal device file.
X/Open. ISO.1.

character string . A contiguous sequence of
characters terminated by and including the first null
byte. X/Open.

child . A node that is subordinate to another node in a
tree structure. Only the root node is not a child.

child enclave . The nested enclave created as a result
of certain commands being issued from a parent
enclave.

CICS (Customer Information Control System) .
Pertaining to an IBM licensed program that enables
transactions entered at remote terminals to be
processed concurrently by user-written application
programs. It includes facilities for building, using, and
maintaining databases. IBM.

CICS destination control table . See DCT.

CICS translator . A routine that accepts as input an
application containing EXEC CICS commands and
produces as output an equivalent application in which
each CICS command has been translated into the
language of the source.

class . (1) A C++ aggregate that may contain
functions, types, and user-defined operators in addition
to data. Classes may be defined hierarchically, allowing
one class to be derived from another, and may restrict
access to its members. (2) A user-defined data type. A
class data type can contain both data representations
(data members) and functions (member functions).

class key . One of the C++ keywords: class, struct and
union.

class library . A collection of classes.

class member operator . An operator used to access
class members through class objects or pointers to
class objects. The class member operators are:

 . -> .* ->*

class name . A unique identifier of a class type that
becomes a reserved word within its scope.

 Glossary 255

class scope . An indication that a name of a class can
be used only in a member function of that class.

class tag . Synonym for class name.

class template . A blueprint describing how a set of
related classes can be constructed.

client program . A program that uses a class. The
program is said to be a client of the class.

CLIST. A programming language that typically
executes a list of TSO commands.

CLLE (COBOL Load List Entry) . Entry in the load list
containing the name of the program and the load
address.

COBCOM. Control block containing information about
a COBOL partition.

COBOL (common business-oriented language) . A
high-level language, based on English, that is primarily
used for business applications.

COBOL Load List Entry . See CLLE.

COBVEC. COBOL vector table containing the address
of the library routines.

coded character set . (1) A set of graphic characters
and their code point assignments. The set may contain
fewer characters than the total number of possible
characters: some code points may be unassigned. IBM.
(2) A coded set whose elements are single characters;
for example, all characters of an alphabet. ISO Draft.
(3) Loosely, a code. ANSI/ISO.

code element set . (1) The result of applying a code
to all elements of a coded set, for example, all the
three-letter international representations of airport
names. ISO Draft. (2) The result of applying rules that
map a numeric code value to each element of a
character set. An element of a character set may be
related to more than one numeric code value but the
reverse is not true. However, for state-dependent
encodings the relationship between numeric code
values to elements of a character set may be further
controlled by state information. The character set may
contain fewer elements than the total number of
possible numeric code values; that is, some code
values may be unassigned. X/Open. (3) Synonym for
codeset.

code page . (1) An assignment of graphic characters
and control function meanings to all code points; for
example, assignment of characters and meanings to
256 code points for an 8-bit code, assignment of
characters and meanings to 128 code points for a 7-bit
code. (2) A particular assignment of hexadecimal
identifiers to graphic characters.

code point . (1) A 1-byte code representing one of 256
potential characters. (2) An identifier in an alert
description that represents a short unit of text. The code
point is replaced with the text by an alert display
program.

codeset . Synonym for code element set. IBM.

collating element . The smallest entity used to
determine the logical ordering of character or
wide-character strings. A collating element consists of
either a single character, or two or more characters
collating as a single entity. The value of the
LC_COLLATE category in the current locale determines
the current set of collating elements. X/Open.

collating sequence . (1) A specified arrangement
used in sequencing. ISO-JTC1. ANSI/ISO. (2) An
ordering assigned to a set of items, such that any two
sets in that assigned order can be collated. ANSI/ISO.
(3) The relative ordering of collating elements as
determined by the setting of the LC_COLLATE category
in the current locale. The character order, as defined for
the LC_COLLATE category in the current locale,
defines the relative order of all collating elements, such
that each element occupies a unique position in the
order. This is the order used in ranges of characters
and collating elements in regular expressions and
pattern matching. In addition, the definition of the
collating weights of characters and collating elements
uses collating elements to represent their respective
positions within the collation sequence.

collation . The logical ordering of character or
wide-character strings according to defined precedence
rules. These rules identify a collation sequence between
the collating elements, and such additional rules that
can be used to order strings consisting or multiple
collating elements. X/Open.

collection . (1) An abstract class without any ordering,
element properties, or key properties. All abstract
classes are derived from collection. (2) In a general
sense, an implementation of an abstract data type for
storing elements.

Collection Class Library . A set of classes that
provide basic functions for collections, and can be used
as base classes.

column position . A unit of horizontal measure related
to characters in a line.

It is assumed that each character in a character set has
an intrinsic column width independent of any output
device. Each printable character in the portable
character set has a column width of one. The standard
utilities, when used as described in this document set,
assume that all characters have integral column widths.
The column width of a character is not necessarily

256 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

related to the internal representation of the character
(numbers of bits or bytes).

The column position of a character in a line is defined
as one plus the sum of the column widths of the
preceding characters in the line. Column positions are
numbered starting from 1. X/Open.

comma expression . An expression that contains two
operands separated by a comma. Although the compiler
evaluates both operands, the value of the expression is
the value of the right operand. If the left operand
produces a value, the compiler discards this value.
Typically, the left operand of a comma expression is
used to produce side effects.

command . A request to perform an operation or run a
program. When parameters, arguments, flags, or other
operands are associated with a command, the resulting
character string is a single command.

command processor parameter list (CPPL) . The
format of a TSO parameter list. When a TSO terminal
monitor application attaches a command processor,
register 1 contains a pointer to the CPPL, containing
addresses required by the command processor.

COMMAREA . A communication area made available
to applications running under CICS.

Common Business-Oriented Language . See
COBOL.

common expression elimination . Duplicated
expressions are eliminated by using the result of the
previous expression. This includes intermediate
expressions within expressions.

compilation unit . (1) A portion of a computer program
sufficiently complete to be compiled correctly. IBM.
(2) A single compiled file and all its associated include
files. (3) An independently compilable sequence of
high-level language statements. Each high-level
language product has different rules for what makes up
a compilation unit.

complete class name . The complete qualification of a
nested class name including all enclosing class names.

Complex Mathematics library . A C++ class library
that provides the facilities to manipulate complex
numbers and perform standard mathematical operations
on them.

computational independence . No data modified by
either a main task program or a parallel function is
examined or modified by a parallel function that might
be running simultaneously.

concrete class . A class that implements an abstract
data type but does not allow polymorphism.

condition . (1) A relational expression that can be
evaluated to a value of either true or false. IBM. (2) An
exception that has been enabled, or recognized, by the
OS/390 Language Environment and thus is eligible to
activate user and language condition handlers. Any
alteration to the normal programmed flow of an
application. Conditions can be detected by the
hardware/operating system and result in an interrupt.
They can also be detected by language-specific
generated code or language library code.

conditional expression . A compound expression that
contains a condition (the first expression), an
expression to be evaluated if the condition has a
nonzero value (the second expression), and an
expression to be evaluated if the condition has the
value zero (the third expression).

condition handler . A user-written condition handler or
language-specific condition handler (such as a PL/I
ON-unit or OS/390 C/C++ signal() function call)
invoked by the OS/390 C/C++ condition manager to
respond to conditions.

condition manager . Manages conditions in the
common execution environment by invoking various
user-written and language-specific condition handlers.

condition token . In the OS/390 Language
Environment, a data type consisting of 12 bytes (96
bits). The condition token contains structured fields that
indicate various aspects of a condition including the
severity, the associated message number, and
information that is specific to a given instance of the
condition.

const . (1) An attribute of a data object that declares
the object cannot be changed. (2) A keyword that
allows you to define a variable whose value does not
change.

constant . (1) In programming languages, a language
object that takes only one specific value. ISO-JTC1.
(2) A data item with a value that does not change. IBM.

constant expression . An expression having a value
that can be determined during compilation and that
does not change during the running of the program.
IBM.

constant propagation . An optimization technique
where constants used in an expression are combined
and new ones are generated. Mode conversions are
done to allow some intrinsic functions to be evaluated at
compile time.

constructed reentrancy . The attribute of applications
that contain external data and require additional
processing to make them reentrant. Contrast with
natural reentrancy.

 Glossary 257

constructor . A special C++ class member function
that has the same name as the class and is used to
create an object of that class.

control character . (1) A character whose occurrence
in a particular context specifies a control function. ISO
Draft. (2) Synonymous with nonprinting character. IBM.
(3) A character, other than a graphic character, that
affects the recording, processing, transmission, or
interpretation of text. X/Open.

control statement . (1) In programming languages, a
statement that is used to alter the continuous sequential
execution of statements; a control statement may be a
conditional statement, such as IF, or an imperative
statement, such as STOP. ISO Draft. (2) A statement
that changes the path of execution.

controlling process . The session leader that
establishes the connection to the controlling terminal. If
the terminal ceases to be a controlling terminal for this
session, the session leader ceases to be the controlling
process. X/Open. ISO.1.

controlling terminal . A terminal that is associated
with a session. Each session may have at most one
controlling terminal associated with it, and a controlling
terminal is associated with exactly one session. Certain
input sequences from the controlling terminal cause
signals to be sent to all processes in the process group
associated with the controlling terminal. X/Open. ISO.1.

conversion . (1) In programming languages, the
transformation between values that represent the same
data item but belong to different data types. Information
may be lost because of conversion since accuracy of
data representation varies among different data types.
ISO-JTC1. (2) The process of changing from one
method of data processing to another or from one data
processing system to another. IBM. (3) The process of
changing from one form of representation to another; for
example to change from decimal representation to
binary representation. IBM. (4) A change in the type
of a value. For example, when you add values having
different data types, the compiler converts both values
to a common form before adding the values.

conversion descriptor . A per-process unique value
used to identify an open codeset conversion. X/Open.

conversion function . A member function that
specifies a conversion from its class type to another
type.

coordinated universal time (UTC) . Synonym for
Greenwich Mean Time (GMT). See GMT.

copy constructor . A constructor that copies a class
object of the same class type.

Cross System Product . See CSP.

CSP (Cross System Product) . A set of licensed
programs designed to permit the user to develop and
run applications using independently defined maps
(display and printer formats), data items (records,
working storage, files, and single items), and processes
(logic). The Cross System Product set consists of two
parts: Cross System Product/Application Development
(CSP/AD) and Cross System Product/Application
Execution (CSP/AE). IBM.

current working directory . (1) A directory, associated
with a process, that is used in path-name resolution for
path names that do not begin with a slash. X/Open.
ISO.1. (2) In the OS/2 operating system, the first
directory in which the operating system looks for
programs and files and stores temporary files and
output. IBM. (3) In the OS/390 UNIX environment, a
directory that is active and that can be displayed.
Relative path name resolution begins in the current
directory. IBM.

cursor . A reference to an element at a specific
position in a data structure.

Customer Information Control System . See CICS.

D
data abstraction . A data type with a private
representation and a public set of operations (functions
or operators) which restrict access to that data type to
that set of operations. The C++ language uses the
concept of classes to implement data abstraction.

DATABASE 2 . Pertaining to an IBM relational
database.

data definition (DD) . (1) In the C and C++ languages,
a definition that describes a data object, reserves
storage for a data object, and can provide an initial
value for a data object. A data definition appears
outside a function or at the beginning of a block
statement. IBM. (2) A program statement that
describes the features of, specifies relationships of, or
establishes context of, data. ANSI/ISO. (3) A statement
that is stored in the environment and that externally
identifies a file and the attributes with which it should be
opened.

data definition name . See ddname.

data definition statement . See DD statement.

data member . The smallest possible piece of
complete data. Elements are composed of data
members.

data object . (1) A storage area used to hold a value.
(2) Anything that exists in storage and on which

258 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

operations can be performed, such as files, programs,
classes, or arrays. (3) In a program, an element of
data structure, such as a file, array, or operand, that is
needed for the execution of a program and that is
named or otherwise specified by the allowable character
set of the language in which a program is coded. IBM.

data set . Under MVS, a named collection of related
data records that is stored and retrieved by an assigned
name.

data stream . A continuous stream of data elements
being transmitted, or intended for transmission, in
character or binary-digit form, using a defined format.
IBM.

data structure . The internal data representation of an
implementation.

data type . The properties and internal representation
that characterize data.

Data Window Services (DWS) . Services provided as
part of the Callable Services Library that allow
manipulation of data objects such as VSAM linear data
sets and temporary data objects known as
TEMPSPACE.

DBCS (double-byte character set) . A set of
characters in which each character is represented by 2
bytes. Languages such as Japanese, Chinese, and
Korean, which contain more symbols than can be
represented by 256 code points, require double-byte
character sets.

Because each character requires 2 bytes, the typing,
display, and printing of DBCS characters requires
hardware and programs that support DBCS. IBM.

DCT (destination control table) . A table that contains
an entry for each extrapartition, intrapartition, and
indirect destination. Extrapartition entries address data
sets external to the CICS region. Intrapartition
destination entries contain the information required to
locate the queue in the intrapartition data set. Indirect
destination entries contain the information required to
locate the queue in the intrapartition data set.

ddname (data definition name) . (1) The logical name
of a file within an application. The ddname provides the
means for the logical file to be connected to the
physical file. (2) The part of the data definition before
the equal sign. It is the name used in a call to fopen or
freopen to refer to the data definition stored in the
environment.

DD statement (data definition statement) . (1) In
MVS, serves as the connection between the logical
name of a file and the physical name of the file. (2) A

job control statement that defines a file to the operating
system, and is a request to the operating system for the
allocation of input/output resources.

dead code elimination . A process that eliminates
code that exists for calculations that are not necessary.
Code may be designated as dead by other optimization
techniques.

dead store elimination . A process that eliminates
unnecessary storage use in code. A store is deemed
unnecessary if the value stored is never referenced
again in the code.

decimal constant . (1) A numerical data type used in
standard arithmetic operations. (2) A number
containing any of the digits 0 through 9. IBM.

decimal overflow . A condition that occurs when one
or more nonzero digits are lost because the destination
field in a decimal operation is too short to contain the
results.

declaration . (1) In the C and C++ languages, a
description that makes an external object or function
available to a function or a block statement. IBM.
(2) Establishes the names and characteristics of data
objects and functions used in a program.

declarator . Designates a data object or function
declared. Initializations can be performed in a
declarator.

default argument . An argument that is declared with a
default value in a function prototype or declaration. If a
call to the function omits this argument, the default
value is used. Arguments with default values must be
the trailing arguments in a function prototype argument
list.

default clause . In the C or C++ languages, within a
switch statement, the keyword default followed by a
colon, and one or more statements. When the
conditions of the specified case labels in the switch
statement do not hold, the default clause is chosen.
IBM.

default constructor . A constructor that takes no
arguments, or, if it takes arguments, all its arguments
have default values.

default initialization . The initial value assigned to a
data object by the compiler if no initial value is specified
by the programmer.

default locale . (1) The C locale, which is always used
when no selection of locale is performed. (2) A system
default locale, named by locale-related environmental
variables.

 Glossary 259

define directive . A preprocessor statement that
directs the preprocessor to replace an identifier or
macro invocation with special code.

define statement . A preprocessor statement that
causes the preprocessor to replace an identifier or
macro call with specified code. IBM.

definition . (1) A data description that reserves storage
and may provide an initial value. (2) A declaration that
allocates storage, and may initialize a data object or
specify the body of a function.

degree . The number of children of a node.

delete . (1) A C++ keyword that identifies a free
storage deallocation operator. (2) A C++ operator used
to destroy objects created by new.

demangling . The conversion of mangled names back
to their original source code names. During C++
compilation, identifiers such as function and static class
member names are mangled (encoded) with type and
scoping information to ensure type-safe linkage. These
mangled names appear in the object file and the final
executable file. Demangling (decoding) converts these
names back to their original names to make program
debugging easier. See also mangling.

denormal . Pertaining to a number with a value so
close to 0 that its exponent cannot be represented
normally. The exponent can be represented in a special
way at the possible cost of a loss of significance.

deque . A queue that can have elements added and
removed at both ends. A double-ended queue.

dequeue . An operation that removes the first element
of a queue.

dereference . In the C and C++ languages, the
application of the unary operator * to a pointer to
access the object the pointer points to. Also known as
indirection.

derivation . In the C++ language, to derive a class,
called a derived class, from an existing class, called a
base class.

derived class . A class that inherits from a base class.
All members of the base class become members of the
derived class. You can add additional data members
and member functions to the derived class. A derived
class object can be manipulated as if it is a base class
object. The derived class can override virtual functions
of the base class.

descriptor . PL/I control block that holds information
such as string lengths, array subscript bounds, and area
sizes, and is passed from one PL/I routine to another
during run time.

destination control table . See DCT.

destructor . A special member function that has the
same name as its class, preceded by a tilde (˜), and
that "cleans up" after an object of that class, for
example, freeing storage that was allocated when the
object was created. A destructor has no arguments and
no return type.

detach state attribute . An attribute associated with a
thread attribute object. This attribute has two possible
values:

0 Undetached. An undetached thread keeps its
resources after termination of the thread.

1 Detached. A detached thread has its resources
freed by the system after termination.

device . A computer peripheral or an object that
appears to the application as such. X/Open. ISO.1.

difference . For two sets A and B, the difference (A-B)
is the set of all elements in A but not in B. For bags,
there is an additional rule for duplicates: If bag P
contains an element m times and bag Q contains the
same element n times, then, if m>n, the difference
contains that element m-n times. If m≤n, the difference
contains that element zero times.

digraph . A combination of two keystrokes used to
represent unavailable characters in a C++ source
program. Digraphs are read as tokens during the
preprocessor phase.

directory . A type of file containing the names and
controlling information for other files or other directories.
IBM.

Direct-to-SOM (DTS) . (1) Term applied to the method
by which the OS/390 C++ compiler converts existing
C++ classes to SOM classes. (2) Term applied to a
class that has been converted to SOM by the OS/390
C++ compiler.

disabled signal . Synonym for enabled signal.

display . To direct the output to the user's terminal. If
the output is not directed to the terminal, the results are
undefined. X/Open.

do statement . In the C and C++ compilers, a looping
statement that contains the keyword “do,” followed by a
statement (the action), the keyword “while,” and an
expression in parentheses (the condition). IBM.

dot . The file name consisting of a single dot character
(.). X/Open. ISO.1.

double-byte character set . See DBCS.

260 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

double-precision . Pertaining to the use of two
computer words to represent a number in accordance
with the required precision. ISO-JTC1. ANSI/ISO.

double-quote . The character ", also known as
quotation mark. X/Open.

This character is named <quotation-mark> in the
portable character set.

doubleword . A contiguous sequence of bits or
characters that comprises two computer words and is
capable of being addressed as a unit. IBM.

dynamic . Pertaining to an operation that occurs at the
time it is needed rather than at a predetermined or fixed
time. IBM.

dynamic allocation . Assignment of system resources
to a program when the program is executed rather than
when it is loaded into main storage. IBM.

dynamic binding . The act of resolving references to
external variables and functions at run time.

dynamic link library (DLL) . A file containing
executable code and data bound to a program at run
time. The code and data in a dynamic link library can
be shared by several applications simultaneously.
Compiling code with the DLL option does not mean that
the produced executable will be a DLL. To create a
DLL, use #pragma export or the EXPORTALL compiler
option.

DSA (dynamic storage area) . An area of storage
obtained during the running of an application that
consists of a register save area and an area for
automatic data, such as program variables. DSAs are
generally allocated within Language
Environment-managed stack segments. DSAs are
added to the stack when a routine is entered and
removed upon exit in a last in, first out (LIFO) manner.
In Language Environment, a DSA is known as a stack
frame.

dynamic storage . Synonym for automatic storage.

dynamic storage area . See DSA

E
EBCDIC. See extended binary-coded decimal
interchange code.

effective group ID . An attribute of a process that is
used in determining various permissions, including file
access permissions. This value is subject to change
during the process lifetime, as described in the exec
family of functions and setgid(). X/Open. ISO.1.

effective user ID . (1) The user ID associated with the
last authenticated user or the last setuid() program. It
is equal to either the real or the saved user ID. (2) The
current user ID, but not necessarily the user's login ID;
for example, a user logged in under a login ID may
change to another user's ID. The ID to which the user
changes becomes the effective user ID until the user
switches back to the original login ID. All discretionary
access decisions are based on the effective user ID.
IBM. (3) An attribute of a process that is used in
determining various permissions, including file access
permissions. This value is subject to change during the
process lifetime, as described in exec and setuid().
X/Open. ISO.1.

elaborated type specifier . A specifier typically used in
an incomplete class declaration to qualify types that are
otherwise hidden.

element . The component of an array, subrange,
enumeration, or set.

element equality . A relation that determines if two
elements are equal.

element occurrence . A single instance of an element
in a collection. In a unique collection, element
occurrence is synonymous with element value.

element value . All the instances of an element with a
particular value in a collection. In a nonunique
collection, an element value may have more than one
occurrence. In a unique collection, element value is
synonymous with element occurrence.

else clause . The part of an if statement that contains
the word else, followed by a statement. The else clause
provides an action that is started when the if condition
evaluates to a value of zero (false). IBM.

empty line . A line consisting of only a new-line
character. X/Open.

empty string . (1) A string whose first byte is a null
byte. Synonymous with null string. X/Open. (2) A
character array whose first element is a null character.
ISO.1.

enabled signal . The occurrence of an enabled signal
results in the default system response or the execution
of an established signal handler. If disabled, the
occurrence of the signal is ignored.

encapsulation . Hiding the internal representation of
data objects and implementation details of functions
from the client program. This enables the end user to
focus on the use of data objects and functions without
having to know about their representation or
implementation.

 Glossary 261

enclave . In the Language Environment for MVS and
VM, an independent collection of routines, one of which
is designated as the main routine. An enclave is roughly
analogous to a program or run unit.

enqueue . An operation that adds an element as the
last element to a queue.

entry point . In assembler language, the address or
label of the first instruction that is executed when a
routine is entered for execution.

enumeration constant . In the C or C++ language, an
identifier, with an associated integer value, defined in an
enumerator. An enumeration constant may be used
anywhere an integer constant is allowed. IBM.

enumeration data type . (1) In the Fortran, C, and
C++ language, a data type that represents a set of
values that a user defines. IBM. (2) A type that
represents integers and a set of enumeration constants.
Each enumeration constant has an associated integer
value.

enumeration tag . In the C and C++ language, the
identifier that names an enumeration data type. IBM.

enumeration type . An enumeration type defines a set
of enumeration constants. In the C++ language, an
enumeration type is a distinct data type that is not an
integral type.

enumerator . In the C and C++ language, an
enumeration constant and its associated value. IBM.

equivalence class . (1) A grouping of characters that
are considered equal for the purpose of collation; for
example, many languages place an uppercase
character in the same equivalence class as its
lowercase form, but some languages distinguish
between accented and unaccented character forms for
the purpose of collation. IBM. (2) A set of collating
elements with the same primary collation weight.

Elements in an equivalence class are typically elements
that naturally group together, such as all accented
letters based on the same base letter.

The collation order of elements within an equivalence
class is determined by the weights assigned on any
subsequent levels after the primary weight. X/Open.

escape sequence . (1) A representation of a
character. An escape sequence contains the \ symbol
followed by one of the characters: a, b, f, n, r, t, v, ',
", x, \, or followed by one or more octal or hexadecimal
digits. (2) A sequence of characters that represent, for
example, nonprinting characters, or the exact code point
value to be used to represent variant and nonvariant
characters regardless of code page. (3) In the C and
C++ language, an escape character followed by one or

more characters. The escape character indicates that a
different code, or a different coded character set, is
used to interpret the characters that follow. Any member
of the character set used at runtime can be represented
using an escape sequence. (4) A character that is
preceded by a backslash character and is interpreted to
have a special meaning to the operating system. (5) A
sequence sent to a terminal to perform actions such as
moving the cursor, changing from normal to reverse
video, and clearing the screen. Synonymous with
multibyte control. IBM.

exception . (1) Any user, logic, or system error
detected by a function that does not itself deal with the
error but passes the error on to a handling routine (also
called throwing the exception). (2) In programming
languages, an abnormal situation that may arise during
execution, that may cause a deviation from the normal
execution sequence, and for which facilities exist in a
programming language to define, raise, recognize,
ignore, and handle it; for example, (ON-) condition in
PL/I, exception in ADA. ISO-JTC1.

executable . A load module or program object which
has yet to be loaded into memory for execution.

executable file . A regular file acceptable as a new
process image file by the equivalent of the exec family
of functions, and thus usable as one form of a utility.
The standard utilities described as compilers can
produce executable files, but other unspecified methods
of producing executable files may also be provided. The
internal format of an executable file is unspecified, but a
conforming application cannot assume an executable
file is a text file. X/Open.

exception handler . (1) Exception handlers are catch
blocks in C++ applications. Catch blocks catch
exceptions when they are thrown from a function
enclosed in a try block. Try blocks, catch blocks, and
throw expressions are the constructs used to implement
formal exception handling in C++ applications. (2) A
set of routines used to detect deadlock conditions or to
process abnormal condition processing. An exception
handler allows the normal running of processes to be
interrupted and resumed. IBM.

executable file . A regular file acceptable as a new
process image file by the equivalent of the exec family
of functions, and thus usable as one form of a utility.
The standard utilities described as compilers can
produce executable files, but other unspecified methods
of producing executable files may also be provided. The
internal format of an executable file is unspecified, but a
conforming application cannot assume an executable
file is a text file. X/Open.

executable program . A program that has been
link-edited and therefore can be run in a processor.
IBM.

262 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

extended binary-coded data interchange code
(EBCDIC). A coded character set of 256 8-bit
characters. IBM.

extension . (1) An element or function not included in
the standard language. (2) File name extension.

external data definition . A description of a variable
appearing outside a function. It causes the system to
allocate storage for that variable and makes that
variable accessible to all functions that follow the
definition and are located in the same file as the
definition. IBM.

extern storage class specifier . A specifier that
enables the programmer to declare objects and
functions that several source files can use.

F
feature test macro (FTM) . A macro (#define) used to
determine whether a particular set of features will be
included from a header. X/Open. ISO.1.

FIFO special file . A type of file with the property that
data written to such a file is read on a first-in-first-out
basis. Other characteristics of FIFOs are described in
open(), read(), write(), and lseek(). X/Open. ISO.1.

file access permissions . The standard file access
control mechanism uses the file permission bits. The
bits are set at the time of file creation by functions such
as open(), creat(), mkdir(), and mkfifo() and can be
changed by chmod(). The bits are read by stat() or
fstat(). X/Open.

file descriptor . (1) A small positive integer that the
system uses instead of the file name to identify an open
file. IBM. (2) A per-process unique, non-negative
integer used to identify an open file for the purpose of
file access. ISO.1.

The value of a file descriptor is from zero to
{OPEN_MAX}—which is defined in <limits.h>. A process
can have no more than {OPEN_MAX} file descriptors
open simultaneously. File descriptors may also be used
to implement directory streams. X/Open.

file mode . An object containing the file mode bits and
file type of a file, as described in <sys/stat.h>. X/Open.

file mode bits . A file's file permission bits,
set-user-ID-on-execution bit (S_ISUID) and
set-group-ID-on-execution bit (S_ISGID). X/Open.

file permission bits . Information about a file that is
used, along with other information, to determine if a
process has read, write, or execute/search permission
to a file. The bits are divided into three parts: owner,
group, and other. Each part is used with the

corresponding file class of process. These bits are
contained in the file mode, as described in <sys/stat.h>.
The detailed usage of the file permission bits is
described in file access permissions. X/Open. ISO.1.

file scope . A name declared outside all blocks and
classes has file scope and can be used after the point
of declaration in a source file.

filter . A command whose operation consists of reading
data from standard input or a list of input files and
writing data to standard output. Typically, its function is
to perform some transformation on the data stream.
X/Open.

first element . The element visited first in an iteration
over a collection. Each collection has its own definition
for first element. For example, the first element of a
sorted set is the element with the smallest value.

flat collection . A collection that has no hierarchical
structure.

float constant . (1) A constant representing a
nonintegral number. (2) A number containing a decimal
point, an exponent, or both a decimal point and an
exponent. The exponent contains an e or E, an optional
sign (+ or -), and one or more digits (0 through 9). IBM.

for statement . A looping statement that contains the
word for followed by a list of expressions enclosed in
parentheses (the condition) and a statement (the
action). Each expression in the parenthesized list is
separated by a semicolon. You can omit any of the
expressions, but you cannot omit the semicolons.

foreground process . (1) A process that must run to
completion before another command is issued. The
foreground process is in the foreground process group,
which is the group that receives the signals generated
by a terminal. IBM. (2) A process that is a member of
a foreground process group. X/Open. ISO.1.

foreground process group . (1) The group that
receives the signals generated by a terminal. IBM.
(2) A process group whose member processes have
certain privileges, denied to processes in background
process groups, when accessing their controlling
terminal. Each session that has established a
connection with a controlling terminal has exactly one
process group of the session as the foreground process
group of that controlling terminal. X/Open. ISO.1.

foreground process group ID . The process group ID
of the foreground process group. X/Open. ISO.1.

form-feed character . A character in the output stream
that indicates that printing should start on the next page
of an output device. The formfeed is the character
designated by '\f' in the C and C++ language. If the
formfeed is not the first character of an output line, the

 Glossary 263

result is unspecified. It is unspecified whether this
character is the exact sequence transmitted to an
output device by the system to accomplish the
movement to the next page. X/Open.

forward declaration . A declaration of a class or
function made earlier in a compilation unit, so that the
declared class or function can be used before it has
been defined.

freestanding application . (1) An application that is
created to run without the run-time environment or
library with which it was developed. (2) An OS/390
C/C++ application that does not use the services of the
dynamic OS/390 C/C++ run-time library or of the
Language Environment. Under OS/390 C support, this
ability is a feature of the System Programming C
support.

free store . Dynamically allocated memory. New and
delete are used to allocate and deallocate free store.

friend class . A class in which all the member
functions are granted access to the private and
protected members of another class. It is named in the
declaration of another class and uses the keyword
friend as a prefix to the class. For example, the
following source code makes all the functions and data
in class you friends of class me:

class me {
friend class you;

 // ...
};

friend function . A function that is granted access to
the private and protected parts of a class. It is named in
the declaration of the other class with the prefix friend.

function . A named group of statements that can be
called and evaluated and can return a value to the
calling statement. IBM.

function call . An expression that moves the path of
execution from the current function to a specified
function and evaluates to the return value provided by
the called function. A function call contains the name of
the function to which control moves and a
parenthesized list of values. IBM.

function declarator . The part of a function definition
that names the function, provides additional information
about the return value of the function, and lists the
function parameters. IBM.

function definition . The complete description of a
function. A function definition contains an optional
storage class specifier, an optional type specifier, a
function declarator, optional parameter declarations, and
a block statement (the function body).

function prototype . A function declaration that
provides type information for each parameter. It is the
first line of the function (header) followed by a
semicolon (;). The declaration is required by the
compiler at the time that the function is declared, so
that the compiler can check the type.

function scope . Labels that are declared in a function
have function scope and can be used anywhere in that
function.

function template . Provides a blueprint describing
how a set of related individual functions can be
constructed.

G
Generalization . Refers to a class, function, or static
data member which derives its definition from a
template. An instantiation of a template function would
be a generalization.

generic class . Synonym for class templates.

global . Pertaining to information available to more
than one program or subroutine. IBM.

global scope . Synonym for file scope.

global variable . A symbol defined in one program
module that is used in other independently compiled
program modules.

GMT (Greenwich Mean Time) . The solar time at the
meridian of Greenwich, formerly used as the prime
basis of standard time throughout the world. GMT has
been superseded by coordinated universal time (UTC).

graphic character . (1) A visual representation of a
character, other than a control character, that is
normally produced by writing, printing, or displaying.
ISO Draft. (2) A character that can be displayed or
printed. IBM.

Graphical Data Display Manager (GDDM) . Pertaining
to an IBM licensed program that provides a group of
routines that allows pictures to be defined and displayed
procedurally through function routines that correspond
to graphic primitives. IBM.

Greenwich Mean Time . See GMT.

group ID . (1) A non-negative integer that is used to
identify a group of system users. Each system user is
a member of at least one group. When the identity of a
group is associated with a process, a group ID value is
referred to as a real group ID, an effective group ID,
one of the supplementary group IDs or a saved
set-group-ID. X/Open. (2) A non-negative integer,

264 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

which can be contained in an object of type gid_t, that
is used to identify a group of system users. ISO.1.

H
halfword . A contiguous sequence of bits or characters
that constitutes half a computer word and can be
addressed as a unit. IBM.

hash function . A function that determines which
category, or bucket, to put an element in. A hash
function is needed when implementing a hash table.

hash table . (1) A data structure that divides all
elements into (preferably) equal-sized categories, or
buckets, to allow quick access to the elements. The
hash function determines which bucket an element
belongs in. (2) A table of information that is accessed
by way of a shortened search key (that hash value).
Using a hash table minimizes average search time.

header file . A text file that contains declarations used
by a group of functions, programs, or users.

heap storage . An area of storage used for allocation
of storage whose lifetime is not related to the execution
of the current routine. The heap consists of the initial
heap segment and zero or more increments.

hexadecimal constant . A constant, usually starting
with special characters, that contains only hexadecimal
digits. Three examples for the hexadecimal constant
with value 0 would be '\x00', '0x0', or '0X00'.

hiperspace memory file . An IBM file used under MVS
to deal with memory files as large as 2 gigabytes. IBM.

hooks . Instructions inserted into a program by a
compiler at compile-time. Using hooks, you can set
break-points to instruct the Debug Tool to gain control
of the program at selected points during its execution.

hybrid code . Program statements that have not been
internationalized with respect to code page, especially
where data constants contain variant characters. Such
statements can be found in applications written in older
implementations of MVS, which required syntax
statements to be written using code page IBM-1047
exclusively. Such applications cannot be converted from
one code page to another using iconv().

I
I18N. Abbreviation for internationalization.

identifier . (1) One or more characters used to identify
or name a data element and possibly to indicate certain
properties of that data element. ANSI/ISO. (2) In
programming languages, a token that names a data

object such as a variable, an array, a record, a
subprogram, or a function. ANSI/ISO. (3) A sequence
of letters, digits, and underscores used to identify a data
object or function. IBM.

if statement . A conditional statement that contains the
keyword if, followed by an expression in parentheses
(the condition), a statement (the action), and an optional
else clause (the alternative action). IBM.

ILC (interlanguage call) . A function call made by one
language to a function coded in another language.
Interlanguage calls are used to communicate between
programs written in different languages.

ILC (interlanguage communication) . The ability of
routines written in different programming languages to
communicate. ILC support enables the application writer
to readily build applications from component routines
written in a variety of languages.

implementation-defined behavior . Application
behavior that is not defined by the standards. The
implementing compiler and library defines this behavior
when a program contains correct program constructs or
uses correct data. Programs that rely on
implementation-defined behavior may behave differently
on different C or C++ implementations. Refer to the
OS/390 C/C++ books that are listed in “IBM OS/390
C/C++ and Related Publications” on page xv for
information about implementation-defined behavior in
the OS/390 C/C++ environment. Contrast with
unspecified behavior and undefined behavior.

IMS (Information Management System) . Pertaining
to an IBM database/data communication (DB/DC)
system that can manage complex databases and
networks. IBM.

include directive . A preprocessor directive that
causes the preprocessor to replace the statement with
the contents of a specified file.

include file . See header file.

include statement . In the C and C++ languages, a
preprocessor statement that causes the preprocessor to
replace the statement with the contents of a specified
file. IBM.

incomplete class declaration . A class declaration
that does not define any members of a class. Until a
class is fully declared, or defined, you can only use the
class name where the size of the class is not required.
Typically an incomplete class declaration is used as a
forward declaration.

incomplete type . A type that has no value or meaning
when it is first declared. There are three incomplete
types: void, arrays of unknown size and structures and
unions of unspecified content. A void type can never be

 Glossary 265

completed. Arrays of unknown size and structures or
unions of unspecified content can be completed in
further declarations.

indirection . (1) A mechanism for connecting objects
by storing, in one object, a reference to another object.
(2) In the C and C++ languages, the application of the
unary operator * to a pointer to access the object to
which the pointer points.

indirection class . Synonym for reference class.

inheritance . A technique that allows the use of an
existing class as the base for creating other classes.

initial heap . The OS/390 C/C++ heap controlled by the
HEAP runtime option and designated by a heap_id of 0.
The initial heap contains dynamically allocated user
data.

initializer . An expression used to initialize data
objects. The C++ language, supports the following types
of initializers:

¹ An expression followed by an assignment operator
that is used to initialize fundamental data type
objects or class objects that contain copy
constructors.

¹ A parenthesized expression list that is used to
initialize base classes and members that use
constructors.

Both the C and C++ languages support an expression
enclosed in braces ({ }), that used to initialize
aggregates.

inlined function . A function whose actual code
replaces a function call. A function that is both declared
and defined in a class definition is an example of an
inline function. Another example is one which you
explicitly declared inline by using the keyword inline.
Both member and nonmember functions can be inlined.

input stream . A sequence of control statements and
data submitted to a system from an input unit.
Synonymous with input job stream, job input stream.
IBM.

instance . An object-oriented programming term
synonymous with object. An instance is a particular
instantiation of a data type. It is simply a region of
storage that contains a value or group of values. For
example, if a class box is previously defined, two
instances of a class box could be instantiated with the
declaration: box box1, box2;

instantiate . To create or generate a particular instance
or object of a data type. For example, an instance box1
of class box could be instantiated with the declaration:
box box1;

instruction . A program statement that specifies an
operation to be performed by the computer, along with
the values or locations of operands. This statement
represents the programmer's request to the processor
to perform a specific operation.

instruction scheduling . An optimization technique
that reorders instructions in code to minimize execution
time.

integer constant . A decimal, octal, or hexadecimal
constant.

integral object . A character object, an object having
an enumeration type, an object having variations of the
type int, or an object that is a bit field.

Interactive System Productivity Facility . See ISPF.

interlanguage call . See ILC (interlanguage call).

interlanguage communication . See ILC
(interlanguage communication).

internationalization . The capability of a computer
program to adapt to the requirements of different native
languages, local customs, and coded character sets.
X/Open.

Synonymous with I18N.

interoperability . The capability to communicate,
execute programs, or transfer data among various
functional units in a way that requires the user to have
little or no knowledge of the unique characteristics of
those units.

Interprocedural Analysis . See IPA.

interprocess communication . (1) The exchange of
information between processes or threads through
semaphores, queues, and shared memory. (2) The
process by which programs communicate data to each
other to synchronize their activities. Semaphores,
signals, and internal message queues are common
methods of inter-process communication.

I/O Stream library . A class library that provides the
facilities to deal with many varieties of input and output.

IPA (Interprocedural Analysis) . A process for
performing optimizations across compilation units.

ISPF (Interactive System Productivity Facility) . An
IBM licensed program that serves as a full-screen editor
and dialogue manager. Used for writing application
programs, it provides a means of generating standard
screen panels and interactive dialogues between the
application programmer and terminal user. (ISPF)

266 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

iteration . The process of repeatedly applying a
function to a series of elements in a collection until
some condition is satisfied.

J
JCL (job control language) . A control language used
to identify a job to an operating system and to describe
the job's requirement. IBM.

job control . A facility that allows users to selectively
stop (suspend) the execution of a process and continue
(resume) their execution at a later point.

The user typically employs this facility via the interactive
interface jointly supplied by the terminal I/O driver and a
command interpreter. X/Open. ISO.1.

K
keyword . (1) A predefined word reserved for the C
and C++ languages, that may not be used as an
identifier. (2) A symbol that identifies a parameter in
JCL.

kind attribute . An attribute for a mutex attribute
object. This attribute's value determines whether the
mutex can be locked once or more than once for a
thread and whether state changes to the mutex will be
reported to the debug interface.

L
label . An identifier within or attached to a set of data
elements. ISO Draft.

Language Environment . Abbreviated form of IBM
Language Environment for MVS and VM. Pertaining to
an IBM software product that provides a common
runtime environment and runtime services to
applications compiled by Language
Environment-conforming compilers.

last element . The element visited last in an iteration
over a collection. Each collection has its own definition
for last element. For example, the last element of a
sorted set is the element with the largest value.

late binding . Allowing the system to determine the
specific class of the object and invoke the appropriate
function implementations at run time. Late binding or
dynamic binding hides the differences between a group
of related classes from the application program.

leaves . Nodes without children. Synonymous with
terminals.

lexically . Relating to the left-to-right order of units.

library . (1) A collection of functions, calls, subroutines,
or other data. IBM. (2) A set of object modules that
can be specified in a link command.

linkage editor . Synonym for linker. The linkage editor
has been replaced by the binder for the MVS/ESA or
OS/390 operating systems. See binder.

Linkage . Refers to the binding between a reference
and a definition. A function has internal linkage if the
function is defined inline as part of the class, is declared
with the inline keyword, or is a nonmember function
declared with the static keyword. All other functions
have external linkage.

linker . A computer program for creating load modules
from one or more object modules by resolving cross
references among the modules and, if necessary,
adjusting addresses. IBM.

link pack area (LPA) . In MVS, an area of storage
containing re-enterable routines from system libraries.
Their presence in main storage saves loading time.

literal . (1) In programming languages, a lexical unit
that directly represents a value; for example, 14
represents the integer fourteen, “APRIL” represents the
string of characters APRIL, 3.0005E2 represents the
number 300.05. ISO-JTC1. (2) A symbol or a quantity
in a source program that is itself data, rather than a
reference to data. IBM. (3) A character string whose
value is given by the characters themselves; for
example, the numeric literal 7 has the value 7, and the
character literal CHARACTERS has the value
CHARACTERS. IBM.

loader . A routine, commonly a computer program, that
reads data into main storage. ANSI/ISO.

load module . All or part of a computer program in a
form suitable for loading into main storage for
execution. A load module is usually the output of a
linkage editor. ISO Draft.

local . (1) In programming languages, pertaining to the
relationship between a language object and a block
such that the language object has a scope contained in
that block. ISO-JTC1. (2) Pertaining to that which is
defined and used only in one subdivision of a computer
program. ANSI/ISO.

local customs . The conventions of a geographical
area or territory for such things as date, time, and
currency formats. X/Open.

locale . The definition of the subset of a user's
environment that depends on language and cultural
conventions. X/Open.

localization . The process of establishing information
within a computer system specific to the operation of

 Glossary 267

particular native languages, local customs, and coded
character sets. X/Open.

local scope . A name declared in a block has scope
within the block, and can therefore only be used in that
block.

Long name . An external name C++ name in an object
module, or and external name in an object module
created by the C compiler when the LONGNAME option is
used. Long names are up to 1024 characters long and
may contain both upper-case and lower-case
characters.

lvalue . An expression that represents a data object
that can be both examined and altered.

M
macro . An identifier followed by arguments (may be a
parenthesized list of arguments) that the preprocessor
replaces with the replacement code located in a
preprocessor #define directive.

macro call . Synonym for macro.

macro instruction . Synonym for macro.

main function . An external function with the identifier
main that is the first user function—aside from exit
routines and C++ static object constructors—to get
control when program execution begins. Each C and
C++ program must have exactly one function named
main.

makefile . A text file containing a list of your
application's parts. The make utility uses makefiles to
maintain application parts and dependencies.

make utility . Maintains all of the parts and
dependencies for your application. The make utility uses
a makefile to keep the parts of your program
synchronized. If one part of your application changes,
the make utility updates all other files that depend on
the changed part. This utility is available under the
OS/390 shell and by default, uses the c89 utility to
recompile and bind your application.

mangling . The encoding during compilation of
identifiers such as function and variable names to
include type and scope information. These mangled
names ensure type-safe linkage. See also demangling.

manipulator . A value that can be inserted into
streams or extracted from streams to affect or query the
behavior of the stream.

member . A data object or function in a structure,
union, or class. Members can also be classes,
enumerations, bit fields, and type names.

member function . (1) An operator or function that is
declared as a member of a class. A member function
has access to the private and protected data members
and member functions of objects of its class. Member
functions are also called methods. (2) A function that
performs operations on a class.

method . In the C++ language, a synonym for member
function.

migrate . To move to a changed operating
environment, usually to a new release or version of a
system. IBM.

module . A program unit that usually performs a
particular function or related functions, and that is
distinct and identifiable with respect to compiling,
combining with other units, and loading.

multibyte character . A mixture of single-byte
characters from a single-byte character set and
double-byte characters from a double-byte character
set.

multicharacter collating element . A sequence of two
or more characters that collate as an entity. For
example, in some coded character sets, an accented
character is represented by a non-spacing accent,
followed by the letter. Other examples are the Spanish
elements ch and ll. X/Open.

multiple inheritance . An object-oriented programming
technique implemented in the C++ language through
derivation, in which the derived class inherits members
from more than one base class.

multitasking . A mode of operation that allows
concurrent performance, or interleaved execution of two
or more tasks. ISO-JTC1. ANSI/ISO.

mutex . A flag used by a semaphore to protect shared
resources. The mutex is locked and unlocked by
threads in a program. A mutex can only be locked by
one thread at a time and can only be unlocked by the
same thread that locked it. The current owner of a
mutex is the thread that it is currently locked by. An
unlocked mutex has no current owner.

mutex attribute object . Allows the user to manage
the characteristics of mutexes in their application by
defining a set of values to be used for the mutex during
its creation. A mutex attribute object allows the user to
create many mutexes with the same set of
characteristics without redefining the same set of
characteristics for each mutex created.

mutex object . Used to identify a mutex.

268 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

N
name space . A category used to group similar types
of identifiers.

named pipe . A FIFO file. Named pipes allow transfer
of data between processes in a FIFO manner and
synchronization of process execution. Allows processes
to communicate even though they do not know what
processes are on the other end of the pipe.

natural reentrancy . A program that contains no
writable static and requires no additional processing to
make it reentrant is considered naturally reentrant.

nested class . A class defined within the scope of
another class.

nested enclave . A new enclave created by an existing
enclave. The nested enclave that is created must be a
new main routine within the process. See also child
enclave and parent enclave.

newline character . A character that in the output
stream indicates that printing should start at the
beginning of the next line. The newline character is
designated by '\n' in the C and C++ language. It is
unspecified whether this character is the exact
sequence transmitted to an output device by the system
to accomplish the movement to the next line. X/Open.

nickname . Synonym for alias.

nonprinting character . See control character.

null character (NUL) . The ASCII or EBCDIC character
'\0' with the hex value 00, all bits turned off. It is used
to represent the absence of a printed or displayed
character. This character is named <NUL> in the
portable character set.

null pointer . The value that is obtained by converting
the number 0 into a pointer; for example, (void *) 0.
The C and C++ languages guarantee that this value will
not match that of any legitimate pointer, so it is used by
many functions that return pointers to indicate an error.
X/Open.

null statement . A C or C++ statement that consists
solely of a semicolon.

null string . (1) A string whose first byte is a null byte.
Synonymous with empty string. X/Open. (2) A
character array whose first element is a null character.
ISO.1.

null value . A parameter position for which no value is
specified. IBM.

null wide-character code . A wide-character code with
all bits set to zero. X/Open.

number sign . The character #, also known as pound
sign and hash sign. This character is named
<number-sign> in the portable character set.

O
object . (1) A region of storage. An object is created
when a variable is defined. An object is destroyed when
it goes out of scope. (See also instance.) (2) In
object-oriented design or programming, an abstraction
consisting of data and the operations associated with
that data. See also class. IBM. (3) An instance of a
class.

object code . Machine-executable instructions, usually
generated by a compiler from source code written in a
higher level language (such as the C++ language). For
programs that must be linked, object code consists of
relocatable machine code.

object module . (1) All or part of an object program
sufficiently complete for linking. Assemblers and
compilers usually produce object modules. ISO Draft.
(2) A set of instructions in machine language produced
by a compiler from a source program. IBM.

object-oriented programming . A programming
approach based on the concepts of data abstraction
and inheritance. Unlike procedural programming
techniques, object-oriented programming concentrates
not on how something is accomplished, but on what
data objects comprise the problem and how they are
manipulated.

octal constant . The digit 0 (zero) followed by any
digits 0 through 7.

open file . A file that is currently associated with a file
descriptor. X/Open. ISO.1.

operand . An entity on which an operation is
performed. ISO-JTC1. ANSI/ISO.

operating system (OS) . Software that controls
functions such as resource allocation, scheduling,
input/output control, and data management.

operator function . An overloaded operator that is
either a member of a class or that takes at least one
argument that is a class type or a reference to a class
type.

operator precedence . In programming languages, an
order relation defining the sequence of the application
of operators within an expression. ISO-JTC1.

 Glossary 269

orientation of a stream . After application of an input
or output function to a stream, it becomes either
byte-oriented or wide-oriented. A byte-oriented stream is
a stream that had a byte input or output function applied
to it when it had no orientation. A wide-oriented stream
is a stream that had a wide character input or output
function applied to it when it had no orientation. A
stream has no orientation when it has been associated
with an external file but has not had any operations
performed on it.

OS/390 UNIX System Services (OS/390 UNIX) . An
element of the OS/390 operating system, (formerly
known as OpenEdition). OS/390 UNIX includes a
POSIX system Application Programming Interface for
the C language, a shell and utilities component, and a
dbx debugger. All the components conform to IEEE
POSIX standards (ISO 9945-1: 1990/IEEE POSIX
1003.1-1990, IEEE POSIX 1003.1a, IEEE POSIX
1003.2, and IEEE POSIX 1003.4a).

overflow . (1) A condition that occurs when a portion
of the result of an operation exceeds the capacity of the
intended unit of storage. (2) That portion of an
operation that exceeds the capacity of the intended unit
of storage. IBM.

overlay . The technique of repeatedly using the same
areas of internal storage during different stages of a
program. ANSI/ISO.

overloading . An object-oriented programming
technique that allows you to redefine functions and
most standard C++ operators when the functions and
operators are used with class types.

P
parameter . (1) In the C and C++ languages, an object
declared as part of a function declaration or definition
that acquires a value on entry to the function, or an
identifier following the macro name in a function-like
macro definition. X/Open. (2) Data passed between
programs or procedures. IBM.

parameter declaration . A description of a value that a
function receives. A parameter declaration determines
the storage class and the data type of the value.

parent enclave . The enclave that issues a call to
system services or language constructs to create a
nested or child enclave. See also child enclave and
nested enclave.

parent process . (1) The program that originates the
creation of other processes by means of spawn or exec
function calls. See also child process. (2) A process
that creates other processes.

parent process ID . (1) An attribute of a new process
identifying the parent of the process. The parent
process ID of a process is the process ID of its creator,
for the lifetime of the creator. After the creator's lifetime
has ended, the parent process ID is the process ID of
an implementation-dependent system process. X/Open.
(2) An attribute of a new process after it is created by a
currently active process. ISO.1.

partitioned concatenation . Specifying multiple PDSs
or PDSEs under one ddname. The concatenated data
sets act as one big PDS or PDSE and access can be
made to any member with a unique name. An
attempted access to a member whose name occurs
more than once in the concatenated data sets, returns
the first member with that name found in the entire
concatenation.

partitioned data set (PDS) . A data set in direct
access storage that is divided into partitions, called
members, each of which can contain a program, part of
a program, or data. IBM.

partitioned data set extended (PDSE) . Similar to
partitioned data set, but with extended capabilities.

path name . (1) A string that is used to identify a file.
A path name consists of, at most, {PATH_MAX} bytes,
including the terminating null character. It has an
optional beginning slash, followed by zero or more file
names separated by slashes. If the path name refers to
a directory, it may also have one or more trailing
slashes. Multiple successive slashes are treated as one
slash. A path name that begins with two successive
slashes may be interpreted in an
implementation-dependent manner, although more than
two leading slashes are treated as a single slash. The
interpretation of the path name is described in path
name resolution. ISO.1. (2) A file name specifying all
directories leading to the file.

path name resolution . Path name resolution is
performed for a process to resolve a path name to a
particular file in a file hierarchy. There may be multiple
path names that resolve to the same file. X/Open.

pattern . A sequence of characters used either with
regular expression notation or for path name expansion,
as a means of selecting various characters strings or
path names, respectively. The syntaxes of the two
patterns are similar, but not identical. X/Open.

PCH (precompiled header) . One or more headers
that have already been compiled.

period . The character (.). The term period is
contrasted against dot, which is used to describe a
specific directory entry. This character is named
<period> in the portable character set.

270 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

permissions . Codes that determine how a file can be
used by any users who work on the system. See also
file access permissions. IBM.

persistent environment . A program can explicitly
establish a persistent environment, direct functions to it,
and explicitly terminate it.

pointer . In the C and C++ languages, a variable that
holds the address of a data object or a function. IBM.

pointer class . A class that implements pointers.

pointer to member . An operator used to access the
address of non-static members of a class.

polymorphism . The technique of taking an abstract
view of an object or function and using any concrete
objects or arguments that are derived from this abstract
view.

portable character set . The set of characters
specified in POSIX 1003.2, section 2.4:

<NUL>
<alert>
<backspace>
<tab>
<newline>
<vertical-tab>
<form-feed>
<carriage-return>
<space>
<exclamation-mark> !
<quotation-mark> "
<number-sign> #
<dollar-sign> $
<percent-sign> %
<ampersand> &
<apostrophe> '
<left-parenthesis> (
<right-parenthesis>)
<asterisk> *
<plus-sign> +
<comma> ,
<hyphen> –
<hyphen-minus> –
<period> .
<slash> /
<zero> 0
<one> 1
<two> 2
<three> 3
<four> 4
<five> 5
<six> 6
<seven> 7
<eight> 8
<nine> 9
<colon> :
<semicolon> ;
<less-than-sign> <
<equals-sign> =
<greater-than-sign> >
<question-mark> ?
<commercial-at> @

 Glossary 271

<A> A
 B
<C> C
<D> D
<E> E
<F> F
<G> G
<H> H
<I> I
<J> J
<K> K
<L> L
<M> M
<N> N
<O> O
<P> P
<Q> Q
<R> R
<S> S
<T> T
<U> U
<V> V
<W> W
<X> X
<Y> Y
<Z> Z

<left-square-bracket> [
<backslash> \
<reverse-solidus> \
<right-square-bracket>]
<circumflex> _
<circumflex-accent> _
<underscore> _
<low-line> _
<grave-accent> `
<a> a
 b
<c> c
<d> d
<e> e
<f> f
<g> g
<h> h
<i> i
<j> j
<k> k
<l> l

<m> m
<n> n
<o> o
<p> p
<q> q
<r> r
<s> s
<t> t
<u> u
<v> v
<w> w
<x> x
<y> y
<z> z

<left-brace> {
<left-curly-bracket> {
<vertical-line> |
<right-brace> }
<right-curly-bracket> }
<tilde> ˜

portable file name character set . The set of
characters from which portable file names are
constructed. For a file name to be portable across
implementations conforming to the ISO POSIX-1
standard and to ISO/IEC 9945, it must consists only of
the following characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 . _ -

The last three characters are the period, underscore,
and hyphen characters, respectively. The hyphen must
not be used as the first character of a portable file
name. Upper- and lower-case letters retain their unique
identities between conforming implementations. In the
case of a portable path name, the slash character may
also be used. X/Open. ISO.1.

portability . The ability of a programming language to
compile successfully on different operating systems
without requiring changes to the source code.

positional parameter . A parameter that must appear
in a specified location relative to other positional
parameters. IBM.

precedence . The priority system for grouping different
types of operators with their operands.

precompiled header . See PCH.

predefined macros . Frequently used routines
provided by an application or language for the
programmer.

preinitialization . A process by which an environment
or library is initialized once and can then be used
repeatedly to avoid the inefficiency of initializing the
environment or library each time it is needed.

prelinker . A utility provided with OS/390 Language
Environment that you can use to process application
programs that require DLL support, or contain either
constructed reentrancy or external symbol names that
are longer than 8 characters. You require the prelinker,
or its equivalent function which is provided by the
binder, to process all C++ applications, or C applications
that are compiled with the RENT, DLL, LONGNAME or
IPA options. As of Version 2 Release 4, the prelinker
was superseded by the binder. See also binder.

preprocessor . A phase of the compiler that examines
the source program for preprocessor statements that

272 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

are then executed, resulting in the alteration of the
source program.

preprocessor statement . In the C and C++
languages, a statement that begins with the symbol #
and is interpreted by the preprocessor during
compilation. IBM.

primary expression . (1) An identifier, parenthesized
expression, function call, array element specification,
structure member specification, or union member
specification. IBM. (2) Literals, names, and names
qualified by the :: (scope resolution) operator.

printable character . One of the characters included in
the print character classification of the LC_CTYPE
category in the current locale. X/Open.

private . Pertaining to a class member that is only
accessible to member functions and friends of that
class.

process . (1) An instance of an executing application
and the resources it uses. (2) An address space and
single thread of control that executes within that
address space, and its required system resources. A
process is created by another process issuing the
fork() function. The process that issues the fork()
function is known as the parent process, and the new
process created by the fork() function is known as the
child process. X/Open. ISO.1.

process group . A collection of processes that permits
the signaling of related processes. Each process in the
system is a member of a process group that is identified
by the process group ID. A newly created process joins
the process group of its creator. IBM. X/Open. ISO.1.

process group ID . The unique identifier representing
a process group during its lifetime. A process group ID
is a positive integer. (Under ISO only, it is a positive
integer that can be contained in a pid_t.) A process
group ID will not be reused by the system until the
process group lifetime ends. X/Open. ISO.1.

process group lifetime . A period of time that begins
when a process group is created and ends when the
last remaining process in the group leaves the group,
because either it is the end of the last process' lifetime
or the last remaining process is calling the setsid() or
setpgid() functions. X/Open. ISO.1.

process ID . The unique identifier representing a
process. A process ID is a positive integer. (Under ISO
only, it is a positive integer that can be contained in a
pid_t.) A process ID will not be reused by the system
until the process lifetime ends. In addition, if there exists
a process group whose process group ID is equal to
that process ID, the process ID will not be reused by
the system until the process group lifetime ends. A

process that is not a system process will not have a
process ID of 1. X/Open. ISO.1.

process lifetime . The period of time that begins when
a process is created and ends when the process ID is
returned to the system. After a process is created with a
fork() function, it is considered active. Its thread of
control and address space exist until it terminates. It
then enters an inactive state where certain resources
may be returned to the system, although some
resources, such as the process ID, are still in use.
When another process executes a wait() or waitpid()
function for an inactive process, the remaining
resources are returned to the system. The last resource
to be returned to the system is the process ID. At this
time, the lifetime of the process ends. X/Open. ISO.1.

program object . All or part of a computer program in
a from suitable for loading into main storage for
execution. A program object is the output of the OS/390
Binder and is a newer more flexible format (e.g. longer
external names) than a load module.

protected . Pertaining to a class member that is only
accessible to member functions and friends of that
class, or to member functions and friends of classes
derived from that class.

prototype . A function declaration or definition that
includes both the return type of the function and the
types of its parameters. See function prototype.

public . Pertaining to a class member that is accessible
to all functions.

pure virtual function . A virtual function that has a
function definition of = 0;. See also abstract classes.

Q
qualified class name . Any class name or class name
qualified with one or more :: (scope resolution)
operators.

qualified name . Used to qualify a nonclass type name
such as a member by its class name.

qualified type name . Used to reduce complex class
name syntax by using typedefs to represent qualified
class names.

Query Management Facility (QMF) . Pertaining to an
IBM query and report writing facility that enables a
variety of tasks such as data entry, query building,
administration, and report analysis. IBM.

queue . A sequence with restricted access in which
elements can only be added at the back end (or
bottom) and removed from the front end (or top). A

 Glossary 273

queue is characterized by first-in, first-out behavior and
chronological order.

quotation marks . The characters " and ‘, also known
as double-quote and single-quote respectively. X/Open.

R
radix character . The character that separates the
integer part of a number from the fractional part.
X/Open.

real group ID . The attribute of a process that, at the
time of process creating, identifies the group of the user
who created the process. This value is subject to
change during the process lifetime, as describe in
setgid(). X/Open. ISO.1.

real user ID . The attribute of a process that, at the
time of process creation, identifies the user who created
the process. This value is subject to change during the
process lifetime, as described in setuid(). X/Open.
ISO.1.

reason code . A code that identifies the reason for a
detected error. IBM.

reassociation . An optimization technique that
rearranges the sequence of calculations in a subscript
expression producing more candidates for common
expression elimination.

redirection . In the shell, a method of associating files
with the input or output of commands. X/Open.

reentrant . The attribute of a program or routine that
allows the same copy of a program or routine to be
used concurrently by two or more tasks.

reference class . A class that links a concrete class to
an abstract class. Reference classes make
polymorphism possible with the Collection Classes.
Synonymous with indirection class.

refresh . To ensure that the information on the user's
terminal screen is up-to-date. X/Open.

register storage class specifier . A specifier that
indicates to the compiler within a block scope data
definition, or a parameter declaration, that the object
being described will be heavily used.

register variable . A variable defined with the register
storage class specifier. Register variables have
automatic storage.

regular expression . (1) A mechanism to select
specific strings from a set of character strings. (2) A
set of characters, meta-characters, and operators that
define a string or group of strings in a search pattern.

(3) A string containing wildcard characters and
operations that define a set of one or more possible
strings.

regular file . A file that is a randomly accessible
sequence of bytes, with no further structure imposed by
the system. X/Open. ISO.1.

relation . An unordered flat collection class that uses
keys, allows for duplicate elements, and has element
equality.

relative path name . The name of a directory or file
expressed as a sequence of directories followed by a
file name, beginning from the current directory. See
path name resolution. IBM.

reserved word . (1) In programming languages, a
keyword that may not be used as an identifier.
ISO-JTC1. (2) A word used in a source program to
describe an action to be taken by the program or
compiler. It must not appear in the program as a
user-defined name or a system name. IBM.

RMODE (residency mode) . In MVS, a program
attribute that refers to where a module is prepared to
run. RMODE can be 24 or ANY. ANY refers to the fact
that the module can be loaded either above or below
the 16M line. RMODE 24 means the module expects to
be loaded below the 16M line.

runtime library . A compiled collection of functions
whose members can be referred to by an application
program during runtime execution. Typically used to
refer to a dynamic library that is provided in object
code, such that references to the library are resolved
during the linking step. The runtime library itself is not
statically bound into the application modules.

S
saved set-group-ID . An attribute of a process that
allows some flexibility in the assignment of the effective
group ID attribute, as described in the exec() family of
functions and setgid(). X/Open. ISO.1.

saved set-user-ID . An attribute of a process that
allows some flexibility in the assignment of the effective
user ID attribute, as described in exec() and setuid().
X/Open. ISO.1.

scalar . An arithmetic object, or a pointer to an object
of any type.

scope . (1) That part of a source program in which a
variable is visible. (2) That part of a source program in
which an object is defined and recognized.

scope operator (::) . An operator that defines the
scope for the argument on the right. If the left argument

274 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

is blank, the scope is global; if the left argument is a
class name, the scope is within that class. Synonymous
with scope resolution operator.

scope resolution operator (::) . Synonym for scope
operator.

semaphore . An object used by multi-threaded
applications for signalling purposes and for controlling
access to serially reusable resources. Processes can be
locked to a resource with semaphores if the processes
follow certain programming conventions.

sequence . A sequentially ordered flat collection.

sequential concatenation . Multiple sequential data
sets or partitioned data-set members are treated as one
long sequential data set. In the case of sequential data
sets, you can access or update the data sets in order.
In the case of partitioned data-set members, you can
access or update the members in order. Repositioning
is possible if all of the data sets in the concatenation
support repositioning.

sequential data set . A data set whose records are
organized on the basis of their successive physical
positions, such as on magnetic tape. IBM.

session . A collection of process groups established for
job control purposes. Each process group is a member
of a session. A process is a member of the session of
which its process group is a member. A newly created
process joins the session of its creator. A process can
alter its session membership; see setsid(). There can
be multiple process groups in the same session.
X/Open. ISO.1.

shell . A program that interprets sequences of text
input as commands. It may operate on an input stream
or it may interactively prompt and read commands from
a terminal. X/Open.

This feature is provided as part of the OS/390 Shell and
Utilities feature licensed program.

Short name . An external non-C++ name in an object
module produced by compiling with the NOLONGNAME
option. Such a name is up to 8 characters long and
single case.

signal . (1) A condition that may or may not be
reported during program execution. For example,
SIGFPE is the signal used to represent erroneous
arithmetic operations such as a division by zero. (2) A
mechanism by which a process may be notified of, or
affected by, an event occurring in the system. Examples
of such events include hardware exceptions and
specific actions by processes. The term signal is also
used to refer to the event itself. X/Open. ISO.1. (3) A
method of interprocess communication that simulates
software interrupts. IBM.

signal handler . A function to be called when the
signal is reported.

single-byte character set (SBCS) . A set of characters
in which each character is represented by a one-byte
code. IBM.

single-precision . Pertaining to the use of one
computer word to represent a number in accordance
with the required precision. ISO-JTC1. ANSI/ISO.

single-quote . The character ‘, also known as
apostrophe. This character is named <quotation-mark>
in the portable character set.

slash . The character /, also known as solidus. This
character is named <slash> in the portable character
set.

socket . (1) A unique host identifier created by the
concatenation of a port identifier with a transmission
control protocol/Internet protocol (TCP/IP) address.
(2) A port identifier. (3) A 16-bit port-identifier. (4) A
port on a specific host; a communications end point that
is accessible though a protocol family's addressing
mechanism. A socket is identified by a socket address.
IBM.

sorted map . A sorted flat collection with key and
element equality.

sorted relation . A sorted flat collection that uses keys,
has element equality, and allows duplicate elements.

sorted set . A sorted flat collection with element
equality.

source module . A file that contains source statements
for such items as high-level language programs and
data description specifications. IBM.

source program . A set of instructions written in a
programming language that must be translated to
machine language before the program can be run. IBM.

space character . The character defined in the
portable character set as <space>. The space character
is a member of the space character class of the current
locale, but represents the single character, and not all
of the possible members of the class. X/Open.

spanned record . A logical record contained in more
than one block. IBM.

specialization . A user-supplied definition which
replaces a corresponding template instantiation.

specifiers . Used in declarations to indicate storage
class, fundamental data type and other properties of the
object or function being declared.

 Glossary 275

spill area . A storage area used to save the contents of
registers. IBM.

SQL (Structured Query Language) . A language
designed to create, access, update and free data
tables.

square brackets . The characters [(left bracket) and]
(right bracket). Also see brackets.

stack frame . The physical representation of the
activation of a routine. The stack frame is allocated and
freed on a LIFO (last in, first out) basis. A stack is a
collection of one or more stack segments consisting of
an initial stack segment and zero or more increments.

stack storage . Synonym for automatic storage.

standard error . An output stream usually intended to
be used for diagnostic messages. X/Open.

standard input . (1) An input stream usually intended
to be used for primary data input. X/Open. (2) The
primary source of data entered into a command.
Standard input comes from the keyboard unless
redirection or piping is used, in which case standard
input can be from a file or the output from another
command. IBM.

standard output . (1) An output stream usually
intended to be used for primary data output. X/Open.
(2) The primary destination of data coming from a
command. Standard output goes to the display unless
redirection or piping is used, in which case standard
output can go to a file or to another command. IBM.

statement . An instruction that ends with the character
; (semicolon) or several instructions that are surrounded
by the characters { and }.

static . A keyword used for defining the scope and
linkage of variables and functions. For internal
variables, the variable has block scope and retains its
value between function calls. For external values, the
variable has file scope and retains its value within the
source file. For class variables, the variable is shared
by all objects of the class and retains its value within
the entire program.

static binding . The act of resolving references to
external variables and functions before run time.

storage class specifier . One of the terms used to
specify a storage class, such as auto, register, static, or
extern.

stream . (1) A continuous stream of data elements
being transmitted, or intended for transmission, in
character or binary-digit form, using a defined format.
(2) A file access object that allows access to an
ordered sequence of characters, as described by the

ISO C standard. Such objects can be created by the
fdopen() or fopen() functions, and are associated with
a file descriptor. A stream provides the additional
services of user-selectable buffering and formatted input
and output. X/Open.

string . A contiguous sequence of bytes terminated by
and including the first null byte. X/Open.

string constant . Zero or more characters enclosed in
double quotation marks.

string literal . Zero or more characters enclosed in
double quotation marks.

striped data set . A special data set organization that
spreads a data set over a specified number of volumes
so that I/O parallelism can be exploited. Record n in a
striped data set is found on a volume separate from the
volume containing record n - p, where n > p.

struct . An aggregate of elements having arbitrary
types.

structure . A construct (a class data type) that contains
an ordered group of data objects. Unlike an array, the
data objects within a structure can have varied data
types. A structure can be used in all places a class is
used. The initial projection is public.

structure tag . The identifier that names a structure
data type.

Structured Query Language . See SQL.

stub routine . A routine, within a runtime library, that
contains the minimum lines of code required to locate a
given routine at run time.

subprogram . In the IPA Link version of the Inline
Report listing section, an equivalent term for 'function'.

subscript . One or more expressions, each enclosed in
brackets, that follow an array name. A subscript refers
to an element in an array.

subsystem . A secondary or subordinate system,
usually capable of operating independently of or
asynchronously with, a controlling system. ISO Draft.

subtree . A tree structure created by arbitrarily
denoting a node to be the root node in a tree. A subtree
is always part of a whole tree.

superset . Given two sets A and B, A is a superset of
B if and only if all elements of B are also elements of A.
That is, A is a superset of B if B is a subset of A.

support . In system development, to provide the
necessary resources for the correct operation of a
functional unit. IBM.

276 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

switch expression . The controlling expression of a
switch statement.

switch statement . A C or C++ language statement
that causes control to be transferred to one of several
statements depending on the value of an expression.

system default . A default value defined in the system
profile. IBM.

System Object Model (SOM) . Defines an IBM
interface between programs, or between libraries and
programs, so that an object's interface is separated
from its implementation. SOM allows classes of objects
to be defined in one programming language and used in
another, and it allows libraries of such classes to be
updated without requiring client code to be recompiled.
IBM.

system process . (1) An implementation-dependent
object, other than a process executing an application,
that has a process ID. X/Open. (2) An object, other
than a process executing an application, that is defined
by the system, and has a process ID. ISO.1.

T
tab character . A character that in the output stream
indicates that printing or displaying should start at the
next horizontal tabulation position on the current line.
The tab is the character designated by '\t' in the C
language. If the current position is at or past the last
defined horizontal tabulation position, the behavior is
unspecified. It is unspecified whether the character is
the exact sequence transmitted to an output device by
the system to accomplish the tabulation. X/Open.

This character is named <tab> in the portable character
set.

task library . A class library that provides the facilities
to write programs that are made up of tasks.

template . A family of classes or functions with variable
types.

template class . A class instance generated by a class
template.

Template Declaration . A prototype of a template
which can optionally include a template definition.

Template Definition . A blueprint the compiler uses to
generate a template instantiation.

template function . A function generated by a function
template.

Template Instantiation . Compiler generated code for
a class or function using the referenced types and the
corresponding class or function template definition.

terminals . Synonym for leaves.

text file . A file that contains characters organized into
one or more lines. The lines must not contain NUL
characters and none can exceed {LINE_MAX}—which is
defined in limits.h—bytes in length, including the
new-line character. The term text file does not prevent
the inclusion of control or other nonprintable characters
(other than NUL). X/Open.

thread . The smallest unit of operation to be performed
within a process. IBM.

throw expression . An argument to the C++ exception
being thrown.

tilde . The character ˜. This character is named <tilde>
in the portable character set.

token . The smallest independent unit of meaning of a
program as defined either by a parser or a lexical
analyzer. A token can contain data, a language
keyword, an identifier, or other parts of language
syntax. IBM.

traceback . A section of a dump that provides
information about the stack frame, the program unit
address, the entry point of the routine, the statement
number, and the status of the routines on the call-chain
at the time the traceback was produced.

trigraph sequence . An alternative spelling of some
characters to allow the implementation of C in character
sets that do not provide a sufficient number of
non-alphabetic graphics. ANSI/ISO.

Before preprocessing, each trigraph sequence in a
string or literal is replaced by the single character that it
represents.

truncate . To shorten a value to a specified length.

try block . A block in which a known C++ exception is
passed to a handler.

type conversion . Synonym for boundary alignment.

type definition . A definition of a name for a data type.
IBM.

type specifier . Used to indicate the data type of an
object or function being declared.

 Glossary 277

U
ultimate consumer . The target of data in an I/O
operation. An ultimate consumer can be a file, a device,
or an array of bytes in memory.

ultimate producer . The source of data in an I/O
operation. An ultimate producer can be a file, a device,
or an array of byes in memory.

unary expression . An expression that contains one
operand. IBM.

undefined behavior . Action by the compiler and
library when the program uses erroneous constructs or
contains erroneous data. Permissible undefined
behavior includes ignoring the situation completely with
unpredictable results. It also includes behaving in a
documented manner that is characteristic of the
environment, during translation or program execution,
with or without issuing a diagnostic message. It can
also include terminating a translation or execution, while
issuing a diagnostic message. Contrast with unspecified
behavior and implementation-defined behavior.

underflow . (1) A condition that occurs when the result
of an operation is less than the smallest possible
nonzero number. (2) Synonym for arithmetic underflow,
monadic operation. IBM.

union . (1) In the C or C++ language, a variable that
can hold any one of several data types, but only one
data type at a time. IBM. (2) For bags, there is an
additional rule for duplicates: If bag P contains an
element m times and bag Q contains the same element
n times, then the union of P and Q contains that
element m+n times.

union tag . The identifier that names a union data type.

unnamed pipe . A pipe that is accessible only by the
process that created the pipe and its child processes.
An unnamed pipe does not have to be opened before it
can be used. It is a temporary file that lasts only until
the last file descriptor that uses it is closed.

unique collection . A collection in which the value of
an element only occurs once; that is, there are no
duplicate elements.

unrecoverable error . An error for which recovery is
impossible without use of recovery techniques external
to the computer program or run.

unspecified behavior . Action by the compiler and
library when the program uses correct constructs or
data, for which the standards impose no specific
requirements. Such action should not cause compiler
or application failure. You should not, however, write
any programs to rely on such behavior as they may not

be portable to other systems. Contrast with
implementation-defined behavior and undefined
behavior.

user-defined data type . (1) A mathematical model
that includes a structure for storing data and operations
that can be performed on that data. Common abstract
data types include sets, trees, and heaps. (2) See also
abstract data type.

user ID . A nonnegative integer that is used to identify
a system user. (Under ISO only, a nonnegative integer,
which can be contained in an object of type uid_t.)
When the identity of a user is associated with a
process, a user ID value is referred to as a real user ID,
an effective user ID, or (under ISO only, and there
optionally) a saved set-user ID. X/Open. ISO.1.

user name . A string that is used to identify a user.
ISO.1.

user prefix . In an MVS environment, the user prefix is
typically the user's logon user identification.

V
value numbering . An optimization technique that
involves local constant propagation, local expression
elimination, and folding several instructions into a single
instruction.

variable . In programming languages, a language
object that may take different values, one at a time. The
values of a variable are usually restricted to a certain
data type. ISO-JTC1.

variant character . A character whose hexadecimal
value differs between different character sets. On
EBCDIC systems, such as S/390, these 13 characters
are an exception to the portability of the portable
character set.

<left-square-bracket> [
<right-square-bracket>]
<left-brace> {
<right-brace> }
<backslash> \
<circumflex> _
<tilde> ˜
<exclamation-mark> !
<number-sign> #
<vertical-line> |
<grave-accent> `
<dollar-sign> $
<commercial-at> @

vertical-tab character . A character that in the output
stream indicates that printing should start at the next
vertical tabulation position. The vertical-tab is the
character designated by '\v' in the C or C++
languages. If the current position is at or past the last

278 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

defined vertical tabulation position, the behavior is
unspecified. It is unspecified whether this character is
the exact sequence transmitted to an output device by
the system to accomplish the tabulation. X/Open. This
character is named <vertical-tab> in the portable
character set.

virtual address space . (1) In virtual storage systems,
the virtual storage assigned to a batched or terminal
job, a system task, or a task initiated by a command.
(2) In VSE, a subdivision of the virtual address area
available to the user for the allocation of private,
non-shared partitions.

virtual function . A function of a class that is declared
with the keyword virtual. The implementation that is
executed when you make a call to a virtual function
depends on the type of the object for which it is called,
which is determined at run time.

Virtual Storage Access Method (VSAM) . An access
method for direct or sequential processing of fixed and
variable length records on direct access devices. The
records in a VSAM data set or file can be organized in
logical sequence by a key field (key sequence), in the
physical sequence in which they are written on the data
set or file (entry-sequence), or by relative-record
number.

visible . Visibility of identifiers is based on scoping
rules and is independent of access.

volatile attribute . (1) In the C or C++ language, the
keyword volatile, used in a definition, declaration, or
cast. It causes the compiler to place the value of the
data object in storage and to reload this value at each
reference to the data object. IBM. (2) An attribute of a
data object that indicates the object is changeable. Any
expression referring to a volatile object is evaluated
immediately (for example, assignments).

W
while statement . A looping statement that contains
the keyword while followed by an expression in
parentheses (the condition) and a statement (the
action). IBM.

white space . (1) Space characters, tab characters,
form-feed characters, and new-line characters. (2) A
sequence of one or more characters that belong to the
space character class as defined via the LC_CTYPE
category in the current locale. In the POSIX locale,
white space consists of one or more blank characters
(space and tab characters), new-line characters,
carriage-return characters, form-feed characters, and
vertical-tab characters. X/Open.

wide-character . A character whose range of values
can represent distinct codes for all members of the
largest extended character set specified among the
supporting locales.

wide-character code . An integral value corresponding
to a single graphic symbol or control code. X/Open.

wide-character string . A contiguous sequence of
wide-character codes terminated by and including the
first null wide-character code. X/Open.

wide-oriented stream . See orientation of a stream.

working directory . Synonym for current working
directory.

writable static area . See WSA.

write . (1) To output characters to a file, such as
standard output or standard error. Unless otherwise
stated, standard output is the default output destination
for all uses of the term write. X/Open. (2) To make a
permanent or transient recording of data in a storage
device or on a data medium. ISO-JTC1. ANSI/ISO.

WSA (writable static area) . An area of memory in the
program that is modifyable during program execution.
Typically, this area contains global variables and
function and variable descriptors for DLLs.

 Glossary 279

280 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Bibliography

This bibliography lists the publications for IBM products
that are related to the OS/390 C/C++ product. It
includes publications covering the application
programming task. The bibliography is not a
comprehensive list of the publications for these
products, however, it should be adequate for most
OS/390 C/C++ users. Refer to the OS/390 Information
Roadmap, GC28-1727, for a complete list of
publications belonging to the OS/390 product.

Related publications not listed in this section can be
found on the IBM Online Library Omnibus Edition: MVS
Collection CD-ROM (SK2T-0710), the IBM Online
Library Omnibus Edition: OS/390 Collection CD-ROM
(SK2T-6700), or on a tape available with OS/390.

 OS/390

¹ OS/390 Printing Softcopy BOOKs, S544-5354

¹ OS/390 Introduction and Release Guide,
GC28-1725

¹ OS/390 Planning for Installation, GC28-1726

¹ OS/390 Summary of Message Changes,
GC28-1499

¹ OS/390 Information Roadmap, GC28-1727

VS COBOL II Release 4

¹ General Information, GC26-4042

¹ Migration Guide for MVS and CMS, GC26-3151

¹ Installation and Customization for MVS, SC26-4048

¹ Application Programming Guide for MVS and CMS,
SC26-4045

¹ Application Programming Language Reference,
GC26-4047

¹ Application Programming Reference Summary,
SX26-3721

¹ Application Programming Debugging, SC26-4049

¹ Application Programming Diagnosis Guide,
LY27-9523

¹ Application Programming Diagnosis Reference,
LY27-9522

COBOL FOR MVS & VM Release
2

¹ Compiler and Run-Time Migration Guide,
GC26-4764

¹ Programming Guide, SC26-4767

¹ Language Reference, SC26-4769

¹ Diagnosis Guide, SC26-3138

¹ Licensed Program Specifications, GC26-4761

¹ Installation and Customization under MVS,
SC26-4766

COBOL for OS/390 & VM Version
2 Release 1

¹ Compiler and Run-Time Migration Guide,
GC26-4764

¹ Programming Guide, SC26-9049

¹ Language Reference, SC26-9046

¹ Diagnosis Guide, GC26-9047

¹ Licensed Program Specifications, GC26-9044

¹ Installation and Customization under OS/390,
GC26-9045

¹ Program Directory for VM

¹ Fact Sheet, GC26-9048

PL/I for MVS & VM Release 1
Modification 1

¹ Language Reference, SC26-3114

¹ Compiler and Run-Time Migration Guide,
SC26-3118

¹ Programming Guide, SC26-3113

¹ Compile-Time Messages and Codes, SC26-3229

¹ Reference Summary, SX26-3821

¹ Diagnosis Guide, SC26-3149

¹ Installation and Customization under MVS,
SC26-3119

¹ Licensed Program Specifications, GC26-3116

 Copyright IBM Corp. 1996, 1998 281

OS PL/I Version 2 Release 3

¹ Programming Guide, SC26-4307

¹ Programming: Language Reference, SC26-4308

¹ Programming: Messages and Codes, SC26-4309

VS FORTRAN Version 2 Release
6

¹ Programming Reference, SC26-4221

¹ Programming Guide, SC26-4222

CICS/ESA Version 4 Release 1

¹ Application Programming Reference, SC33-1170

¹ Application Programming Guide, SC33-1169

¹ Installation Guide, SC33-1163

¹ System Definition Guide, SC33-1164

¹ Resource Definition Guide, SC33-1166

¹ Messages and Codes, SC33-1177

CICS Transaction Server for
OS/390 Release 2

¹ Application Programming Guide, SC33-1687

¹ Application Programming Reference, SC33-1688

¹ System Programming Reference, SC33-1689

¹ Distributed Transaction Programming Guide,
SC33-1691

¹ Front End Programming Interface User's Guide,
SC33-1692

DB2 Version 3 Release 1

¹ SQL Reference, SC26-4890

¹ Reference Summary, SX26-3801

¹ Command and Utility Reference, SC26-4891

¹ Application Programming and SQL Guide,
SC26-4889

DB2 Version 4 Release 1

¹ SQL Reference, SC26-3270

¹ Reference Summary, SX26-3829

¹ Command Reference, SC26-3267

¹ Application Programming and SQL Guide,
SC26-3266

¹ Utility Guide and Reference, SC26-3395

DB2 Version 5 Release 1

¹ Administration Guide, SC26-8957

¹ Application Programming and SQL Guide,
SC26-8958

¹ Call Level Interface Guide and Reference,
SC26-8959

¹ Command Reference, SC26-8960

¹ Data Sharing: Planning and Administration,
SC26-8961

¹ Installation Guide, GC26-8970

¹ Messages and Codes, GC26-8979

¹ SQL Reference, SC26-8966

¹ Reference for Remote DRDA Requesters and
Servers, SC26-8964

¹ Utility Guide and Reference, SC26-8967

IMS/ESA Version 4 Release 1

¹ Application Programming: Design Guide,
SC26-3066

¹ Application Programming: DL/I Calls, SC26-3062

¹ Application Programming: Data Communication,
SC26-3058

¹ Application Programming: EXEC DL/I Commands,
SC26-3063

IMS/ESA Version 5 Release 1

¹ Application Programming: Design Guide,
SC26-8016

¹ Application Programming: Transaction Manager,
SC26-8017

¹ Application Programming: Database Manager,
SC26-8015

¹ Application Programming: EXEC DL/I Commands
for CICS and IMS, SC26-8018

282 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

IMS/ESA Version 6 Release 1

¹ Application Programming: Design Guide,
SC26-8728

¹ Application Programming: Transaction Manager,
SC26-8729

¹ Application Programming: Database Manager,
SC26-8727

¹ Application Programming: EXEC DL/I Commands
for CICS and IMS, SC26-8726

QMF Version 3 Release 2

¹ Introducing QMF, GC26-4713

¹ Using QMF, SC26-8078

¹ Developing QMF Applications, SC26-4722

 ¹ Reference, SC26-4716

¹ Managing QMF for MVS, SC26-8218

 ¹ Reference, SC26-4716

¹ Messages and Codes, SC26-4834

¹ Installing on MVS, SC26-4719

 VSAM

¹ MVS/ESA VSAM Catalog Administration: Access
Method Services Reference, SC26-4501

¹ MVS/ESA VSAM Administration: Macro Instruction
Reference, SC26-4517

¹ MVS/ESA VSAM Administration Guide for
MVS/DFP, SC26-4518

¹ MVS/ESA Integrated Catalog Administration:
Access Method Services Reference, SC26-4500

¹ DFSMS/MVS Access Method Services for VSAM,
SC26-4905

¹ MVS/DFP Access Method Services for VSAM
Catalogs, SC26-4570

¹ MVS/Extended Architecture VSAM Catalog
Administration: Access Method Services Reference
(Data Facility Product, Version 2), GC26-4136

 Bibliography 283

284 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

 Index

A
absolute value of complex numbers 11
abstract Collection Classes

based-on concept 122
class hierarchy 85
cursor class used with 94
key collection

restriction on replacing elements 93
naming convention 86
polymorphism 131
relationship to other classes 84

accessing elements 80, 94
add() Collection Class function

behavior of 91
example of behavior 91
properties of 90
role of 90

addAsFirst() Collection Class function 91
addAsLast() Collection Class function 91
addAsNext() Collection Class function 91
addAsPrevious() Collection Class function 91
adding elements to collections

effect on cursors 94
overview 90—91

addition of complex numbers 11
addOrReplaceElementWithKey() Collection Class

function 90
allElementsDo() Collection Class function 97, 98
anonymous streams 29
Application Support classes

introduction 191
IBase class 191
IBaseErrorInfo class 191
IBuffer class 191
IDBCSBuffer class 191
IVBase class 194

applicator 67
assignment (Collection Class Library)

using member functions 102
using operation classes 106
using separate functions 103

AT&T C++ Language System Release 1.2
history of class libraries 1

auxiliary class 77, 83

B
bag

description 74
implementation variant explained 122
properties of 78

IBase class 194
base() streambuf function 31
based-on concept in Collection Class Library

overview 121—122
binary conversion in IString class 208
bounded collections 100

C
case change of IString objects 211
cerr predefined stream 28
IChildAlreadyExistsException 145
children of a tree node 82
cin predefined stream 28, 35
class

categories of Collection Classes 83—87
general types of Collection Classes 77
hierarchy

abstract collections 85
Application Support classes 191
Collection Class Library 86
Complex Mathematics 1
I/O Stream Classes 27
illustrations 1

clog predefined stream 28
collection

copying 99
cursor association 93
iterating over 96—99
modifying 90—93
referencing 99
using polymorphism with 131

Collection Class Library
categories of classes 83—87
implementation strategy 83
reasons for using 73
steps for using 89
structure of classes 84
types of collections 77

ICollectionLockException 146
ICollectionResourceException 146
ICollectionUnlockException 147
compare() function

Collection Class Library
using operation classes 106
using separate functions 103

comparison
of IDate objects 226
of ITime objects 228
of ITimeStamp objects 230

complex class
conversion functions 18

 Copyright IBM Corp. 1996, 1998 285

complex class (continued)
mathematical functions 16
mathematical operators 14
review of complex numbers 11
trigonometric functions 17

Complex Mathematics Library 11, 12
complex.h header file 12
concatenation of IString objects 204
concrete classes

cursors with 94
relationship to other classes 84

concrete implementations 85, 122
conjugates of complex numbers 11
constant iterator class 97—99
constants defined in idecimal.hpp 239
constructors

Collection Class Library
errors 182
restriction on defining 102

IDate class 225
IString class 201
IStringTest class 213
ITime class 227
ITimeStamp class 229

containment function 81
conversion 245, 246

decimal object and IBinaryCodedDecimal
object 246

decimal object from a char * type 246
decimal object from an integer type 246
decimal object to a decimal object 245
decimal object to an IString object 246
decimal objects 245
IBinaryCodedDecimal object to a

IBinaryCodedDecimal object 241
IBinaryCodedDecimal objects 241

conversion functions
complex class 18
IString class 201, 208

copying
collections 99
IString class 202

cout predefined stream 28, 38
ICursorInvalidException 145
cursors

accessing elements with 94
association with a collection 93
classes 94
classes, abstract 94
description 93—95
effect of replacing elements 93
iteration 96—97
locating elements with 94
properties that may cause an exception 145
reasons for using 94
removing elements with 92

cursors (continued)
unexpected results 177
validity 94, 145

customizing an implementation 121—130

D
Data Type Classes

I0String class 199—212
IDate class 225—230
IString class 199—212
IStringTest class 212—213
ITime class 225—230
ITimeStamp class 225—230

IDate class 225—230
decimal 243, 247

constructing objects 243
exceptions 247

decimal class 243, 244
arithmetic operators 244
input and output 244

decimal class representation 243
decimal conversion in IString class 208
decimal object 246

asBCD 246
asString 246
digitsof 246
precisionof 246

default classes in Collection Class Library
instantiation 89
introduction 85
naming convention 86
relationship to other classes 84
strategy for using 83
tutorial on using 173

default constructors 177
deleting substrings of IString objects 206
deque 77, 82
destructors

Collection Class Library
restriction on defining 102

diluted implementation 124, 125
diluted table 124

reasons for using 124
dispatchNotificationEvent, overview 235

E
eback() streambuf function 31
ebuf() streambuf function 31
egptr() streambuf function 31
element equality 78, 79—81
elementAt() function

accessing elements with 94
replacing elements using 95
role in Collection Class Library 93

286 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

elementAt() function (continued)
versions of 95

elements in Collection Class Library
accessing 80, 94
adding 90—91

effect on cursors 94
functions

errors 178
introduction 101
methods for providing 102
relationship to derived classes 109
using element operation classes 105
using member functions 102
using pointers with 111
using separate functions 103

iterating 96—99
locating 90, 94

See also locate... functions
occurrence 92
operation classes 105
polymorphism 131
removing 91—92

effect on cursors 94
replacing 93

using elementAt() function 95
value 92

elementWithKey() Collection Class function 95
IEmptyException 145
endl manipulator 40
epptr() streambuf function 31
equality operators for decimal objects 245
equality operators for IBinaryCodedDecimal 241
equality relation 79
equality sequence 76, 78
equality test

in Collection Class Library
using member functions 102
using operation classes 106
using separate functions 103

in complex class 15
error

determination in Collection Class Library 177
handling

by math.h for complex class 20
stream input 54

examples
machine-readable xxiii
naming of xxiii
softcopy xxiii

exception
IAccessError exception 215
IAssertionFailure exception 215
IChildAlreadyExistsException 145
ICollectionLockException 146
ICollectionResourceException 146
ICollectionUnlockException 147

exception (continued)
ICursorInvalidException 145
IDeviceError exception 215
IEmptyException 145
IException class 147
IFullException 100, 146
hierarchy 147
IDecimalDataError exception 215
IIdenticalCollectionException 146
in Collection Class Library 143—148
IInvalidParameter exception 215
IInvalidReplacementException 146
IInvalidRequest exception 215
IKeyAlreadyExistsException 146
INotBoundedException 100, 146
INotContainsKeyException 146
IOutOfMemory exception 215
IOutOfSystemResource exception 215
IOutOfWindowResource exception 215
IPositionInvalidException 146
IPreconditionViolation 147
IResourceExhausted exception 147, 215
IRootAlreadyExistsException 146
tracing 177, 181
violated precondition in Collection Class Library 143

IException class 147, 177, 215—221
trace function 181

Exception Classes
IException class 215—221
ITrace class 222—224

extraction operator
See operator >>

F
file input 42
file output 45
filebuf class

header files 28
moving through a file 48

filters in I/O Stream Classes 47
firstElement() Collection Class function 95
flat collection classes

overview 77—81
with restricted access 81

flush manipulator 40
forICursor Collection Class Macro 96
format state

mutually exclusive flags 58
formatting

of IString objects 211
of output streams 56

fstream class
assigning to cin and cout 47
file input 42
file output 45

 Index 287

fstream class (continued)
header files 28

IFullException 100, 146

G
get pointer 31
getline() istream function 36
gptr() streambuf function 31
Gregorian calendar 225
Guard objects

description 139
usage 139

H
handleNotificationsFor, overview 235
hashing

description 129
restriction on replacing elements 93
restrictions on defining 103
using operation classes 106
using separate functions 103

header files
I/O Stream Classes 28

heap
description 76
properties of 78
replacing elements 93

hexadecimal conversion in IString class 208
hierarchy

See class — hierarchy

I
Note: Most classes beginning with an uppercase ‘I’ are

indexed under their second letter.
I/O Stream Classes

class hierarchy 26
header files 28
predefined streams 28
stream buffers 30

IBinaryCodedDecimal 239
constants 239
constructing objects 240
exceptions 242
input and output 240
operators 240

IBinaryCodedDecimal class representation 239
IBinaryCodedDecimal object

digitsof 242
precisionof 242

idecimal.hpp header file 239, 243
IIdenticalCollectionException 146
ifstream class

file input 42

ifstream class (continued)
header files 28

imaginary part of a complex number 11
implementation in Collection Class Library

basic 121
concrete 85
instantiating the default 89
provided by Collection Class Library 122
replacing the default 121
tailoring 121—130

implementation variant
choosing 122
features of 123
provided by Collection Class Library 122

indexing of strings 200
inequality operator for complex class 15
inheritance in Collection Class Library 131
INotificationEvent class overview 236
INotifier class overview 235
input

correcting errors 54
from files 42
from standard input 35
IString class 203
white space in 36

inserting substrings into IString objects 206
insertion operator

See operator <<
IInvalidReplacementException 146
iomanip.h header file 28
ios class

header files 28
iostream class

header files 28
Iostream Library 1

See also ‘I/O Stream’, at start of ‘I’ entries
iostream_withassign class

example of using 47
header files 28

iostream.h header file
classes defined 28

IPrivateResource 234
IResourceLock 234
is... methods of IString class 209
isFull() Collection Class function 100
ISharedResource 234
istream class

header files 28
input operator

for class types 50
multiple types in an input statement 35
pointers to char 36
white space 36

istream_withassign class
header files 28

288 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

IString... classes
See entries for IString... under S

istrstream class
header files 28

isValid() function
limitation 94
role of 145

iteration
over collections 96—99
restrictions 96
using exceptions 144

iterator class 97—99
IThread 231
IThreadFn 232
IThreadMemberFn 232

J
Julian date format 225

K
key access

basic properties of flat collections 78
description 79
errors 177, 179
overview 79—81
restriction on defining 102
using operation classes 106
using separate functions 103

key bag 74, 78, 91
key collection 93

restriction on replacing elements 93
key equality 79—81
key set

adding elements 91
description 75
properties of 78

key sorted bag 74, 78
key sorted set 75, 78
key-type functions

errors 177, 178, 180
global 180
introduction 101
methods for providing 102
relationship to derived classes 109
using element operation classes 105
using member functions 102
using pointers with 111
using separate functions 103

IKeyAlreadyExistsException 146

L
linked implementation 94

list 124
description 124

locateOrAddElementWithKey() Collection Class
function 90

locating elements 94
lowercase and IString objects 211

M
macros for the exception classes 218
magnitude of complex numbers 11
managed pointer class 78, 83

relationship to derived classes 109
map 75
mathematical functions for complex class 16
matherr() library function 20
maxNumberOfElements() Collection Class

function 100
MBCS 195
memory management

restriction on defining 103
using operation classes 106
using separate functions 103

modifying a collection 90—93
multiple collections 78, 81
multiple inheritance in Collection Class Library 131
multiple-byte character set 195, 200
multiplication of complex numbers 11
multithreading 231
mutual-exclusive semaphore 234
mutually exclusive format flags 58

N
n-ary tree class 82—83
naming conventions 86
National Language Support (NLS) 195
newCursor() function

abstract classes 94
NLS 195
node of a tree 82
nonmember functions, starting 232
INotBoundedException 100, 146
INotContainsKeyException 146
notification class hierarchy 237
notification ID overview 236
notification protocol description 236
notifications

description 135
support for 135

notifier protocol overview 235
notifyObservers, overview 235
null character 204
numeric conversion in IString class 208

 Index 289

O
object definition, default implementation 89
observer protocol overview 235
obsolete functions 1
ofstream class

file output 45
header files 28

operations classes
using 105—109

operator +
complex class 11
IString class 204

operator <
Collection Class Library 102

operator <<
defining for class types 52
in I/O Stream Classes 25
ostream class 66
IString class 203
ITime class 228

operator =
Collection Class Library 102

operator ==
Collection Class Library 102
complex class 15

operator >>
defining for class types 50
in I/O Stream Classes 25
istream class 66
multiple types in an input statement 35
pointers to char 36
IString class 203

ordered collection
multiple inheritance 131
removing an element 92

ordering relation
as a collection property 78
possible orderings of collections 79
restriction on replacing elements 93
sorted collections 79
using member functions 102

ostream class
header files 28
output operator

for class types 52
multiple types in an output statement 39

ostream_withassign class
header files 28

ostrstream class
header files 28

IOutOfMemory exception 146
output

to files 45

P
padding IString objects 211
parameterized manipulators

and simple manipulators 65
example 68
for your own types 67
introduction 65

parent in a tree 82
pbase() streambuf function 31
pointer class

managed
See managed pointer class

relationship to derived classes 109
role of 78
using with element and key-type functions 111

polar representation of complex numbers 11
polymorphism 83, 131

using pointers to elements 111
positioning property 93
IPositionInvalidException 146
pptr() streambuf function 31
precondition

violated 143—145
IPreconditionViolation exception 147
predefined streams

assigning fstream objects to 47
defined by iostream.h 28, 35, 38

predicate functions in Collection Class Library 92
priority queue 77, 82
problem determination

Collection Class Library 177
protecting data 231, 234
put pointer 31
putback 31

Q
queue 77
queue collection 82

R
real part of a complex number 11
reference class

naming convention 86
relationship to other classes 84

referencing a collection 99
relation 75

sorted relation 76
relational operators for decimal class 245
relational operators for IBinaryCodedDecimal 240
remove() function

Collection Class Library
behavior of 92
role of 90

290 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

removeAll() Collection Class function 92
removeFirst() Collection Class function 92
removeLast() Collection Class function 92
removing elements

See also remove... functions for collections
effect on cursors 94
overview 91—92

replace() Collection Class function 90, 93
replaceAt() function

role of 93
replacing

substrings of IString objects 206
replacing elements 93

See also replace... functions for collections
using elementAt() function 95

IRootAlreadyExistsException 146

S
semaphore 234
separate functions in Collection Class

Library 103—104
sequence 76
sequence as list

template with element operation class 105
sequential collections

replacing elements 93
serializedFunction 234
set 74
simple manipulators 65
sorted bag 74, 78
sorted collections

multiple inheritance 131
ordering relation 79

sorted map
description 75
properties of 78
restrictions for adding elements 90

sorted relation
properties of 78

sorted set 75, 78
stack 76, 82
standard error 38
standard input 35
standard output 38
stderr 38
stdin 35
stdiobuf class

header files 28
stdiostream class

header files 28
stdiostream.h 28
stdout 38
stopHandlingNotificationsFor, overview 235
stream buffers

definition 30

stream buffers (continued)
implementation 30
purpose 30

Stream Library 1
stream.h header file 28
streambuf class

header files 28
member functions 31

string buffers 200
IString class

binary conversion 208
concatenating objects of 204
decimal conversion 208
deleting a substring 206
formatting 211
hexadecimal conversion 208
indexing of strings 200
inserting a substring 206
is... methods of IString class 209
numeric conversion 208
padding 211
replacing a substring 206
string length 207
testing characteristics of IString objects 209
using 199—212
word count 207

string input 36
IStringTest class 212—213
IStringTestMemberFn class 213
stripping blanks from IString objects 211
strstream class

header files 28
possible uses of 63

strstream.h 28
strstreambuf class

header files 28
substrings

creating from IString objects 202
deleting in IString objects 206
finding within IString objects 204

subtraction of complex numbers 11
system failures 144
system restrictions 144

T
table 124, 125
table implementation 124, 125
table sequence 124
tabular implementation 94
tailoring an implementation 121—130
templates

arguments
declaration errors 177, 181, 182

linking with 183
operation class inheritance 106

 Index 291

thread 231
thread safety

collection classes
description 139
Guard objects 139

description 7
levels of 7
reasons for 7

ITime class 225—230
ITimeStamp class 225—230
ITrace class 215—224
trace macros 222
tree 77, 82—83
trigonometric functions for complex class 17
tutorials 149—175
typed implementation class

naming convention 86
purpose 85

typeless implementation class
purpose 86
relationship to other classes 84

U
ultimate consumer 30
ultimate producer 30
unbounded collections 100
unique collections

adding elements 91
compared to multiple collections 78
description 81

UNIX System Laboratories C++ Language System 1
unordered collections

characteristics 79
cursor iteration drawbacks 97

uppercase and IString objects 211
user-defined input operator 35, 50
user-defined output operator 39, 52

V
variant classes

See also implementation variant
description 85
naming convention 86
strategy for using 83
tailoring a collection with 121—130

IVBase class 194
void* type 92

W
white space

in IString objects 211
in string input 36

word index 200
words

finding within IString objects 204

292 OS/390 V2R6.0 C/C++ IBM Open Class Library User's Guide

Communicating Your Comments to IBM

OS/390
C/C++
IBM Open Class Library User's Guide

Publication No. SC09-2363-03

If there is something you like—or dislike—about this book, please let us know. You can use
one of the methods listed below to send your comments to IBM. If you want a reply, include
your name, address, and telephone number. If you are communicating electronically, include
the book title, publication number, page number, or topic you are commenting on.

The comments you send should only pertain to the information in this book and its
presentation. To request additional publications or to ask questions or make comments
about the functions of IBM products or systems, you should talk to your IBM representative
or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers’ comment form (RCF) from a country other than the United
States, you can give it to the local IBM branch office or IBM representative for postage-paid
mailing.

¹ If you prefer to send comments by mail, use the RCF at the back of this book.

¹ If you prefer to send comments by FAX, use this number:

– United States and Canada: 416-448-6161

– Other countries: (+1)-416-448-6161

¹ If you prefer to send comments electronically, use the network ID listed below. Be sure
to include your entire network address if you wish a reply.

 – Internet: torrcf@ca.ibm.com
 – IBMLink: toribm(torrcf)
 – IBM/PROFS: torolab4(torrcf)
 – IBMMAIL: ibmmail(caibmwt9)

Readers' Comments — We'd Like to Hear from You

OS/390
C/C++
IBM Open Class Library User's Guide

Publication No. SC09-2363-03

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC09-2363-03 ÉÂÔ

Fold and Tape Please do not staple Fold and Tape

PLACE
POSTAGE
STAMP
HERE

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 EGLINTON AVENUE EAST
NORTH YORK ONTARIO CANADA M3C 1H7

Fold and Tape Please do not staple Fold and Tape

SC09-2363-03

ÉÂÔÙ

SC09-2363-03

	Contents
	Notices
	Standards
	Trademarks

	About This Book
	IBM OS/390 C/C++ and Related Publications
	Hardcopy Books
	Softcopy Books
	Softcopy Examples
	OS/390 C/C++ on the World Wide Web
	C/C<< News...

	About IBM OS/390 C/C<<
	Changes for Version 2 Release 6
	The C/C<< Compilers
	The C Language
	The C<< Language
	Common Features of the OS/390 C and C<< Compilers
	OS/390 C Compiler Specific Features
	Features That Are Specific to the OS/390 C<< Compiler

	Utilities
	Class Libraries
	Class Library Source

	The Debug Tool
	OS/390 Language Environment
	The Program Management Binder
	OS/390 UNIX System Services (OS/390 UNIX)
	OS/390 C/C<< Applications with OS/390 UNIX C/C<< Functions
	Input and Output
	I/O Interfaces
	File Types
	Additional I/O Features

	The System Programming C Facility
	Interaction with Other IBM Products
	Additional Features of OS/390 C/C<<
	Suggested Reading

	Chapter 1. Introduction to IBM Open Class Library
	History of IBM Open Class Library
	Hierarchies of the Class Libraries
	Coding with Class Libraries under OS/390 UNIX System Services
	Compiling Programs that Use IBM Open Class Library
	Binding with IBM Open Class Library
	Migration Notes

	Thread Safety and the IBM Open Class Library
	Why Thread Safety?
	Levels of Thread Safety

	Part 1. Complex Mathematics Class Library
	Chapter 2. Using the Complex Mathematics Classes
	Review of Complex Numbers
	Header Files and Constants for complex and c_exception
	Constants Defined in complex.h

	Constructing complex Objects
	Complex Mathematics Input and Output
	Mathematical Operators for complex
	Equality and Inequality Operators Test for Absolute Equality
	Assignment Operators Do Not Produce an lvalue

	Friend Functions for complex
	Mathematical Functions for complex
	Trigonometric Functions for complex
	Magnitude Functions for complex
	Conversion Functions for complex

	Using the c_exception Class to Handle Complex Mathematics Errors
	Defining a Customized complex_error Function
	Compiling a Program that Uses a Customized complex_error Function

	Errors Handled Outside of the Complex Mathematics Library
	An Example of Using the Complex Mathematics Library

	Part 2. The I/O Stream Class Library
	Chapter 3. Introduction to the I/O Stream Classes
	The I/O Stream Classes and stdio.h
	Overview of the I/O Stream Classes
	Combining Input and Output of Different Types
	Input and Output for User-Defined Classes

	The I/O Stream Class Hierarchy
	The I/O Stream Header Files
	Predefined Streams
	Anonymous Streams
	Stream Buffers
	What Does a Stream Buffer Do?
	Why Use a Stream Buffer?
	How Is a Stream Buffer Implemented?

	Format State Flags
	Thread Safety

	Chapter 4. Getting Started with the I/O Stream Library
	Receiving Input from Standard Input
	Multiple Variables in an Input Statement
	String Input
	White Space in String Input
	Incorrect Input and the Error State of the Input Stream
	Using Input Streams Other Than cin

	Displaying Output on Standard Output or Standard Error
	Multiple Variables in an Output Statement
	Using Output Streams Other Than cout, cerr, and clog

	Flushing Output Streams with endl and flush
	Placing endl or flush in an Output Stream

	Parsing Multiple Inputs
	Opening a File for Input and Reading from the File
	Constructing an fstream or ifstream Object for Input
	Reading Input from a File

	Opening a File for Output and Writing to the File

	Chapter 5. Advanced I/O Stream Topics
	Associating a File with a Standard Input or Output Stream
	Using filebuf Functions to Move Through a File
	Defining an Input Operator for a Class Type
	myclass.h
	Using the cin Stream in a Class Input Operator
	Displaying Prompts in Input Operator Code

	Defining an Output Operator for a Class Type
	Class Output Operators and the Format State

	Correcting Input Stream Errors
	Changing the Formatting of Stream Output
	ios Methods and Manipulators
	Using setf, unsetf, and flags
	Changing the Notation of Floating-Point Values
	Changing the Base of Integral Values
	Setting the Width and Justification of Output Fields

	Defining Your Own Format State Flags
	Using the strstream Classes for String Manipulation

	Chapter 6. Manipulators
	Introduction to Manipulators
	Simple Manipulators and Parameterized Manipulators
	Creating Simple Manipulators for Your Own Types
	Creating Parameterized Manipulators for Your Own Types
	Example of Defining an APP Parameterized Manipulator
	Example of Defining a MANIP Parameterized Manipulator
	Examples of Nonassociative Parameterized Manipulators

	Part 3. The Collection Class Library
	Chapter 7. Overview of the Collection Class Library
	Benefits of the Collection Class Library
	Concrete Classes Provided by the Library
	Bag
	Sorted Bag
	Key Bag
	Key Sorted Bag
	Set
	Sorted Set
	Key Set
	Key Sorted Set
	Map
	Sorted Map
	Relation
	Sorted Relation
	Sequence
	Equality Sequence
	Heap
	Stack
	Queue
	Deque
	Priority Queue

	Types of Classes in the Collection Class Library
	Flat Collections
	Ordering of Collection Elements
	Access by Key
	Equality for Keys and Elements
	Uniqueness of Entries

	Restricted Access
	Trees
	Auxiliary Classes
	The Overall Implementation Structure
	Use the Defaults
	Use Variants
	Use Polymorphism and Abstract Classes
	Categories of Classes
	Default Classes
	Variant Classes
	Collection Class Hierarchy
	Typed and Typeless Implementation Classes
	Class Template Naming Conventions

	Chapter 8. Instantiating and Using the Collection Classes
	Instantiation and Object Definition
	Adding, Removing, and Replacing Elements
	Adding Elements
	Removing Elements
	Replacing Elements

	Cursors
	Using Cursors for Locating and Accessing Elements

	Iterating over Collections
	Iteration Using Cursors
	Iteration Using allElementsDo
	Iteration Using Applicators

	Copying and Referencing Collections
	Bounded and Unbounded Collections

	Chapter 9. Element Functions and Key-Type Functions
	Introduction to Element Functions and Key-Type Functions
	Using Member Functions
	Using Separate Functions
	Using Element Operation Classes
	Memory Management with Element Operation Classes

	Functions for Derived Element Classes
	Using Smart Pointers
	Overview of Smart Pointers
	Element Pointers
	Managed Pointers
	Automatic Pointers
	Transfer of Automatic Pointers

	Constructing Smart Pointers
	Notes on Smart Pointers

	Chapter 10. Tailoring a Collection Implementation
	Introduction
	Replacing the Default Implementation
	The Based-On Concept
	Provided Implementation Variants
	Features of Provided Implementation Variants
	Sequences
	List
	Table
	Diluted Table

	Trees
	AVL Tree
	B* Tree

	Hash Table

	Chapter 11. Polymorphism and the Collections
	Introduction to Polymorphism
	Using the Abstract Class Hierarchy
	Adding and Overloading Member Functions

	Chapter 12. Support for Notifications
	Example for IVSequence<IString>

	Chapter 13. Thread Safety and the Collection Classes
	Guard Objects
	Usage
	ICollectionGuard<Element> Constructor and Destructor
	Guard Copy Constructor
	Collection Constructor and Destructor
	Collection Copy Constructor
	Return Codes and Exceptions
	Deadlocks

	Restrictions

	Chapter 14. Exception Handling
	Introduction to Exception Handling
	Exceptions Caused by Violated Preconditions
	Exceptions Caused by System Failures and Restrictions

	Precondition and Defined Behavior
	Levels of Exception Checking
	List of Exceptions
	IChildAlreadyExistsException
	ICursorInvalidException
	IEmptyException
	IFullException
	IIdenticalCollectionException
	IInvalidReplacementException
	IKeyAlreadyExistsException
	INotBoundedException
	INotContainsKeyException
	IOutOfMemory
	IPositionInvalidException
	IRootAlreadyExistsException
	ICollectionResourceException
	ICollectionLockException
	ICollectionUnlockException

	The Hierarchy of Exceptions

	Chapter 15. Collection Class Library Tutorials
	Preparing for the Lessons
	Compiling the Lessons

	Lesson 1: Defining a Simple Collection of Integers
	Requirements
	Setup
	Implementation
	Source Files for Lesson 1
	Running the Program
	What You Have Learned

	Lesson 2: Adding, Listing, and Removing Elements
	Requirements
	Setup
	Implementation
	Source Files for Lesson 2
	Running the Program
	What You Have Learned

	Lesson 3: Changing the Element Type
	Requirements
	Setup
	Implementation
	Source Files for Lesson 3
	Running the Program
	What You Have Learned

	Lesson 4: Changing the Collection
	Requirements
	Setup
	Implementation
	Source Files for Lesson 4
	Running the Program
	What You Have Learned

	Lesson 5: Changing the Implementation Variant
	Requirements
	Setup
	Implementation
	Running the Program
	What You Have Learned

	Errors When Compiling or Running the Lessons
	Other Tutorials
	Using the Default Classes
	Advanced Use
	Source Files for the Tutorials

	Chapter 16. Solving Problems in the Collection Class Library
	Cursor Usage
	Effect
	Reason
	Solution

	Element Functions and Key-Type Functions
	Effect
	Reason
	Solution

	Key Access Function - How to Return the Key (1)
	Effect
	Reason
	Solution

	Key Access Function - How to Return the Key (2)
	Effect
	Reason
	Solution

	Definition of Key-Type Functions
	Effect
	Reason
	Solution

	Exception Tracing
	Effect
	Reason
	Solution

	Declaration of Template Arguments and Element Functions (1)
	Effect
	Reason
	Solution

	Declaration of Template Arguments and Element Functions (2)
	Effect
	Reason
	Solution

	Declaration of Template Arguments and Element Functions (3)
	Effect
	Reason
	Solution

	Default Constructor
	Effect
	Reason
	Solution

	Chapter 17. Compatibility Information
	Compatible Items
	Incompatible Items

	Part 4. Application Support Class Library
	Chapter 18. Application Support Class Library
	Organization of Classes
	IBase Class
	IVBase Class
	String and Buffer Classes
	Thread Safety
	MBCS and National Language Support
	Turning on Internationalization Semantics
	Setting the Locale

	Chapter 19. String Classes
	Introduction to the String Classes
	String Buffers
	Multiple-Byte Character Set Support
	Indexing of Strings

	What You Can Do with Strings
	Creating and Copying Strings
	IString Constructors
	Copying IStrings
	Creating Substrings of Strings

	Doing String Input and Output
	Concatenating Strings
	Finding Words or Substrings within Strings
	Replacing, Inserting, and Deleting Substrings
	Determining String Lengths and Word Counts
	Extending Strings
	Converting between Strings and Numeric Data
	Converting between Strings and Different Base Notations
	Testing the Characteristics of Strings
	Formatting Strings
	Other IString Capabilities

	IStringTest Class

	Chapter 20. Exception and Trace Classes
	Introduction to the Exception Classes
	Characteristics of the Exception Classes
	Derivation of the Exception Classes
	Situations in Which the Exception Classes Are Used

	Catching Exceptions Thrown by Class Library Functions
	An Example of the Subscript Operator Throwing an Exception

	Throwing Your Own Exceptions Using the Exception Classes
	Macros Used with the Exception Classes
	Why Use the Macros?

	Using the ITrace Class
	Using the Trace Macros to Control Trace Output
	Capturing Trace Output in a File
	An Example of Using ITrace

	Chapter 21. Date and Time Classes
	IDate Class
	Creating an IDate Object
	Changing an IDate Object
	Information Functions for IDate Objects
	Testing and Comparing IDate Objects

	ITime Class
	Creating an ITime Object
	Changing an ITime Object
	Information Functions for ITime Objects
	Comparing ITime Objects
	Writing an ITime Object to an Output Stream

	ITimeStamp Class
	Creating an ITimeStamp Object
	Changing an ITimeStamp Object
	Information Functions for ITimeStamp Objects
	Comparing ITimeStamp Objects

	Chapter 22. Controlling Threads and Protecting Data
	Accessing the Current Thread
	Starting a Thread
	Starting Nonmember Functions
	Starting a Member Function

	Protecting Data

	Chapter 23. The IBM Open Class Notification Framework
	Notifiers and Observers
	Notification Protocol
	IBM C++ Notification Class Hierarchy

	Chapter 24. Using the Binary Coded Decimal Class
	Header File and Constants for IBinaryCodedDecimal
	Constants Defined in idecimal.hpp

	Constructing IBinaryCodedDecimal Objects
	IBinaryCodedDecimal Input and Output
	Mathematical Operators for IBinaryCodedDecimal
	Relational Operators
	Equality Operators

	Converting IBinaryCodedDecimal Objects
	IBinaryCodedDecimal Object to a IBinaryCodedDecimal Object

	Number of Digits of an IBinaryCodedDecimal Object
	Precision of an IBinaryCodedDecimal Object
	IBinaryCodedDecimal Object Exceptions

	Chapter 25. Using the Decimal Class
	 Header File
	Constructing Decimal Objects
	Decimal Class Input and Output
	Operators for Decimal Class
	Arithmetic Operators
	Intermediate Results

	Relational Operators
	Equality Operators

	Converting Decimal Objects
	Decimal Object to a Decimal Object
	Decimal Object to an IString Object
	Decimal Object from a char * Type
	Decimal Object from an Integer Type
	Decimal Object to and from IBinaryCodedDecimal Object

	Number of Digits in a Decimal Object
	Precision of a Decimal Object
	Decimal Object Exceptions

	Part 5. Glossary, Bibliography and Index
	Glossary
	Bibliography
	OS/390
	VS COBOL II Release 4
	COBOL FOR MVS & VM Release 2
	COBOL for OS/390 & VM Version 2 Release 1
	PL/I for MVS & VM Release 1 Modification 1
	OS PL/I Version 2 Release 3
	VS FORTRAN Version 2 Release 6
	CICS/ESA Version 4 Release 1
	CICS Transaction Server for OS/390 Release 2
	DB2 Version 3 Release 1
	DB2 Version 4 Release 1
	DB2 Version 5 Release 1
	IMS/ESA Version 4 Release 1
	IMS/ESA Version 5 Release 1
	IMS/ESA Version 6 Release 1
	QMF Version 3 Release 2
	VSAM

	Index

