
 

High Level Assembler for MVS & VM & VSE IBM

 

Language Reference
Release 3

 
 
 
 SC26-4940-02



 



High Level Assembler for MVS & VM & VSE IBM

Language Reference
Release 3

 
 
 
 SC26-4940-02



  
 

 Note! 

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page x.

Third Edition (February 1999)

This edition applies to IBM High Level Assembler for MVS & VM & VSE, Release 3, Program Number 5696-234 and to any
subsequent releases until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the
product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

A form for reader's comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department BWE/H3
 P.O.Box 49023

SAN JOSE, CA 95161-9023
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1982, 1998. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.



  Contents
 

 Contents

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

About this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi
Who Should Use this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi

| Programming Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi
Organization of this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xii
IBM High Level Assembler for MVS & VM & VSE Publications . . . . . . . . . .  xiii
Hardcopy Publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Online Publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
Related Publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
Syntax Notation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
Double-Byte Character Set Notation . . . . . . . . . . . . . . . . . . . . . . . . .  xvi

Summary of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xvii
| Performance and Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xvii
| Programmer Productivity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Diagnostic Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Part 1. Assembler Language—Structure and Concepts . . . . . . . . . . . . . . . . . . . . 1

Chapter 1. Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Language Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Assembler Language  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Assembler Program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Relationship of Assembler to Operating System . . . . . . . . . . . . . . . . . . .  6
Coding Made Easier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

Chapter 2. Coding and Structure . . . . . . . . . . . . . . . . . . . . . . . . .  10
Character Set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Standard Character Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10
Double-Byte Character Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
Translation Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Assembler Language Coding Conventions . . . . . . . . . . . . . . . . . . . . .  13
Field Boundaries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Continuation Lines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Comment Statement Format . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
Instruction Statement Format . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

Assembler Language Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
Overview of Assembler Language Structure . . . . . . . . . . . . . . . . . . .  21
Machine Instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Assembler Instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Conditional Assembly Instructions . . . . . . . . . . . . . . . . . . . . . . . . .  24
Macro Instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Terms, Literals, and Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . .  26
Terms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Literals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

 Copyright IBM Corp. 1982, 1998  iii



 Contents  
 

Chapter 3. Addressing, Program Sectioning, and Linking . . . . . . . . . .  46
Addressing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Addressing within Source Modules: Establishing Addressability . . . . . . . .  46
Base Register Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
Qualified Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Dependent Addressing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Relative Addressing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Program Sectioning and Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
Source Module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Control Sections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Executable Control Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50
Reference Control Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53
Location Counter Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55
Literal Pools In Control Sections . . . . . . . . . . . . . . . . . . . . . . . . . .  57
External Symbol Dictionary Entries . . . . . . . . . . . . . . . . . . . . . . . .  57
Establishing Residence and Addressing Mode . . . . . . . . . . . . . . . . . .  58
Symbolic Linkages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Part 2. Machine and Assembler Instruction Statements . . . . . . . . . . . . . . . . . . 63

Chapter 4. Machine Instruction Statements . . . . . . . . . . . . . . . . . . .  65
General Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Decimal Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Floating-Point Instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Control Instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Input/Output Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Branching with Extended Mnemonic Codes . . . . . . . . . . . . . . . . . . . . .  67
Statement Formats  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Symbolic Operation Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70
Operand Entries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Addresses  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Lengths  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Immediate Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Examples of Coded Machine Instructions . . . . . . . . . . . . . . . . . . . . . .  77
E Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
QST Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
QV Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

| RI Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
RR Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
RRE Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
RS Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
RSE Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

| RSI Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
RX Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
S Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
SI Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
SS Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
SSE Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
VR Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
VS Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
VST Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
VV Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

iv HLASM V1R3 Language Reference  



  Contents
 

Chapter 5. Assembler Instruction Statements . . . . . . . . . . . . . . . . .  90
*PROCESS Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

| ACONTROL Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
ADATA Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

| AINSERT Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
ALIAS Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
AMODE Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
CATTR Instruction (MVS and CMS Only) . . . . . . . . . . . . . . . . . . . . . .  101
CCW and CCW0 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103
CCW1 Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
CEJECT Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
CNOP Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
COM Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
COPY Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
CSECT Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
CXD Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
DC Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Rules for DC Operand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115
General Information About Constants . . . . . . . . . . . . . . . . . . . . . . .  115
Padding and Truncation of Values . . . . . . . . . . . . . . . . . . . . . . . . .  117
Subfield 1: Duplication Factor . . . . . . . . . . . . . . . . . . . . . . . . . . .  119
Subfield 2: Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120
Subfield 3: Modifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121
Subfield 4: Nominal Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124

DROP Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
DS Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
DSECT Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
DXD Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
EJECT Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
END Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
ENTRY Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
EQU Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Using Conditional Assembly Values . . . . . . . . . . . . . . . . . . . . . . . .  165
EXITCTL Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
EXTRN Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
ICTL Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
ISEQ Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
LOCTR Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
LTORG Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Literal Pool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Addressing Considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Duplicate Literals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

OPSYN Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
ORG Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
POP Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
PRINT Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Process Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
PUNCH Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
PUSH Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
REPRO Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
RMODE Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
RSECT Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
SPACE Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
START Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

  Contents v



 Contents  
 

TITLE Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
USING Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

How to Use the USING Instruction . . . . . . . . . . . . . . . . . . . . . . . .  193
Base Registers for Absolute Addresses . . . . . . . . . . . . . . . . . . . . . .  193
Ordinary USING Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  194
Labeled USING Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197
Dependent USING Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . .  199

WXTRN Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Part 3. Macro Language  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Chapter 6. Introduction to Macro Language . . . . . . . . . . . . . . . . . . .  208
Using Macros  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Macro Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Model Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Processing Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Comment Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Macro Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Source and Library Macro Definitions . . . . . . . . . . . . . . . . . . . . . . . .  211

Macro Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
System Macro Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  212

Conditional Assembly Language . . . . . . . . . . . . . . . . . . . . . . . . . . .  212

Chapter 7. How to Specify Macro Definitions . . . . . . . . . . . . . . . . . .  213
Where to Define a Macro in a Source Module . . . . . . . . . . . . . . . . . . .  213
Format of a Macro Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  214
Macro Definition Header and Trailer . . . . . . . . . . . . . . . . . . . . . . . . .  214

MACRO Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
MEND Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Macro Instruction Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215
Body of a Macro Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217
Model Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Variable Symbols as Points of Substitution . . . . . . . . . . . . . . . . . . . .  218
Listing of Generated Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218
Rules for Concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219
Rules for Model Statement Fields . . . . . . . . . . . . . . . . . . . . . . . . .  221

Symbolic Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Positional Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Keyword Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Combining Positional and Keyword Parameters . . . . . . . . . . . . . . . . .  225
Subscripted Symbolic Parameters . . . . . . . . . . . . . . . . . . . . . . . . .  225

Processing Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Conditional Assembly Instructions . . . . . . . . . . . . . . . . . . . . . . . . .  225
Inner Macro Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  226
AEJECT Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

| AINSERT Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
AREAD Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
ASPACE Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
COPY Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
MEXIT Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
MNOTE Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Comment Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Ordinary Comment Statements . . . . . . . . . . . . . . . . . . . . . . . . . . .  232

vi HLASM V1R3 Language Reference  



  Contents
 

Internal Macro Comment Statements . . . . . . . . . . . . . . . . . . . . . . .  232
System Variable Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  233

Scope and Variability of System Variable Symbols . . . . . . . . . . . . . . .  233
&SYSADATA_DSN System Variable Symbol . . . . . . . . . . . . . . . . . .  234
&SYSADATA_MEMBER System Variable Symbol . . . . . . . . . . . . . . .  235
&SYSADATA_VOLUME System Variable Symbol . . . . . . . . . . . . . . . .  236
&SYSASM System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . . .  236

| &SYSCLOCK System Variable Symbol . . . . . . . . . . . . . . . . . . . . . .  237
&SYSDATC System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . .  237
&SYSDATE System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . .  238
&SYSECT System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . . .  238
&SYSIN_DSN System Variable Symbol . . . . . . . . . . . . . . . . . . . . . .  240
&SYSIN_MEMBER System Variable Symbol . . . . . . . . . . . . . . . . . . .  241
&SYSIN_VOLUME System Variable Symbol . . . . . . . . . . . . . . . . . . .  242
&SYSJOB System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . . .  243
&SYSLIB_DSN System Variable Symbol . . . . . . . . . . . . . . . . . . . . .  243
&SYSLIB_MEMBER System Variable Symbol . . . . . . . . . . . . . . . . . .  244
&SYSLIB_VOLUME System Variable Symbol . . . . . . . . . . . . . . . . . .  244
&SYSLIN_DSN System Variable Symbol . . . . . . . . . . . . . . . . . . . . .  245
&SYSLIN_MEMBER System Variable Symbol . . . . . . . . . . . . . . . . . .  246
&SYSLIN_VOLUME System Variable Symbol . . . . . . . . . . . . . . . . . .  246
&SYSLIST System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . . .  247
&SYSLOC System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . . .  249

| &SYSMAC System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . .  250
| &SYSM_HSEV System Variable Symbol . . . . . . . . . . . . . . . . . . . . .  250
| &SYSM_SEV System Variable Symbol . . . . . . . . . . . . . . . . . . . . . .  250

&SYSNDX System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . . .  251
&SYSNEST System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . .  254
&SYSOPT_DBCS System Variable Symbol . . . . . . . . . . . . . . . . . . .  255
&SYSOPT_OPTABLE System Variable Symbol . . . . . . . . . . . . . . . . .  255
&SYSOPT_RENT System Variable Symbol . . . . . . . . . . . . . . . . . . .  255

| &SYSOPT_XOBJECT System Variable Symbol . . . . . . . . . . . . . . . . .  256
&SYSPARM System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . .  256
&SYSPRINT_DSN System Variable Symbol . . . . . . . . . . . . . . . . . . .  257
&SYSPRINT_MEMBER System Variable Symbol . . . . . . . . . . . . . . . .  258
&SYSPRINT_VOLUME System Variable Symbol . . . . . . . . . . . . . . . .  259
&SYSPUNCH_DSN System Variable Symbol . . . . . . . . . . . . . . . . . .  259
&SYSPUNCH_MEMBER System Variable Symbol . . . . . . . . . . . . . . .  260
&SYSPUNCH_VOLUME System Variable Symbol . . . . . . . . . . . . . . .  261
&SYSSEQF System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . .  262
&SYSSTEP System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . .  262
&SYSSTMT System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . .  263
&SYSSTYP System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . .  263
&SYSTEM_ID System Variable Symbol . . . . . . . . . . . . . . . . . . . . . .  264
&SYSTERM_DSN System Variable Symbol . . . . . . . . . . . . . . . . . . .  264
&SYSTERM_MEMBER System Variable Symbol . . . . . . . . . . . . . . . .  265
&SYSTERM_VOLUME System Variable Symbol . . . . . . . . . . . . . . . .  266
&SYSTIME System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . .  267
&SYSVER System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . . .  267

Chapter 8. How to Write Macro Instructions . . . . . . . . . . . . . . . . . .  268
Macro Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  268

Alternative Ways of Coding a Macro Instruction . . . . . . . . . . . . . . . . .  269
Name Entry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

  Contents vii



 Contents  
 

Operation Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Operand Entry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Sublists in Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  275
Values in Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  278

Omitted Operands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Unquoted Operands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Special Characters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Nesting Macro Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  282
Inner and Outer Macro Instructions . . . . . . . . . . . . . . . . . . . . . . . .  282
Levels of Nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  282
General Rules and Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . .  282
Passing Values through Nesting Levels . . . . . . . . . . . . . . . . . . . . . .  283
System Variable Symbols in Nested Macros . . . . . . . . . . . . . . . . . . .  285

Chapter 9. How to Write Conditional Assembly Instructions . . . . . . . .  287
SET Symbols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Subscripted SET Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  288
Scope of SET Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  288
Scope of Symbolic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . .  288
SET Symbol Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  289
Subscripted SET Symbols Specifications . . . . . . . . . . . . . . . . . . . . .  291
Created SET Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  292

Data Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Combining with Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  295
Type Attribute (T') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  296
Length Attribute (L') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  300
Scaling Attribute (S') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  301
Integer Attribute (I') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  301
Count Attribute (K') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  302
Number Attribute (N') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  303
Defined Attribute (D') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  304
Operation Code Attribute (O') . . . . . . . . . . . . . . . . . . . . . . . . . . .  304

Sequence Symbols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Lookahead  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Open Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Conditional Assembly Instructions . . . . . . . . . . . . . . . . . . . . . . . . . .  310
Declaring SET Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  310

GBLA, GBLB, and GBLC Instructions . . . . . . . . . . . . . . . . . . . . . . .  311
LCLA, LCLB, and LCLC Instructions . . . . . . . . . . . . . . . . . . . . . . .  312

Assigning Values to SET Symbols . . . . . . . . . . . . . . . . . . . . . . . . . .  314
SETA Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
SETB Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
SETC Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Extended SET Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  337
SETAF Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
SETCF Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Substring Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

AIF Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
AGO Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
ACTR Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
ANOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

Chapter 10. MHELP Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . 349

viii HLASM V1R3 Language Reference  



  Contents
 

Part 4. Appendixes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Appendix A. Assembler Instructions  . . . . . . . . . . . . . . . . . . . . . . . 354

Appendix B. Summary of Constants . . . . . . . . . . . . . . . . . . . . . . .  359

Appendix C. Macro and Conditional Assembly Language Summary . . . .  361

Appendix D. Standard Character Set Code Table . . . . . . . . . . . . . . .  372

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
High Level Assembler Publications . . . . . . . . . . . . . . . . . . . . . . . . . .  376
Toolkit Feature Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  376
Related Publications (Architecture) . . . . . . . . . . . . . . . . . . . . . . . . . .  376
Related Publications for MVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  376
Related Publications for VM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  377
Related Publications for VSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  377
General Publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

  Contents ix



 Notices  
 

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

500 Columbus Avenue
 Thornwood, NY 10594
 U.S.A.

 Trademarks
The following are trademarks of International Business Machines Corporation in the
United States, or other countries, or both:

Other company, product, and service names may be trademarks or service marks
of others.

CICS
BookMaster
DFSMS/MVS
Enterprise System/9000
Enterprise Systems Architecture/370
Enterprise Systems Architecture/390
ES/9000
ESA/390
IBM
IBMLink
IMS
MVS
MVS/DFP
MVS/ESA

MVS/XA
OpenEdition
OS/390
OS/2
RETAIN
QMF
S/370
SP
System/370
System/390
VM/ESA
VTAM
3090

x  Copyright IBM Corp. 1982, 1998



  
 

About this Manual

This manual describes the syntax of assembler language statements, and provides
information about writing source programs that are to be assembled by IBM* High
Level Assembler for MVS & VM & VSE, Licensed Program 5696-234, hereafter
referred to as High Level Assembler, or simply the assembler. It is meant to be
used in conjunction with High Level Assembler Programmer's Guide.

Detailed definitions of machine instructions are not included in this manual. See
“Bibliography” on page 376 for a list of manuals that provide this information.

Throughout this book, we use these indicators to identify platform-specific
information:

� Prefix the text with platform-specific text (for example, “Under CMS...”)

� Add parenthetical qualifications (for example, “(CMS only)”)

� Bracket the text with icons. The following are some of the icons that we use:

 Informs you of information specific to MVS 

 Informs you of information specific to CMS 

 Informs you of information specific to VSE 

MVS is used in this manual to refer to Multiple Virtual Storage/Enterprise Systems
Architecture (MVS/ESA) and to OS/390.

CMS is used in this manual to refer to Conversational Monitor System on Virtual
Machine/Enterprise Systems Architecture (VM/ESA).

VSE is used in this manual to refer to Virtual Storage Extended/Enterprise Systems
Architecture (VSE/ESA).

Who Should Use this Manual
High Level Assembler Language Reference is for application programmers coding
in the High Level Assembler language. It is not intended to be used for tutorial
purposes, but is for reference only. If you are interested in learning more about
assemblers, most libraries have tutorial books on the subject. It assumes you are
familiar with the functional details of the Enterprise Systems Architecture, and the
role of machine-language instructions in program execution.

| Programming Interface Information
| This manual is intended to help the customer create application programs. This
| manual documents General-Use Programming Interface and Associated Guidance
| Information provided by IBM High Level Assembler for MVS & VM & VSE.

| General-use programming interfaces allow the customer to write programs that
| obtain the services of IBM High Level Assembler for MVS & VM & VSE.

 Copyright IBM Corp. 1982, 1998  xi



  
 

Organization of this Manual
This manual is organized as follows:

Part 1, Assembler Language—Structure and Concepts 

� Chapter 1, Introduction, describes the assembler language and how the
assembler processes assembler language source statements. It also
describes the relationship between the assembler and the operating
system, and suggests ways to make the task of coding easier.

� Chapter 2, Coding and Structure, describes the coding rules for and the
structure of the assembler language. It also describes the language
elements in a program.

� Chapter 3, Addressing, Program Sectioning, and Linking describes the
concepts of addressability and symbolic addressing. It also describes
control sections and the linkage between control sections.

Part 2, Machine and Assembler Instruction Statements 

� Chapter 4, Machine Instruction Statements, describes the machine
instruction types and their formats.

� Chapter 5, Assembler Instruction Statements, describes the assembler
instructions in alphabetical order.

Part 3, Macro Language 

� Chapter 6, Introduction to Macro Language, describes the macro facility
concepts including macro definitions, macro instruction statements, source
and library macro definitions, and conditional assembly language.

� Chapter 7, How to Specify Macro Definitions, describes the components
of a macro definition.

� Chapter 8, How to Write Macro Instructions, describes how to call
macro definitions using macro instructions.

� Chapter 9, How to Write Conditional Assembly Instructions, describes
the conditional assembly language including SET symbols, sequence
symbols, data attributes, branching, and the conditional assembly
instructions.

� Chapter 10, MHELP Instruction, describes the MHELP instruction that
you can use to control a set of macro trace and dump facilities.

 Appendixes

� Appendix A, Assembler Instructions, summarizes the assembler
instructions and assembler statements, and the related name and operand
entries.

� Appendix B, Summary of Constants, summarizes the types of constants
and related information.

� Appendix C, Macro and Conditional Assembly Language Summary,
summarizes the macro language described in Part 3. This summary also
includes a summary table of the system variable symbols.

� Appendix D, Standard Character Set Code Table, shows the code table
for the assembler's standard character set.

xii HLASM V1R3 Language Reference  



  
 

IBM High Level Assembler for MVS & VM & VSE Publications
| High Level Assembler runs under OS/390, MVS, VM and VSE. Its publications
| for the OS/390, MVS, VM and VSE operating systems are described in this section.

 Hardcopy Publications
The books in the High Level Assembler library are shown in Figure 1. This figure
shows which books can help you with specific tasks, such as application
programming.

General Information
Introduces you to the High Level Assembler product by describing what
it does and which of your data processing needs it can fill. It is
designed to help you evaluate High Level Assembler for your data
processing operation and to plan for its use.

Installation and Customization Guide
Contains the information you need to install and customize, and
diagnose failures in, the High Level Assembler product.

The diagnosis section of the book helps users determine if a correction
for a similar failure has been documented previously. For problems not
documented previously, the book helps users to prepare an APAR. This
section is for users who suspect that High Level Assembler is not
working correctly because of some defect.

Language Reference
Presents the rules for writing assembler language source programs to
be assembled using High Level Assembler.

Figure 1. IBM High Level Assembler for MVS & VM & VSE Publications

Task Publication Order Number

Evaluation and Planning General Information GC26-4943

Installation and
Customization

Installation and
Customization Guide

SC26-3494

Programmer's Guide SC26-4941

Toolkit Feature Installation
Guide

GC26-8711

Application
Programming

Programmer's Guide SC26-4941

Language Reference SC26-4940

General Information GC26-4943

Toolkit Feature User's
Guide

GC26-8710

Toolkit Feature IDF User's
Guide

GC26-8709

Diagnosis Installation and
Customization Guide

SC26-3494

Warranty Licensed Program
Specifications

GC26-4944

  About this Manual xiii



  
 

Licensed Program Specifications
Contains a product description and product warranty information for High
Level Assembler.

Programmer's Guide
Describes how to assemble, debug, and run High Level Assembler
programs.

Toolkit Feature Installation Guide
Contains the information you need to install and customize, and
diagnose failures in, the High Level Assembler Toolkit Feature.

Toolkit Feature User's Guide
Describes how to use the High Level Assembler Toolkit Feature.

Toolkit Feature IDF Reference Summary
Contains a reference summary of the High Level Assembler Interactive
Debug Facility.

Toolkit Feature IDF User's Guide
Describes how to use the High Level Assembler Interactive Debug
Facility.

 Online Publications
The High Level Assembler publications are available in the following softcopy
formats:

� Application Development Collection Kit CD-ROM, SK2T-1237
� MVS Collection CD-ROM, SK2T-0710
� OS/390 Collection CD-ROM, SK2T-6700
� VM/ESA Collection CD-ROM, SK2T-2067
� VSE Collection CD-ROM, SK2T-0060

| For more information about High Level Assembler, see the High Level Assembler
| web site, at

|  http://www.software.ibm.com/ad/hlasm

 Related Publications
See “Bibliography” on page 376 for a list of publications that supply information you
might need while you are using High Level Assembler.

 Syntax Notation
Throughout this book, syntax descriptions use the structure defined below.

� Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The ��── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the next
line.

The �─── symbol indicates that a statement is continued from the previous line.

The ──�� indicates the end of a statement.

xiv HLASM V1R3 Language Reference  



  
 

Diagrams of syntactical units other than complete statements start with the �───
symbol and end with the ───� symbol.

� Keywords appear in uppercase letters (for example, ASPACE) or upper and
lower case (for example, PATHFile). They must be spelled exactly as shown.
Lower case letters are optional (for example, you could enter the PATHFile
keyword as PATHF, PATHFI, PATHFIL or PATHFILE).

Variables appear in all lowercase letters in a special typeface (for example,
integer). They represent user-supplied names or values.

� If punctuation marks, parentheses, or such symbols are shown, they must be
entered as part of the syntax.

� Required items appear on the horizontal line (the main path). 

��──INSTRUCTION──required item───────────────────────────────────────��

� Optional items appear below the main path. If the item is optional and is the
default, the item appears above the main path. 

 ┌ ┐─default item──
��──INSTRUCTION─ ──┼ ┼─────────────── ──────────────────────────────────��
 └ ┘─optional item─

� When you can choose from two or more items, they appear vertically in a
stack.

If you must choose one of the items, one item of the stack appears on the
main path. 

��──INSTRUCTION─ ──┬ ┬─required choice1─ ───────────────────────────────��
 └ ┘─required choice2─

If choosing one of the items is optional, the whole stack appears below the
main path. 

��──INSTRUCTION─ ──┬ ┬────────────────── ───────────────────────────────��
 ├ ┤─optional choice1─
 └ ┘─optional choice2─

� An arrow returning to the left above the main line indicates an item that can be
repeated. When the repeat arrow contains a separator character, such as a
comma, you must separate items with the separator character. 

 ┌ ┐─,───────────────
��──INSTRUCTION─ ───+ ┴─repeatable item─ ────────────────────────────────��

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items, or repeat a single choice.

  About this Manual xv



  
 

The following example shows how the syntax is used.

 Format 

 �A� �B� �C� 

 ┌ ┐─,───────
��─ ──┬ ┬─────────────── ─INSTRUCTION─ ───+ ┴─┤ �1� ├─ ─��
 └ ┘ ─optional item─

�1�:
├─ ──┬ ┬─operand choice1─── ─┤
 ├ ┤─operand choice2───(1)

 └ ┘─operand choice3───

Note:
1 operand choice2 and operand choice3 must not be specified together

�A� The item is optional, and can be coded or not.

�B� The INSTRUCTION key word must be specified and coded as shown.

�C� The item referred to by �1� is a required operand. Allowable choices for
this operand are given in the fragment of the syntax diagram shown
below �1� at the bottom of the diagram. The operand can also be
repeated. That is, more than one choice can be specified, with each
choice separated by a comma.

Double-Byte Character Set Notation
Double-byte character set (DBCS) characters in terms, expressions, character
strings, and comments are delimited by shift-out and shift-in characters. In this
manual, the shift-out delimiter is represented pictorially by the < character, and the
shift-in delimiter is represented pictorially by the > character. The EBCDIC codes
for the shift-out and shift-in delimiters are X'0E' and X'0F', respectively.

The following figure summarizes the DBCS notation used throughout this manual.

Character(s) Represents

< Shift-out (SO)

> Shift-in (SI)

D1D2D3... Double-byte characters

DaDbDc... Double-byte characters

.A.B.C.'.&., EBCDIC characters in double-byte form: A, B, C, single quotation mark,
ampersand, and comma. The dots separating the letters represent the
hexadecimal value X'42'. A double-byte character that contains the
value of an EBCDIC ampersand or single quotation mark in either byte
is not recognized as a delimiter when enclosed by SO and SI.

eeeeeee Single-byte (EBCDIC) characters

abcd... Single-byte (EBCDIC) characters

XXX Extended continuation indicator for macro-generated statements

+++ Alternative extended continuation indicator for macro-generated
statements

xvi HLASM V1R3 Language Reference  



  
 

Summary of Changes

| Date of Publication February 1999

| Form of Publication Third Edition, SC26-4940-02

| Performance and Usability
| The following enhancements improve system performance and system usability:

| Binary floating-point:  The new binary floating-point instructions and data formats
| are supported. The support includes:

| � Accurate conversion of decimal values to binary floating-point representations,
| with selectable rounding modes.

| � Special values, such as infinities and NaNs, may be requested with symbolic
| forms.

| � All new binary and hexadecimal floating-point instructions are supported.

| ADATA Register Cross Reference Record:  A new ADATA register cross
| reference record holds details of registers and their usage.

| EXIT enhancements. The enhanced EXIT interface allows the user to write one
| routine that handles multiple exits, without needing elaborate schemes for inter-exit
| communication. It is also easier to write a single exit that handles multiple I/O
| types.

| ACONTROL:  The new ACONTROL statement allows fine-grained controls over
| certain options within the source program. Its status can be saved and restored
| with the PUSH and POP instructions.

| USING:  The USING statement has an additional parameter, the end parameter.
| When this parameter is supplied, it specifies a range to override the default range.

| Register Cross Reference listing:  The new section, General Purpose Cross
| Reference, is added to the assembler listing. This provides extra diagnostic
| information.

| Toolkit Feature:  The tools of the optional Toolkit Feature have been enhanced to
| cater for the additional floating-point registers.

| Conditional Assembly Language:  Enhancements to the conditional assembly
| language include:

| � A new AINSERT statement that allows creation of records to be inserted into
| the assembler's input stream.

| � BYTE and SIGNED internal functions that simplify conditional assembly
| expressions.

| � Five new system variable symbols:

| &SYSCLOCK Provides detailed date and time information.

 Copyright IBM Corp. 1982, 1998  xvii



  
 

| &SYSMAC Provides the name of the macro in which it is used,
| and the names of all macros in the call chain.

| &SYSOPT_XOBJECT Indicates that the XOBJECT option was specified.

| &SYSM_SEV Provides the highest severity codes from MNOTE
| statements in the most recently called macro.

| &SYSM_HSEV Provides the highest severity codes from MNOTE
| statements in the entire assembly.

|  Programmer Productivity
| The following enhancements simplify program development and increase
| programmer productivity:

| Assembler Listing:  The assembler listing is changed, to improve readability, and
| to provide more information to the programmer:

| � Allows variable record format for the listing file (MVS and CMS).

| � Changes the source and object section:

| – Adds the PUSH level to the USING heading.

| – Provides start and length information in the ADDR1 and ADDR2 fields for
| CSECT, START, LOCTR, and RSECT statements.

| – Provides current and next address information in the ADDR1 and ADDR2
| fields for the ORG statement.

| – Provides the value and length information in the ADDR1 and ADDR2 fields
| for the EQU statement.

| – Provides additional statement type information in the position following the
| statement number.

| � Changes the symbol and cross reference section:

| – Removes leading zeroes on lengths, to accentuate the decimal notation.

| – Changes statement reference information to columnar.

| – Uses the full width, that is, 121 or 133 characters, if specified.

| � Provides a new optional section, the cross reference listing of General Purpose
| register usage.

| � Provides a new External Function Statistics table, as part of the Diagnostic
| Cross Reference and Assembler Summary page.

 Diagnostic Information
| � Extra warning messages have been provided. These highlight behavior that
| may lead to unexpected results.

xviii HLASM V1R3 Language Reference  



  Part 1. Assembler Language—Structure and Concepts
 

Part 1. Assembler Language—Structure and Concepts

Chapter 1. Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Language Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Assembler Language  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Assembler Program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Relationship of Assembler to Operating System . . . . . . . . . . . . . . . . . . .  6
Coding Made Easier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

Chapter 2. Coding and Structure . . . . . . . . . . . . . . . . . . . . . . . . .  10
Character Set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Standard Character Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10
Double-Byte Character Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
Translation Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Assembler Language Coding Conventions . . . . . . . . . . . . . . . . . . . . .  13
Field Boundaries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Continuation Lines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Comment Statement Format . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
Instruction Statement Format . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

Assembler Language Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
Overview of Assembler Language Structure . . . . . . . . . . . . . . . . . . .  21
Machine Instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Assembler Instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Conditional Assembly Instructions . . . . . . . . . . . . . . . . . . . . . . . . .  24
Macro Instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Terms, Literals, and Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . .  26
Terms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Literals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 3. Addressing, Program Sectioning, and Linking . . . . . . . . . .  46
Addressing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Addressing within Source Modules: Establishing Addressability . . . . . . . .  46
Base Register Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
Qualified Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Dependent Addressing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Relative Addressing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Program Sectioning and Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
Source Module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Control Sections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Executable Control Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50
Reference Control Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53
Location Counter Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55
Literal Pools In Control Sections . . . . . . . . . . . . . . . . . . . . . . . . . .  57
External Symbol Dictionary Entries . . . . . . . . . . . . . . . . . . . . . . . .  57
Establishing Residence and Addressing Mode . . . . . . . . . . . . . . . . . .  58
Symbolic Linkages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

 Copyright IBM Corp. 1982, 1998  1



 Introduction  
 

 Chapter 1. Introduction

A computer can understand and interpret only machine language. Machine
language is in binary form and, thus, very difficult to write. The assembler
language is a symbolic programming language that you can use to code
instructions instead of coding in machine language.

Because the assembler language lets you use meaningful symbols made up of
alphabetic and numeric characters, instead of just the binary digits 0 and 1 used in
machine language, you can make your coding easier to read, understand, and
change. The assembler must translate the symbolic assembler language into
machine language before the computer can run your program. The specific
procedures followed to do this may vary according to the system you are using.
However, the method is basically the same for all systems:

 ┌───────────────────┐
│ Your assembler │
│ language source ├─────┐

 │ statements │ │
 └───────────────────┘ │
 +
 ┌───────────┴───────────┐

│ HIGH LEVEL ASSEMBLER │
 └─────────┬───┬─────────┘
 │ │
 │ │
 ┌──────────┐ │ │ ┌──────────────────┐
│ Messages │ │ │ │ Machine language │
│ and ├�───────────┘ └──────────�┤ version of your │
│ listings │ │ program │

 │ . │ └─────────┬────────┘
 │ . │ │
 └────┬─────┘ │
 < │
 │ │
 │ ┌─────────────────┐ │
 │ │ LINKER ├�─────────────┘
 │ └──────┬───┬──────┘
 │ │ │
 │ │ │ ┌───────────────────┐

└──────────────────┘ └──────────�┤ Executable module │
 └───────────────────┘

Figure 2. Assembling and Link-Editing Your Assembler Language Program

Your program, written in the assembler language, becomes the source module that
is input to the assembler. The assembler processes your source module and
produces an object module in machine language (called object code). The object

| module can be used as input to be processed by the linker or the binder. The
| linker or binder produces a load module (MVS and CMS), or a phase (VSE), that
| can be loaded later into the main storage of the computer. When your program is

loaded, it can then be run. Your source module and the object code produced are
printed, along with other information, on a program listing.

2  Copyright IBM Corp. 1982, 1998



  Assembler Language
 

 Language Compatibility
The assembler language supported by High Level Assembler has functional
extensions to the languages supported by Assembler H Version 2 and DOS/VSE
Assembler. High Level Assembler uses the same language syntax, function,
operation, and structure as Assembler H Version 2. Similarly, the functions
provided by the Assembler H Version 2 macro facility are all provided by High Level
Assembler.

Migration from Assembler H Version 2 or DOS/VSE Assembler to High Level
Assembler requires an analysis of existing assembler language programs to ensure
that they do not contain:

� Macro instructions with names that conflict with High Level Assembler symbolic
operation codes

� SET symbols with names that conflict with the names of High Level Assembler
system variable symbols

� Dependencies on the type attribute values of certain variable symbols or macro
instruction operands

With the exception of these possible conflicts, and with the appropriate High Level
Assembler option values, source language source programs written for Assembler
H Version 2 or DOS/VSE Assembler, that assemble without warning or error
diagnostic messages, should assemble correctly using High Level Assembler.

|  An E-Deck refers to a macro source book of type E that can be used as
| the name of a macro definition to process in a macro instruction. E-Decks are
| stored in edited format, and High Level Assembler requires that library macros be
| stored in source statement format. A library input exit can be used to analyze a
| macro definition, and, in the case of an E-Deck, call the VSE/ESA ESERV program
| to change, the E-Deck definition, line by line, back into source format required by
| the assembler, without modifying the original library file.

| See the section titled Using the High Level Assembler Library Exit for Processing
| E-Decks in the IBM VSE/ESA Guide to System Functions manual. This section
| describes how to set up the exit and how to use it. 

 Assembler Language
The assembler language is the symbolic programming language that lies closest to
the machine language in form and content. You will, therefore, find the assembler
language useful when:

� You need to control your program closely, down to the byte and even the bit
level.

� You must write subroutines for functions that are not provided by other
symbolic programming languages, such as COBOL, FORTRAN, or PL/I.

The assembler language is made up of statements that represent either instructions
or comments. The instruction statements are the working part of the language and
are divided into the following three groups:

 � Machine instructions
 � Assembler instructions

  Chapter 1. Introduction 3



 Assembler Program  
 

 � Macro instructions

 Machine Instructions
A machine instruction is the symbolic representation of a machine language
instruction of the following instruction sets:

 � IBM System/370
� IBM System/370 Extended Architecture (370-XA)
� Enterprise Systems Architecture/370 (ESA/370)
� Enterprise Systems Architecture/390 (ESA/390)

It is called a machine instruction because the assembler translates it into the
machine language code that the computer can run. Machine instructions are
described in Chapter 4, “Machine Instruction Statements.”

 Assembler Instructions
An assembler instruction is a request to the assembler to do certain operations
during the assembly of a source module; for example, defining data constants,
reserving storage areas, and defining the end of the source module. Except for the
instructions that define constants, and the instruction used to generate no-operation
instructions for alignment, the assembler does not translate assembler instructions
into object code. The assembler instructions are described in Chapter 3,
“Addressing, Program Sectioning, and Linking,” Chapter 5, “Assembler Instruction
Statements,” and  Chapter 9, “How to Write Conditional Assembly Instructions.”

 Macro Instructions
A macro instruction is a request to the assembler program to process a predefined
sequence of instructions called a macro definition. From this definition, the
assembler generates machine and assembler instructions, which it then processes
as if they were part of the original input in the source module.

IBM supplies macro definitions for input/output, data management, and supervisor
operations that you can call for processing by coding the required macro
instruction. (These IBM-supplied macro instructions are described in the applicable
Macro Instructions manual.)

You can also prepare your own macro definitions, and call them by coding the
corresponding macro instructions. Rather than code all of this sequence each time
it is needed, you can create a macro instruction to represent the sequence and
then, each time the sequence is needed, simply code the macro instruction
statement. During assembly, the sequence of instructions represented by the
macro instruction is inserted into the source program.

A complete description of the macro facility, including the macro definition, the
macro instruction, and the conditional assembly language, is given in Part 3,
“Macro Language.”

 Assembler Program
The assembler program, also referred to as the assembler, processes the machine,
assembler, and macro instructions you have coded (source statements) in the
assembler language, and produces an object module in machine language.

4 HLASM V1R3 Language Reference  



  Assembler Program
 

 Basic Functions
Processing involves the translation of source statements into machine language,
assignment of storage locations to instructions and other elements of the program,
and performance of auxiliary assembler functions you have designated. The output
of the assembler program is the object program, a machine language translation of
the source program. The assembler produces a printed listing of the source
statements and object program statements and additional information, such as error
messages, that are useful in analyzing the program. The object program is in the
format required by the linker.

 Associated Data
The assembler can produce an associated data file that contains information about
the source program and the assembly environment. The ADATA information
includes information such as:

� Data sets used by the assembler
� Program source statements
� Macros used by the assembler

 � Program symbols
� Program object code
� Assembly error messages

Different subsets of this information are needed by various consumers, such as
configuration managers, debuggers, librarians, metrics collectors, and many more.

Controlling the Assembly
You can control the way the assembler produces the output from an assembly,
using assembler options and assembler language instructions.

Assembler options are described in the High Level Assembler Programmer's Guide.
A subset of assembler options can be specified in your source program using the
*PROCESS statement described on page 91.

Assembler language instructions are assembler language source statements that
cause the assembler to perform a specific operation. Some assembler language
instructions, such as the DC instruction, generate object code. Assembler
language instructions are categorized as follows:

Assembler Instructions
These include instructions for:

� Producing associated data
� Assigning base registers
� Defining data constants
� Controlling listing output
� Redefining operation codes
� Sectioning and linking programs

 � Defining symbols

These instructions are described in Chapter 5, Assembler Instruction
Statements.

Macro Instructions
These instructions let you define macros for generating a sequence of
assembler language statements from a single instruction. These
instructions are described in Part 3, Macro Language.

  Chapter 1. Introduction 5



 Relationship of Assembler to Operating System  
 

Conditional Assembly Instructions
These instructions let you perform general arithmetic and logical
computations, and condition tests that can vary the output generated by
the assembler. These instructions are described under “Conditional
Assembly Instructions” on page 310.

 Processing Sequence
The assembler processes the machine and assembler language instructions at
different times during its processing sequence. You should be aware of the
assembler's processing sequence in order to code your program correctly.

The assembler processes most instructions twice, first during conditional assembly
and, later, at assembly time. However, as shown below, it does some processing
only during conditional assembly.

Conditional Assembly and Macro Instructions:  The assembler processes
conditional assembly instructions and macro processing instructions during
conditional assembly. During this processing the assembler evaluates arithmetic,
logical, and character conditional assembly expressions. Conditional assembly
takes place before assembly time.

The assembler processes the machine and ordinary assembler instructions
generated from a macro definition called by a macro instruction at assembly time.

Machine Instructions:  The assembler processes all machine instructions, and
translates them into object code at assembly time.

Assembler Instructions:  The assembler processes ordinary assembler
instructions at assembly time. During this processing:

� The assembler evaluates absolute and relocatable expressions (sometimes
called assembly-time expressions)

� Some instructions, such as ADATA, ALIAS, CATTR (MVS and CMS), DC, DS,
ENTRY, EXTRN, PUNCH, and REPRO, produce output for later processing by
programs such as the linker.

The assembler prints in a program listing all the information it produces at the
various processing times discussed above. The assembler also produces
information for other processors. The linker uses such information at link-edit time
to combine object modules into load modules. At program fetch time, the load
module produced by the linker is loaded into virtual storage. Finally, at execution
time, the computer runs the load module.

Relationship of Assembler to Operating System
| High Level Assembler operates under the OS/390 operating system, the MVS/ESA

operating system, the CMS component of the VM/ESA operating system, and the
VSE/ESA operating system. These operating systems provide the assembler with
services for:

� Assembling a source module
� Running the assembled object module as a program

6 HLASM V1R3 Language Reference  



  Relationship of Assembler to Operating System
 

In writing a source module, you must include instructions that request any required
service functions from the operating system.

MVS:  MVS provides the following services:

� For assembling the source module:

– A control program
– Sequential data sets to contain source code
– Libraries to contain source code and macro definitions

 – Utilities

� For preparing for the execution of the assembler program as represented by
the object module:

– A control program
 – Storage allocation
– Input and output facilities
– Linker or binder

 – Loader

CMS:  CMS provides the following services:

� For assembling the source module:

– An interactive control program
– Files to contain source code
– Libraries to contain source code and macro definitions

 – Utilities

� For preparing for the execution of the assembler program as represented by
the object modules:

– An interactive control program
 – Storage allocation
– Input and output facilities

 – Linker
 – A loader

| VSE:  VSE provides the following services:

| � For assembling the source module:

| – A control program
| – Sequential data sets to contain source code
| – Libraries to contain source code and macro definitions
|  – Utilities

| � For preparing for the execution of the assembler program as represented by
| the object module:

| – A control program
|  – Storage allocation
| – Input and output facilities
|  – Linker

  Chapter 1. Introduction 7



 Coding Made Easier  
 

Coding Made Easier
It can be very difficult to write an assembler language program using only machine
instructions. The assembler provides additional functions that make this task
easier. They are summarized below.

Symbolic Representation of Program Elements
Symbols greatly reduce programming effort and errors. You can define symbols to
represent storage addresses, displacements, constants, registers, and almost any
element that makes up the assembler language. These elements include
operands, operand subfields, terms, and expressions. Symbols are easier to
remember and code than numbers; moreover, they are listed in a symbol cross
reference table, which is printed in the program listings. Thus, you can easily find a
symbol when searching for an error in your code. See page 27 for details about
symbols, and how you can use them in your program.

Variety in Data Representation
You can use decimal, binary, hexadecimal, or character representation of machine
language binary values in writing source statements. You select the representation
best suited to the purpose. The assembler converts your representations into the
binary values required by the machine language.

Controlling Address Assignment
If you code the correct assembler instruction, the assembler computes the
displacement from a base address of any symbolic addresses you specify in a
machine instruction. It inserts this displacement, along with the base register
assigned by the assembler instruction, into the object code of the machine
instruction.

At execution time, the object code of address references must be in
base-displacement form. The computer obtains the required address by adding the
displacement to the base address contained in the base register.

 Relocatability
The assembler produces an object module that is independent of the location it is
initially assigned in virtual storage. That is, it can be loaded into any suitable virtual
storage area without affecting program execution. This is made easier because
most addresses are assembled in their base-displacement form.

Sectioning a Program
You can divide a source module into one or more control sections. After assembly,
you can include or delete individual control sections from the resulting object
module before you load it for execution. Control sections can be loaded separately
into storage areas that are not contiguous. A discussion of sectioning is contained
in “Program Sectioning and Linking” on page 48.

8 HLASM V1R3 Language Reference  



  Coding Made Easier
 

Linkage between Source Modules
You can create symbolic linkages between separately assembled source modules.
This lets you refer symbolically from one source module to data and instructions
defined in another source module. You can also use symbolic addresses to branch
between modules.

A discussion of sectioning and linking is contained in “Program Sectioning and
Linking” on page 48.

 Program Listings
The assembler produces a listing of your source module, including any generated
statements, and the object code assembled from the source module. You can
control the form and content of the listing using assembler listing control
instructions, assembler options, and user I/O exits. The listing control instructions
are described in Chapter 5, “Assembler Instruction Statements” on page 90, and in
“Processing Statements” on page 225. Assembler options and user I/O exits are
discussed in the High Level Assembler Programmer's Guide.

The assembler also prints messages about actual errors and warnings about
potential errors in your source module.

  Chapter 1. Introduction 9



 Character Set  
 

Chapter 2. Coding and Structure

This chapter provides information about assembler language coding conventions
and assembler language structure.

 Character Set
High Level Assembler provides support for both standard single-byte characters
and double-byte characters.

Standard Character Set
The standard character set used by High Level Assembler is a subset of the
EBCDIC character set. This subset consists of letters of the alphabet, national
characters, the underscore character, digits, and special characters. The complete
set of characters that make up the standard assembler language character set is
shown in Figure 3.

For a description of the binary and hexadecimal representations of the characters
that make up the standard character set, see Appendix D, “Standard Character Set
Code Table” on page 372.

When you code terms and expressions (see “Terms, Literals, and Expressions” on
page 26) in assembler language statements, you can only use the set of
characters described above. However, when you code remarks, comments or
character strings between paired single quotation marks, you can use any character
in the EBCDIC character set.

The term alphanumeric characters includes both alphabetic characters and digits,
but not special characters. Normally, you would use strings of alphanumeric
characters to represent terms, and special characters as:

� Arithmetic operators in expressions
� Data or field delimiters
� Indicators to the assembler for specific handling

Whenever a lowercase letter (a through z) is used, the assembler considers it to be
identical to the corresponding uppercase character (A through Z), except when it is
used within a character string enclosed in single quotation marks, or within the
positional and keyword operands of macro instructions.

Figure 3. Standard Character Set

Alphabetic characters a through z
A through Z
national characters @, $, and #
underscore character _

Digits 0 through 9

Special characters + - , = . D ( ) ' / & 

blank

10  Copyright IBM Corp. 1982, 1998



  Character Set
 

Compatibility with Earlier Assemblers:  You can specify the
COMPAT(MACROCASE) assembler option to instruct the assembler to maintain
uppercase alphabetic character set compatibility with earlier assemblers for
unquoted macro operands. The assembler converts lowercase alphabetic
characters (a through z) in unquoted macro operands to uppercase alphabetic
characters (A through Z).

Double-Byte Character Set
In addition to the standard EBCDIC set of characters, High Level Assembler
accepts double-byte character set (DBCS) data. The double-byte character set
consists of the following:

Examples showing the use of EBCDIC characters and double-byte characters are
given in Figure 5. For a description of the DBCS notation used in the examples,
see “Double-Byte Character Set Notation” on page xvi.

Figure 4. Double-Byte Character Set (DBCS)

Double-byte blank X'4040'

Double-byte characters Each double-byte character contains two bytes, each of
which must be in the range X'41' to X'FE'. The first byte
of a double-byte character is known as the ward byte. For
example, the ward character for the double-byte
representation of EBCDIC characters is X'42'.

Shift codes Shift-out (SO) - X'0E'
Shift-in (SI) - X'0F'

Note: 

1. SO and SI delimit DBCS data only when the DBCS assembler option is specified. The
DBCS assembler option is described in the High Level Assembler Programmer's Guide.

2. When the DBCS assembler option is specified, double-byte characters may be used
anywhere that EBCDIC characters enclosed by single quotation marks can be used.

3. Regardless of the invocation option, double-byte characters may be used in remarks,
comments, and the statements processed by AREAD and REPRO statements.

Figure 5 (Page 1 of 2). Examples Using Character Set

Characters Usage Example Constituting

Alphanumeric In ordinary symbols

In variable symbols

Label
FIELD#K1
Save_Total
&EASY─TO─READ

Terms

Digits As decimal
self-defining
terms

1
9

Terms

  Chapter 2. Coding and Structure 11



 Character Set  
 

Figure 5 (Page 2 of 2). Examples Using Character Set

Characters Usage Example Constituting

Special
Characters

 +

 −

 D

 /

+ or −

 
As operators

Addition

Subtraction

Multiplication

Division

(Unary)

 
 
 
NINE+FIVE

NINE-5

9DFIVE

TEN/3

+NINE -FIVE

 
 
 
Expressions

Expressions

Expressions

Expressions

Terms

 
 
Blanks

Comma

Single
Quotation Marks

Parentheses

SO and SI

As delimiters

Between fields

Between operands

Enclosing
character strings

Attribute operator

Enclosing subfields
or subexpressions

Enclosing
double-byte data

 
 
LABEL AR 3,4

OPND1,OPND2

'STRING'

L'OPND1

MOVE MVC TO(8K),FROM(A+BD(C-D))

C'<.A.B.C>abc'
G'<D1D2D3D4>'

 
 
Statement

Operand field

String

Term

Statement
Expression

Mixed string
Pure DBCS

 
 
Ampersand

Period

Asterisk

Equal sign

As indicators for

Variable symbol

Symbol qualifier

Sequence symbol

Comment statement
in macro definition

Concatenation

Bit-length
specification

Decimal point

Location counter
reference

Comment statement

Literal reference

Keyword

 
 
&VAR

QUAL.SYMBOL

.SEQ

.DTHIS IS A COMMENT

&VAR.A

DC CL.7'AB'

DC F'1.7E4'

D+72

DTHIS IS A COMMENT

L 6,=F'2'

&KEY=D

 
 
Term

Term

(label)

Statement

Term

Operand

Operand

Expression

Statement

Statement

Keyword
parameter

12 HLASM V1R3 Language Reference  



  Assembler Language Coding Conventions
 

 Translation Table
In addition to the standard EBCDIC set of characters, High Level Assembler can
use a user-specified translation table to convert the characters contained in
character (C-type) data constants (DCs) and literals. High Level Assembler
provides a translation table to convert the EBCDIC character set to the ASCII
character set. You can supply a translation table using the TRANSLATE assembler
option described in the High Level Assembler Programmer's Guide.

Self-defining Terms:  Self-defining terms are not translated when a translation
table is used. See "How to Generate a Translation Table" in the High Level
Assembler Programmer's Guide.

Assembler Language Coding Conventions
Figure 6 shows the standard format used to code an assembler language
statement.

│
│ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ 1K │ ... │ 71 │ 72 │ 73 │ 74 │ 75 │ 76 │ ... │ 8K │
│ │ │ │ │
└──────────────────Statement Field──────────────────┴ │ ─┴─Identification-Sequence Field──┘
 +
 Continuation-
 Indicator Field

Figure 6. Standard Assembler Coding Format

 Field Boundaries
Assembler language statements usually occupy one 80-character record, or line.
For information about statements that occupy more than 80 characters, see
“Continuation Lines” on page 14. Each line is divided into three main fields:

 � Statement field
 � Continuation-indicator field
 � Identification-sequence field

If it can be printed, any character coded into any column of a line, or otherwise
entered as a position in a source statement, is reproduced in the listing printed by
the assembler. Whether it can be printed or not depends on the printer.

Uppercase Printing:  Use the FOLD assembler option to instruct the assembler to
convert lowercase alphabetic characters to uppercase alphabetic characters before
they are printed.

 Statement Field
The instructions and comment statements must be written in the statement field.
The statement field starts in the begin column and ends in the end column. The
continuation-indicator field always lies in the column after the end column, unless
the end column is column 80, in which case no continuation is possible. The
identification-sequence field usually lies in the field after the continuation-indicator
field. Any continuation lines needed must start in the continue column and end in
the end column.

  Chapter 2. Coding and Structure 13



 Assembler Language Coding Conventions  
 

The assembler assumes the following standard values for these columns:

� The begin column is column 1
� The end column is column 71
� The continue column is column 16

These standard values can be changed by using the Input Format Control (ICTL)
assembler instruction. The ICTL instruction can, for example, be used to reverse
the order of the statement field and the identification-sequence field by changing
the standard begin, end, and continue columns. However, all references to the
begin, end, and continue columns in this manual refer to the standard values
described above.

 Continuation-Indicator Field
The continuation-indicator field occupies the column after the end column.
Therefore, the standard position for this field is column 72. A non-blank character
in this column indicates that the current statement is continued on the next line.
This column must be blank on the last (or only) line of a statement. If this column
is not blank, the assembler treats the statement that follows on the next line as a
continuation line of the current statement.

If the DBCS assembler option is specified, then:

� When an SI is placed in the end column of a continued line, and an SO is
placed in the continue column of the next line, the SI and SO are considered
redundant and are removed from the statement before statement analysis is
done.

� An extended continuation-indicator provides the ability to extend the end
column to the left on a line-by-line basis, so that any alignment of double-byte
data in a source statement can be supported.

� The double-byte delimiters SO and SI cannot be used as
continuation-indicators.

 Identification-Sequence Field
The identification-sequence field can contain identification characters or sequence
numbers or both. If the ISEQ instruction has been specified to check this field, the
assembler verifies whether or not the source statements are in the correct
sequence.

The columns checked by the ISEQ function are not restricted to columns 73
through 80, or by the boundaries determined by any ICTL instruction. The columns
specified in the ISEQ instruction can be anywhere on the input statement, including
columns that are occupied by the statement field.

 Continuation Lines
To continue a statement on another line, follow these rules:

1. Enter a non-blank character in the continuation-indicator field (column 72). This
non-blank character must not be part of the statement coding. When more
than one continuation line is needed, enter a non-blank character in column 72
of each line that is to be continued.

2. Continue the statement on the next line, starting in the continue column
(column 16). Columns to the left of the continue column must be blank.
Comment statements may be continued after column 16.

14 HLASM V1R3 Language Reference  



  Assembler Language Coding Conventions
 

If an operand is continued after column 16, it is taken to be a comment. Also, if the
continuation-indicator field is filled in on one line and you try to start a new
statement after column 16 on the next line, this statement is taken as a comment
belonging to the previous statement.

Specify the FLAG(CONT) assembler option to instruct the assembler to issue
warning messages when it suspects a continuation error in a macro call instruction.
Refer to the FLAG option description in the High Level Assembler Programmer's
Guide for details about the situations that might be flagged as continuation errors.

Unless it is one of the statement types listed below, nine continuation lines are
allowed for a single assembler language statement.

Alternative Statement Format
The alternative statement format, which allows as many continuation lines as are
needed, can be used for the following instructions:

| � AGO conditional assembly statement, see “Alternative Format for AGO
| Statement” on page 346
| � AIF conditional assembly statement, see “Alternative Format for AIF Statement”
| on page 345
| � GBLA, GBLB, and GBLC conditional assembly statements, see “Alternative
| Format for GBLx Statements” on page 312
| � LCLA, LCLB, and LCLC conditional assembly statements, see “Alternative
| Format for LCLx Statements” on page 314
| � Macro instruction statement, see “Alternative Ways of Coding a Macro
| Instruction” on page 269
| � Prototype statement of a macro definition, see “Alternative Ways of Coding the
| Prototype Statement” on page 216
| � SETA, SETB, SETAF, SETCF and SETC conditional assembly statements, see
| “Alternative Statement Format” on page  338 

Examples of the alternative statement format for each of these instructions are
given with the description of the individual instruction.

Continuation of double-byte data
No special considerations apply to continuation:

� Where double-byte data is created by a code-generation program, and

� There is no requirement for double-byte data to be readable on a device
capable of presenting DBCS characters

A double-byte character string may be continued at any point, and SO and SI must
be balanced within a field, but not within a statement line.

Where double-byte data is created by a workstation that has the capability of
presenting DBCS characters, such as the IBM 5550 multistation, or where
readability of double-byte data in High Level Assembler source input or listings is
required, special features of the High Level Assembler language may be used.
When the DBCS assembler option is specified, High Level Assembler provides the
flexibility to cater for any combination of double-byte data and single-byte data.
The special features provided are:

� Removal of redundant SI/SO at continuation points. When an SI is placed in
the end column of a continued line, and an SO is placed in the continue

  Chapter 2. Coding and Structure 15



 Assembler Language Coding Conventions  
 

column of the next line, the SI and SO are considered redundant and are
removed from the statement before statement analysis.

� An extended continuation-indicator provides a flexible end column on a
line-by-line basis to support any alignment of double-byte data in a source
statement. The end column of continued lines may be shifted to the left by
extending the continuation-indicator.

� To guard against accidental continuation caused by double-byte data ending in
the continuation-indicator column, neither SO nor SI is regarded as a
continuation-indicator. If either is used, the following warning message is
issued:

ASMA2K1W SO or SI in continuation column - no continuation
assumed

The examples below show the use of these features. Refer to “Double-Byte
Character Set Notation” on page xvi for the notation used in the examples.

Source Input Considerations

� Extended continuation-indicators may be used in any source statement,
including macro statements and statements included by the COPY instruction.
This feature is intended for source lines containing double-byte data.

� On a line with a nonblank continuation-indicator, the end column is the first
column to the left of the continuation-indicator which has a value different from
the continuation-indicator.

� When converting existing programs for assembly with the DBCS option, ensure
that continuation-indicators are different from the adjacent data in the end
column.

� The extended continuation-indicators must not be extended into the continue
column, otherwise the extended continuation-indicators are treated as data, and
the assembler issues the following error message:

ASMA2K5E Extended continuation column must not extend into continue
column

� For SI and SO to be removed at continuation points, the SI must be in the end
column, and the SO must be in the continue column of the next line.

Examples:

Name Operation Operand Continuation
 │
 +
DBCS1 DC C'<D1D2D3D4D5D6D7D8D9>XXXXXXXXXXXXXXXXXXXX
 <DaDb>'

DBCS2 DC C'abcdefghijklmnopqrstuvwxyzK123456789XXXX
 <DaDb>'

DBCS3 DC C'abcdefghijklmnopqrstuv<D1D2D3D4D5D6D7>XX
 <DaDb>'

DBCS1:  The DBCS1 constant contains 11 double-byte characters bracketed by SO
and SI. The SI and SO at the continuation point are not assembled into the
operand. The assembled value of DBCS1 is:

<D1D2D3D4D5D6D7D8D9DaDb>

16 HLASM V1R3 Language Reference  



  Assembler Language Coding Conventions
 

DBCS2:  The DBCS2 constant contains an EBCDIC string which is followed by a
double-byte string. Because there is no space for any double-byte data on the first
line, the end column is extended three columns to the left and the double-byte data
started on the next line. The assembled value of DBCS2 is:

abcdefghijklmnopqrstuvwxyzK123456789<DaDb>

DBCS3:  The DBCS3 constant contains 22 EBCDIC characters followed by 9
double-byte characters. Alignment of the double-byte data requires that the end
column be extended one column to the left. The SI and SO at the continuation
point are not assembled into the operand. The assembled value of DBCS3 is:

abcdefghijklmnopqrstuv<D1D2D3D4D5D6D7DaDb>

Source Listing Considerations

� For source that does not contain substituted variable symbols, the listing
exactly reflects the source input.

� Double-byte data input from code-generation programs, that contain no
substituted variables, are not readable in the listing if the source input was not
displayable on a device capable of presenting DBCS characters.

� Refer to “Listing of Generated Fields Containing Double-Byte Data” on
page 219 for details of extended continuation and macro-generated
statements.

Comment Statement Format
Comment statements are not assembled as part of the object module, but are only
printed in the assembly listing. You can write as many comment statements as you
need, provided you follow these rules:

� Comment statements require an asterisk in the begin column. Internal macro
definition comment statements require a period in the begin column, followed
by an asterisk. Internal macro comments are accepted as comment statements
in open code.

� Any characters of the EBCDIC character set, or double-byte character set can
be used (see “Character Set” on page 10).

� Comment statements must lie within the statement field. If the comment
extends into the continuation-indicator field, the statement following the
comment statement is considered a continuation line of that comment
statement.

� Comment statements must not appear between an instruction statement and its
continuation lines.

Instruction Statement Format
Instruction statements must consist of one to four entries in the statement field.
They are:

� A name entry
� An operation entry
� An operand entry
� A remarks entry

These entries must be separated by one or more blanks, and must be written in the
order stated.

  Chapter 2. Coding and Structure 17



 Assembler Language Coding Conventions  
 

Statement Coding Rules
The following general rules apply to the coding of an instruction statement:

� The entries must be written in the following order: name, operation, operand,
and remarks.

� The entries must be contained in the begin column (1) through the end column
(71) of the first line and, if needed, in the continue column (16) through the end
column (71) of any continuation lines.

� The entries must be separated from each other by one or more blanks.

� If used, a name entry must start in the begin column.

� The name and operation entries, each followed by at least one blank, must be
contained in the first line of an instruction statement.

� The operation entry must begin at least one column to the right of the begin
column.

Statement Example:  The following example shows the use of name, operation,
operand, and remarks entries. The symbol COMP names a compare instruction, the
operation entry (CR) is the mnemonic operation code for a register-to-register
compare operation, and the two operands (5,6) designate the two general registers
whose contents are to be compared. The remarks entry reminds readers that this
instruction compares NEW SUM to OLD.

COMP CR 5,6 NEW SUM TO OLD

Descriptions of the name, operation, operand, and remarks entries follow:

Name Entry:  The name entry is a symbol created by you to identify an instruction
statement. A name entry is usually optional. Except for two instances, the name
entry, when provided, must be a valid symbol at assembly time (after substituting
variable symbols, if specified). For a discussion of the exceptions to this rule, see
“TITLE Instruction” on page 189 and “Macro Instruction Format” on page 268.

The symbol must consist of 63 or less alphanumeric characters, the first of which
must be alphabetic. It must be entered with the first character appearing in the
begin column. If the begin column is blank, the assembler program assumes no
name has been entered. No blanks or double-byte data may appear in the symbol.

Operation Entry:  The operation entry is the symbolic operation code specifying
the machine, assembler, or macro instruction operation. The following rules apply
to the operation entry:

� An operation entry is mandatory.

� For machine and assembler instructions, it must be a valid symbol at assembly
time (after substitution for variable symbols, if specified), consisting of 63 or
less alphanumeric characters, the first which must be alphabetic. Most
standard symbolic operation codes are five characters or less. For a
description of machine instructions, see the applicable Principles of Operation
manual. For a summary of assembler instructions, see Appendix A,
“Assembler Instructions.”

The standard set of codes can be changed by OPSYN instructions (see
“OPSYN Instruction” on page 173).

� For macro instructions, the operation entry can be any valid symbol.

18 HLASM V1R3 Language Reference  



  Assembler Language Coding Conventions
 

� An operation entry cannot be continued on the next statement.

Operand Entries:  Operand entries contain zero or more operands that identify
and describe data to be acted upon by the instruction, by indicating such
information as storage locations, masks, storage area lengths, or types of data.
The following rules apply to operands:

� One or more operands are usually required, depending on the instruction.

� Operands must be separated by commas. No blanks are allowed between the
operands and the commas that separate them.

| � A blank normally indicates the end of the operand entry, unless the operand is
| in single quotes. This applies to machine, assembler, and macro instructions.

| The following instruction is correctly coded:

| LA R1,4+5 No blank

| The following instruction may appear to be the same, but is not:

| LA R1,4 + 5 Blanks included

| In this example, the embedded blank means that the operand finishes after “4.”
| There is no assembler error, but the result is a LA R1,4, which may not be what
| you intended.

| A blank inside unquoted parentheses is an error, and leads to a diagnostic. The
| following instruction is correctly coded:

| DC CL(L'STRLEN)' ' Blank within quotes

| The following instruction, with an extra blank, is not correct:

| DC CL(L'STRLEN )' ' Blank not within quotes

The following example shows a blank enclosed in quotes, as part of a string. This
blank is properly accounted for:

MVC AREA1,=C'This Area' Blank inside quotes

If parentheses are quoted, then blanks can be included:

LA R1,=C'This is OK (isn''t it)'

Remarks Entries:  Remarks are used to describe the current instruction. The
following rules apply to remarks:

� Remarks are optional.

� They can contain any character from the EBCDIC character set, or the
double-byte characters set.

� They can follow any operand entry.

� In statements in which an optional operand entry is omitted, but you want to
code a comment, indicate the absence of the operand by a comma preceded
and followed by one or more blanks, as shown below:

END , End of Program

  Chapter 2. Coding and Structure 19



 Assembler Language Structure  
 

Assembler Language Structure
This section describes the structure of the assembler language, including the
statements that are allowed in the language, and the elements that make up those
statements.

“Statement Coding Rules” on page 18 describes the composition of an assembler
language source statement.

The figures in this section show the overall structure of the statements that
represent the assembler language instructions, and are not specifications for these
instructions. The individual instructions, their purposes, and their specifications are
described in other sections of this manual.

Model statements, used to generate assembler language statements, are described
in Chapter 7, “How to Specify Macro Definitions.”

The remarks entry in a source statement is not processed by the assembler, but it
is printed in the assembler listing. For this reason, it is only shown in the overview
of the assembler language structure in Figure 7 on page 21, and not in the other
figures.

The machine instruction statements are described in Figure 8 on page 22,
discussed in Chapter 4, “Machine Instruction Statements,” and summarized in the
applicable Principles of Operation manual.

Assembler instruction statements are described in Figure 9 on page 23, discussed
in Chapter 3, “Addressing, Program Sectioning, and Linking” and Chapter 5,
“Assembler Instruction Statements,” and are summarized in Appendix A,
“Assembler Instructions.”

Conditional assembly instruction statements and the macro processing statements
(MACRO, MEND, MEXIT, MNOTE, AREAD, ASPACE, and AEJECT) are described
in Figure 10 on page 24. The conditional assembly instructions are discussed in
Chapter 9, “How to Write Conditional Assembly Instructions,” and macro
processing instructions in Chapter 7, “How to Specify Macro Definitions.” Both
types are summarized in Appendix A, “Assembler Instructions.”

Macro instruction statements are described in Figure 11 on page 25, and
discussed in Chapter 8, “How to Write Macro Instructions” on page 268.

20 HLASM V1R3 Language Reference  



  Assembler Language Structure
 

Overview of Assembler Language Structure

 ┌─────────────────────────┐
 │ │
 │ Source module │

│ made up of │
 │ source statements │
 │ │
 └────────────┬────────────┘
 │

+ Which can be
 │

EITHER │ OR
 ┌──────────────────────────�─┴─�──────────────────────────┐
 + +
 ┌────────────┴────────────┐ ┌────────────┴────────────┐
 │ │ │ │

│ INSTRUCTION │ │ COMMENT │
 │ STATEMENTS │ │ STATEMENTS │
 │ │ │ │
 └────────────┬────────────┘ └────────────┬────────────┘
 │ │

+ Which are of │
│ three main types │

 ┌─────────────────────┼─────────────────────┐ │
+ + + │

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ │
│ MACHINE │ │ ASSEMBLER │ │ MACRO │ │
│ Instructions │ │ Instructions │ │ Instructions │ │
└───────┬───────┘ └───────┬───────┘ └───────┬───────┘ │

+ + + │
 └─────────────────────┼─────────────────────┘ │
 │ │

+ Which are composed of │
│ from one to four fields │

 ┌─────────────────────┼─────────────────────┬─────────────────────┐ │
+ + + + │

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ │
│ NAME │ │ OPERATION │ │ OPERAND │ │ REMARKS │ │
└───────────────┘ └───────────────┘ └───────┬───────┘ └───────┬───────┘ +
 │ + │
 │ └───────────�─┤

+ Which, for machine │
│ instructions, is │
│ composed of │

 ┌───────┴───────┐ │
│ EXPRESSIONS │ │

 └───────┬───────┘ │
 │ │

+ Which are │
│ composed of │

┌──────────┴──────────┐ + Which are
+ + │ composed of

 ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ TERMS │ │ Combination │ │ Any │

 │ │ │ of terms │ │ Characters │
 └───────┬───────┘ └───────┬───────┘ └───────┬───────┘
 + + +
 └─────────────────────┼────────────────────────┘
 │

+ Which are
│ composed of

 ┌─────────┴─────────┐
│ EBCDIC and DBCS │

 │ CHARACTERS │
 └───────────────────┘

Figure 7. Overview of Assembler Language Structure

  Chapter 2. Coding and Structure 21



 Assembler Language Structure  
 

 Machine Instructions

┌───────────────┐ ┌───────────────┐ ┌───────────────┐
│ │ │ │ │ │
│ NAME │ │ OPERATION │ │ OPERAND │
│ Field │ │ Field │ │ Field │
│ │ │ │ │ │
└───────┬───────┘ └───────┬───────┘ └───────┬───────┘

│ │ │
 + Which + Which + Which

│ can be │ must be │can be
┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │ │ │
│ A Symbol] │ │ A symbolic │ │ Zero or more │
│ (or blank) │ │ Operation │ │ operands │
│ │ │ Code │ │ │
│ │ │ │ │ │
└───────────────┘ └───────────────┘ └───────┬───────┘
 │

+ Composed of one of
 ┌────────────────────────┬───────────┴────────────┐

+ + +
┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐

 │ │ │ │ │ │
 │ │ │ │ │ Exp(Exp,Exp) │
 │ Expression │ │ Exp(Exp) │ │ or │
 │ │ │ │ │ Exp(,Exp) │
 │ │ │ │ │ │

└───────┬───────┘ └───────────────┘ └───────────────┘
 │

+ Which can be one of
 ┌────────────┴───────────┐
 + +
┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │
│ │ │ Arithmetic │
│ Term │ │ combination │
│ │ │ of terms │
│ │ │ │
└───────┬───────┘ └───────────────┘
 │

+ Which can be any of
 ├────────────────────────┬────────────────────────┬────────────────────────┬────────────────────────┐

+ + + + +
┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │ │ │ │ │ │ │
│ A Symbol │ │ Location │ │ Symbol │ │ A │ │ A Literal │
│ │ │ Counter │ │ Attribute │ │ Self-Defining │ │ │
│ │ │ Reference │ │ Reference │ │ Term │ │ │
│ (e.g. HERE) │ │ (i.e. D) │ │ (e.g. L'HERE) │ │ │ │ (e.g. =H'9') │
└───────────────┘ └───────────────┘ └───────────────┘ └───────┬───────┘ └───────────────┘
 │

+ Which can be any of
 ┌────────────────────────┬────────────────────────┬────────────────────────┼────────────────────────┐

+ + + + +
┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │ │ │ │ │ │ │
│ Decimal │ │ Hexadecimal │ │ Binary │ │ Character │ │ Graphic^ │
│ │ │ │ │ │ │ │ │ │
│ (e.g. 9) │ │ (e.g. X'F9') │ │ (e.g. B'111') │ │ (e.g. C'JAN') │ │ (e.g. G'<.A>')│
│ │ │ │ │ │ │ │ │ │
└───────────────┘ └───────────────┘ └───────────────┘ └───────────────┘ └───────────────┘

] Can be an ordinary symbol, a variable symbol, or a sequence symbol
^ With DBCS option only

Figure 8. Machine Instructions

22 HLASM V1R3 Language Reference  



  Assembler Language Structure
 

 Assembler Instructions

┌───────────────┐ ┌───────────────┐ ┌───────────────┐
│ │ │ │ │ │
│ NAME │ │ OPERATION │ │ OPERAND │
│ Field │ │ Field │ │ Field │
│ │ │ │ │ │
│ │ │ │ │ │
└───────┬───────┘ └───────┬───────┘ └───────┬───────┘

│ │ │
 + Which + Which + Which

│ can be │ must be │ can be
┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │ │ │
│ A Symbol] │ │ A symbolic │ │ Zero or more │
│ (or blank) │ │ Operation │ │ operands │
│ │ │ Code^ │ │ │
│ │ │ │ │ │
└───────────────┘ └───────────────┘ └───────┬───────┘
 │
 │
 ┌─────────────────────────────────┴────────────────────────────────────────┐
 + +
 ┌──────────┴──────────┐ ┌──────────┴──────────┐

│ For Data Definition │ │ For all other │
│ (DC and DS │ │ ordinary Assembler │

 │ Instructions) │ │ Instructions │
 └──────────┬──────────┘ └──────────┬──────────┘
 │ │

+ Operands can be + Operands
│ composed of one │ can be
│ to four subfieldsb │ composed ofb

 ┌────────────────┼────────────────┬────────────────┐ ┌────────────────┼────────────────┐
┌──────┴──────┐ ┌──────┴──────┐ ┌──────┴──────┐ ┌──────┴──────┐ ┌──────┴──────┐ ┌──────┴──────┐ ┌──────┴──────┐
│ │ │ │ │ │ │ │ │ │ │ │ │ │
│ Duplication │ │ Type │ │ Modifiers │ │ Nominal │ │ Expression │ │ Character │ │ Symbolic │
│ factor │ │ │ │ │ │ Value │ │ │ │ String │ │ Option │
│ │ │ │ │ │ │ │ │ (e.g. D+14) │ │ (e.g. 'XX') │ │ (e.g. GEN) │
│ │ │ │ │ │ │ │ │ │ │ │ │ │
└──────┬──────┘ └──────┬──────┘ └──────┬──────┘ └──────┬──────┘ └─────────────┘ └─────────────┘ └─────────────┘

+ + + +
│ ┌──────────────┘ │ │

 │ │ ┌────────────────────────────┘ │
 │ │ │ ┌────┐ │
 + + + + │ │
e.g. 1K F L3 '2KK' │ +

└──┴─┴──┴─────┘ │ │ One or more nominal values
 │ ┌─────────────────────┬──────────┴──────────┬─────────────────────┐
 < + + + +

┌───┴───┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
 │ │ │ │ │ │ │ │
 │ 'Decimal │ │ (Expression) │ │ 'Character │ │ 'Graphic │
 │ number' │ │ │ │ string' │ │ string'c │

│ (e.g. '2') │ │ (e.g. (ADDR)) │ │ (e.g. 'ABC') │ │ (e.g. '<.A>') │
 │ │ │ │ │ │ │ │

└───────────────┘ └───────────────┘ └───────────────┘ └───────────────┘

] Can be an ordinary symbol, a variable symbol, or a sequence symbol
^ Includes symbolic operation codes of macro definitions
b Discussed more fully where individual instructions are described
c With DBCS option only

Figure 9. Ordinary Assembler Instruction Statements

  Chapter 2. Coding and Structure 23



 Assembler Language Structure  
 

Conditional Assembly Instructions

 ┌───────────────┐ ┌───────────────┐ ┌───────────────┐
 │ │ │ │ │ │

│ NAME │ │ OPERATION │ │ OPERAND │
│ Field │ │ Field │ │ Field │

 │ │ │ │ │ │
 │ │ │ │ │ │
 └───────┬───────┘ └───────┬───────┘ └───────┬───────┘
 │ │ │
 + Which │ │

│ can be │ │
 ┌────────────┴────────────┐ + Which + Which

+ + │ must be │ can be
┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │ │ │ │ │
│ Sequence │ │ Variable │ │ A symbolic │ │ Zero or more │
│ Symbol │ │ Symbol │ │ Operation │ │ operands │
│ or blank │ │ │ │ Code │ │ │
│ (e.g. .SEQ) │ │ (e.g. &VAR) │ │ │ │ │
└───────────────┘ └───────────────┘ └───────────────┘ └───────┬───────┘
 │

+ Composed of
 ┌─────────────────────────┬─────────────────────────┬─────────────────────────┤

+ + + +
┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │ │ │ │ │
│ Sequence │ │ Variable │ │ Expression │ │ (Exp)seq─sym │
│ Symbol │ │ Symbol │ │ or │ │ (e.g. │
│ │ │ │ │ (Expression) │ │ (&A EQ 1).SEQ)│
│ │ │ │ │ │ │ │
└───────────────┘ └───────────────┘ └───────┬───────┘ └───────────────┘
 │

+ Which can be any
│ combination of
│ variable symbols
│ and other characters
│ that constitute an

 ┌─────────────────────────┼─────────────────────────┐
+ + +

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
 │ │ │ │ │ │
 │ Arithmetic │ │ Logical │ │ Character │
 │ Expression │ │ Expression │ │ Expression │

│ │ │ (e.g. │ │ │
│ (e.g. &A + 1) │ │ (&B1 OR &B2)) │ │ (e.g. 'JAN&C')│
└───────────────┘ └───────────────┘ └───────────────┘

Figure 10. Conditional Assembly Instructions

Macro instruction statements are described in Figure 11 on page 25.

24 HLASM V1R3 Language Reference  



  Assembler Language Structure
 

 Macro Instructions

Prototype ┌───────────────┐ ┌───────────────┐ ┌───────────────┐
 Statement │ │ │ │ │ │

│ Symbolic │ │ Symbolic │ │ Zero or more │
│ Parameter │ │ Operation │ │ Symbolic │

 │ │ │ Code │ │ Parameters │
 │ │ │ │ │ │

└───────┬───────┘ └───────┬───────┘ └───────┬───────┘
 │ │ │

+ Which can be + Must be the + Which can be
 │ │ same as │
 │ │ │
─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─
─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─
 │ │ │

Macro ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
 Instruction │ │ │ │ │ │

Statement │ NAME │ │ OPERATION │ │ OPERAND │
│ Field │ │ Field │ │ Field │

 │ │ │ │ │ │
└───────┬───────┘ └───────────────┘ └───────┬───────┘

 + +
 │ ┌───────┴───────┐
 │ │ │

│ │ Zero or more │
 │ │ Operands │
 │ │ │
 │ │ │
 │ └───────┬───────┘
 │ │

+ Which can be + Which can be
 ┌─────────────────────┴─────────────────────┐ ┌──────────┴──────────┐
 + + + +
┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │ │ │ │ │
│ A Symbol │ │ Character │ │ Operands with │ │ Sublists with │
│ │ │ String │ │ one value │ │ one or more │
│ │ │ │ │ │ │ entries │
│ │ │ │ │ │ │ │
└───────┬───────┘ └───────┬───────┘ └───────┬───────┘ └───────┬───────┘
 + + + +
 │ │ │ ┌───────┴───────┐
 │ │ │ │ │
 │ │ │ │ Each entry │

│ │ │ │ can have a │
 │ │ │ │ value │
 │ │ │ │ │
 │ │ │ └───────┬───────┘
 │ + + +
 │ └────────────────────────────┴──────────┬──────────┘
 │ │

+ Which can be + Which can be
 ├─────────────────────┬─────────────────────┐ ┌──────────┴──────────┐

+ + + + +
┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │ │ │ │ │ │ │
│ Ordinary │ │ Sequence │ │ Variable │ │ Character │ │ 'Character │
│ Symbol │ │ Symbol │ │ Symbol │ │ String │ │ String' │
│ (or blank) │ │ │ │ │ │ (excluding │ │ (including │
│ │ │ │ │ │ │ blanks) │ │ blanks) │
│ │ │ │ │ │ │ │ │ │
└───────────────┘ └───────────────┘ └───────────────┘ └───────────────┘ └───────────────┘

Figure 11. Macro Instructions

  Chapter 2. Coding and Structure 25



 Terms, Literals, and Expressions  
 

Terms, Literals, and Expressions
The most basic element of the assembler language is the term. Terms may be
used alone, or in combination with other terms in expressions. This section
describes the different types of terms used in the assembler language, and how
they can be used.

 Terms
A term is the smallest element of the assembler language that represents a distinct
and separate value. It can, therefore, be used alone or in combination with other
terms to form expressions. Terms are classified as absolute or relocatable,
depending on the effect of program relocation upon them. Program relocation is
the loading of the object program into storage locations other than those originally
assigned by the assembler. Terms have absolute or relocatable values that are
assigned by the assembler or that are inherent in the terms themselves.

A term is absolute if its value does not change upon program relocation. A term is
relocatable if its value changes by n if the origin of the control section in which it
appears is relocated by n bytes.

Terms in Parentheses:  Terms in parentheses are reduced to a single value; thus
the terms in parentheses, in effect, become a single term.

You can use arithmetically combined terms, enclosed in parentheses, in
combination with terms outside the parentheses, as follows:

14+BETA-(GAMMA-LAMBDA)

When the assembler encounters terms in parentheses in combination with other
terms, it first reduces the combination of terms inside the parentheses to a single
value which may be absolute or relocatable, depending on the combination of
terms. This value is then used in reducing the rest of the combination to another
single value.

You can include terms in parentheses within a set of terms in parentheses:

A+B-(C+D-(E+F)+1K)

The innermost set of terms in parentheses is evaluated first. Any number of levels
of parentheses are allowed. A level of parentheses is a left parenthesis and its
corresponding right parenthesis. An arithmetic combination of terms is evaluated
as described in “Expressions” on page 41. Figure 12 summarizes the various
types of terms, and gives a reference to the page number that discusses the term
and the rules for using it.

Figure 12 (Page 1 of 2). Summary of Terms

 
 
Terms

Term
can be
absolute

Term can
be
relocatable

Value is
assigned
by
assembler

Value is
inherent
in term

Page
reference

Symbols X X X 27 

Self-defining terms X X 31 

26 HLASM V1R3 Language Reference  



  Terms, Literals, and Expressions
 

Figure 12 (Page 2 of 2). Summary of Terms

 
 
Terms

Term
can be
absolute

Term can
be
relocatable

Value is
assigned
by
assembler

Value is
inherent
in term

Page
reference

Location counter
reference

X X 34 

Symbol length
attribute

X X 36 

Other data
attributes

X X 38 

 Symbols
You can use a symbol to represent storage locations or arbitrary values. If you
write a symbol in the name field of an instruction, you can then specify this symbol
in the operands of other instructions and thus refer to the former instruction
symbolically. This symbol represents a relocatable address.

You can also assign an absolute value to a symbol by coding it in the name field of
an EQU instruction with an operand whose value is absolute. This lets you use this
symbol in instruction operands to represent:

 � Registers
� Displacements in explicit addresses

 � Immediate data
 � Lengths
� Implicit addresses with absolute values

For details of these program elements, see “Operand Entries” on page 71.

The advantages of symbolic over numeric representation are:

� Symbols are easier to remember and use than numeric values, thus reducing
programming errors and increasing programming efficiency.

� You can use meaningful symbols to describe the program elements they
represent. For example, INPUT can name a field that is to contain input data, or
INDEX can name a register to be used for indexing.

� You can change the value of one symbol that is used in many instructions
(through an EQU instruction) more easily than you can change several numeric
values in many instructions.

� Symbols are entered into a cross reference table that is printed in the Ordinary
Symbol and Literal Cross Reference section of the assembler listing. The cross
reference helps you find a symbol in the source and object section of the listing
because it shows:

– The number of the statement that defines the symbol. A symbol is defined
when it appears in the name entry of a statement.

– The number of all the statements in which the symbol is used as an
operand.

Symbol Table:  When the assembler processes your source statements for the
first time, it assigns an absolute or relocatable value to every symbol that appears
in the name field of an instruction. The assembler enters this value, which normally

  Chapter 2. Coding and Structure 27



 Terms, Literals, and Expressions  
 

reflects the setting of the location counter, into the symbol table. It also enters the
attributes associated with the data represented by the symbol. The values of the
symbol and its attributes are available later when the assembler finds this symbol
or attribute reference used as a term in an operand or expression. See “Symbol
Length Attribute Reference” and “Self-Defining Terms” in this chapter for more
details. The three types of symbols recognized by the assembler are:

 � Ordinary symbols
 � Variable symbols
 � Sequence symbols

Ordinary Symbols:  Ordinary symbols can be used in the name and operand
fields of machine and assembler instruction statements. Code them to conform to
these rules:

� The symbol must not consist of more than 63 alphanumeric characters. The
first character must be an alphabetic character. An alphabetic character is a
letter from A through Z, or from a through z, or $, _, #, or @. The other
characters in the symbol may be alphabetic characters, digits, or a combination
of the two.

� No other special characters may be included in an ordinary symbol.

� No blanks are allowed in an ordinary symbol.

� No double-byte data is allowed in an ordinary symbol.

In the following sections, the term symbol refers to the ordinary symbol.

The following examples are valid ordinary symbols:

ORDSYM#435A HERE $OPEN
K4 #K123 X
B49467LITTLENAIL @33 _TOTAL_SAVED

Variable Symbols:  Variable symbols must begin with an & followed by an
alphabetic character and, optionally, up to 61 alphanumeric characters. Variable
symbols can only be used in macro processing and conditional assembly
instructions, and to provide substitution in machine and assembler instructions.
They allow different values to be assigned to one symbol. A complete discussion
of variable symbols appears in Chapter 7, “How to Specify Macro Definitions” on
page 213.

The following examples are valid variable symbols:

&VARYINGSYMABC &@ME
&F346944 &A
&EASY_TO_READ

System Variable Symbol Prefix:  A variable symbol should not begin with the
characters &SYS as they are used to prefix System Variable Symbols. See “System
Variable Symbols” on page 233 for a list of the System Variable Symbols provided
with High Level Assembler.

Sequence Symbols:  Sequence symbols consist of a period (.) followed by an
alphabetic character, and up to 61 additional alphanumeric characters. Sequence
symbols can be used only in macro processing and conditional assembly
instructions. They are used to indicate the position of statements within the source
program or macro definition. Use them to vary the sequence in which statements

28 HLASM V1R3 Language Reference  



  Terms, Literals, and Expressions
 

are processed by the assembler program. (See the complete discussion in
Chapter 9, “How to Write Conditional Assembly Instructions.”)

The following examples are valid sequence symbols:

.BLABELK4 .#359

.BRANCHTOMEFIRST .A

Symbol Definition:  An ordinary symbol is defined in:

� The name entry in a machine or assembler instruction of the assembler
language

� One of the operands of an EXTRN or WXTRN instruction

Ordinary symbols can also be defined in instructions generated from model
statements during conditional assembly.

In Figure 13 on page 30, the assembler assigns a value to the ordinary symbol in
the name entry according to the following rules:

1. The symbol is assigned a relocatable address value if the first byte of the
storage field contains one of the following:

� Any machine or assembler instruction, except the EQU or OPSYN
instruction (see �1� in Figure 13)

� A storage area defined by the DS instruction (see �2� in Figure 13)

� Any constant defined by the DC instruction (see �3� in Figure 13)

� A channel command word defined by the CCW, CCW0, or CCW1
instruction

The address value assigned is relocatable, because the object code assembled
from these items is relocatable. The relocatability of addresses is described in
“Addresses” on page 73.

2. The symbol is assigned the value of the first or only expression specified in the
operand of an EQU instruction. This expression can have a relocatable (see
�4� in Figure 13) or absolute (see �5� in Figure 13) value, which is then
assigned to the ordinary symbol.

The value of an ordinary symbol must lie in the range −2b] through +2b]−1.

  Chapter 2. Coding and Structure 29



 Terms, Literals, and Expressions  
 

 Assembler Language │ Address Value │ Object Code
 Statements │ of Symbol │ in Hexadecimal
─────────────────────────┼─────────────────┼──────────────────────────────────
 │ Relocatable │ ┌────── Address
 │ │ + of AREA
 │ │ ┌──┬─┬─┬────┐
LOAD L 3,AREA �1� LOAD ──────────┼────�│58│3│K│xxxx│
 │ │ └──┴─┴─┴────┘
 │ │
 │ │ ┌───────────┐
AREA DS F �2� AREA ──────────┼────�│xx x x xxxx│
 │ ┌──────┼────�└───────────┘
 │ │ │
 │ │ │ ┌───────────┐
F2KK DC F'2KK' �3� F2KK ──────────┼────�│KK K K KKC8│
 │ │ ┌──┼────�└───────────┘
─────────────────────────┼──────────┼───┼──┼───────────────────────────────────
FULL EQU AREA │ FULL ───┘ │ │
 �4� │ │
TWKK EQU F2KK │ TWKK ───────┘ │
─────────────────────────┼─────────────────┼───────────────────────────────────
 │ Absolute │
 │ │
R3 EQU 3 �5� R3=3 │ ┌────── Address
 │ │ + of FULL
 │ │ ┌──┬─┬─┬────┐
 L R3,FULL │ │ │58│3│K│xxxx│
 │ │ ├──┼─┼─┼────┤
 A R3,TWKK │ │ │5A│3│K│xxxx│
 │ │ └──┴─┴─┴────┘
 │ │ < Address

│ │ └────── of TWKK

Figure 13. Transition from Assembler Language Statement to Object Code

Restrictions on Symbols:  A symbol must be defined only once in a source
module with one or more control sections, with the following exceptions:

� The symbol in the name field of a CSECT, RSECT, DSECT, or COM instruction
can be the same as the name of previous CSECT, RSECT, DSECT, or COM
instruction, respectively. It identifies the resumption of the control section
specified by the name field.

� The symbol in the name field of a CATTR instruction can be the
same as the name of a previous CATTR instruction. It identifies the resumption
of the text for the class specified by the name field. 

� The symbol in the name field of a LOCTR instruction can be the same as the
name of a previous START, CSECT, RSECT, DSECT, COM, or LOCTR
instruction. It identifies the resumption of the location counter specified by the
name field.

� The symbol in the name field of a labeled USING instruction can be the same
as the name of a previous labeled USING instruction. It identifies the
termination of the domain of the previous labeled USING instruction with the
specified name.

� A symbol can be used as an operand of a V-type constant and as an ordinary
label, without duplication.

An ordinary symbol is not defined when:

30 HLASM V1R3 Language Reference  



  Terms, Literals, and Expressions
 

� It is used in the name field of an OPSYN or TITLE instruction. It can,
therefore, be used in the name field of any other statement in a source module.

� It is only used in the name field of a macro instruction and does not appear in
the name field of a macro-generated assembler statement. It can, therefore, be
used in the name field of any other statement in a source module.

� It is only used in the name field of an ALIAS instruction and does not appear in
one of the following:

– The name field of a START, CSECT, RSECT, COM, or DXD instruction.

– The name field of a DSECT instruction and the nominal value of a Q-type
address constant.

– The operand of an ENTRY, EXTRN or WXTRN instruction.

– The nominal value of a V-type address constant.

Previously Defined Symbols:  An ordinary symbol is previously defined if the
statement that defines it is processed before the statement in which the symbol
appears in the operand.

An ordinary symbol must be defined by the time the END statement is reached,
however, it need not be previously defined when it is used as follows:

� In operand expressions of certain instructions such as CNOP instructions and
some ORG instructions

� In modifier expressions of DC, DS, and DXD instructions

� In the first operand of an EQU instruction

� In Q-type constants

When using the forward-reference capability of the assembler, avoid the following
types of errors:

� Circular definition of symbols, such as:

X EQU Y
Y EQU X

� Circular location-counter dependency, as in this example:

A DS (B-A)C
B LR 1,2

The first statement in this example cannot be resolved because the value of the
duplication factor is dependent on the location of B, which is, in turn, dependent
upon the length and duplication factor of A.

Literals may contain symbolic expressions in modifiers, but any ordinary symbols
used must have been previously defined.

 Self-Defining Terms
A self-defining term lets you specify a value explicitly. With self-defining terms, you
can also specify decimal, binary, hexadecimal, or character data. If the DBCS
assembler option is specified, you can specify a graphic self-defining term that
contains pure double-byte data, or include double-byte data in character
self-defining terms. These terms have absolute values and can be used as
absolute terms in expressions to represent bit configurations, absolute addresses,
displacements, length or other modifiers, or duplication factors.

  Chapter 2. Coding and Structure 31



 Terms, Literals, and Expressions  
 

Using Self-Defining Terms:  Self-defining terms represent machine language
binary values and are absolute terms. Their values do not change upon program
relocation. Some examples of self-defining terms and the binary values they
represent are given below:

The assembler carries the values represented by self-defining terms to 4 bytes or
32 bits, the high-order bit of which is the sign bit. (A '1' in the sign bit indicates a
negative value; a '0' indicates a positive value.)

The use of a self-defining term is distinct from the use of data constants or literals.
When you use a self-defining term in a machine instruction statement, its value is
used to determine the binary value that is assembled into the instruction. When a
data constant is referred to or a literal is specified in the operand of an instruction,
its address is assembled into the instruction. Self-defining terms are always
right-justified. Truncation or padding with zeros, if necessary, occurs on the left.

Decimal Self-Defining Term:  A decimal self-defining term is simply an unsigned
decimal number written as a sequence of decimal digits. High-order zeros may be
used (for example, KK7). Limitations on the value of the term depend on its use.
For example, a decimal term that designates a general register should have a value
between 0 and 15. A decimal term that represents an address should not exceed
the size of storage. In any case, a decimal term may not consist of more than 10
digits, nor exceed 2,147,483,647 (2b]−1). A decimal self-defining term is
assembled as its binary equivalent. Some examples of decimal self-defining terms
are: 8, 147, 4K92, and KKK21.

Hexadecimal Self-Defining Term:  A hexadecimal self-defining term consists of
1-to-8 hexadecimal digits enclosed in single quotation marks and preceded by the
letter X; for example, X'C49'.

Each hexadecimal digit is assembled as its 4-bit binary equivalent. Thus, a
hexadecimal term used to represent an 8-bit mask would consist of 2 hexadecimal
digits. The maximum value of a hexadecimal term is X'FFFFFFFF'; this allows a
range of values from −2,147,483,648 through 2,147,483,647.

The hexadecimal digits and their bit patterns are as follows:

Self-Defining Term Decimal Value Binary Value

15 15 1111

241 241 1111 KKK1

B'1111' 15 1111

B'1111KKK1' 241 1111 KKK1

B'1KKKKKKK1' 257 KKK1 KKKK KKK1

X'F' 15 1111

X'F1' 241 1111 KKK1

X'1K1' 257 KKK1 KKKK KKK1

C'1' 241 1111 KKK1

C'A' 193 11KK KKK1

C'AB' 49,6K2 11KK KKK1 11KK KK1K

G'<.A>' 17,K89 K1KK KK1K 11KK KKK1

32 HLASM V1R3 Language Reference  



  Terms, Literals, and Expressions
 

K - KKKK 4 - K1KK 8 - 1KKK C - 11KK
1 - KKK1 5 - K1K1 9 - 1KK1 D - 11K1
2 - KK1K 6 - K11K A - 1K1K E - 111K
3 - KK11 7 - K111 B - 1K11 F - 1111

When used as an absolute term in an expression, a hexadecimal self-defining term
has a negative value if the high-order bit is 1.

Binary Self-Defining Term:  A binary self-defining term is written as an unsigned
sequence of 1s and 0s enclosed in single quotation marks and preceded by the
letter B; for example, B'1KKK11K1'. A binary term may have up to 32 bits. This
allows a range of values from −2,147,483,648 through 2,147,483,647.

When used as an absolute term in an expression, a binary self-defining term has a
negative value if the term is 32 bits long and the high-order bit is 1.

Binary representation is used primarily in designating bit patterns of masks or in
logical operations.

The following shows a binary term used as a mask in a Test Under Mask (TM)
instruction. The contents of GAMMA are to be tested, bit by bit, against the pattern of
bits represented by the binary term.

ALPHA TM GAMMA,B'1K1K11K1'

Character Self-Defining Term:  A character self-defining term consists of 1-to-4
characters enclosed in single quotation marks, and must be preceded by the letter
C. All letters, decimal digits, and special characters may be used in a character
self-defining term. In addition, any of the remaining EBCDIC characters may be
designated in a character self-defining term. Examples of character self-defining
terms are:

C'/'
C' ' (blank)
C'ABC'
C'13'

Because of the use of single quotation marks in the assembler language and
ampersands in the macro language as syntactic characters, the following rule must
be observed when using these characters in a character self-defining term:

For each single quotation mark or ampersand you want in a character
self-defining term, two single quotation marks or ampersands must be written.
For example, the character value A'# would be written as 'A''#', while a
single quotation mark followed by a blank and another single quotation mark
would be written as ''' '''.

Each character in the character sequence is assembled as its 8-bit code equivalent
(see Appendix D, “Standard Character Set Code Table” on page 372). The two
single quotation marks or ampersands that must be used to represent a single
quotation mark or ampersand within the character sequence are assembled as a
single quotation mark or ampersand. Double-byte data may appear in a character
self-defining term, if the DBCS assembler option is specified. The assembled value
includes the SO and SI delimiters. Hence a character self-defining term containing
double-byte data is limited to one double-byte character delimited by SO and SI.
For example, C'<.A>'.

  Chapter 2. Coding and Structure 33



 Terms, Literals, and Expressions  
 

Since the SO and SI are stored, the null double-byte character string, C'<>', is also
a valid character self-defining term.

Graphic Self-Defining Term:  If the DBCS assembler option is specified, a
graphic self-defining term can be specified. A graphic self-defining term consists of
1 or 2 double-byte characters delimited by SO and SI, enclosed in single quotation
marks and preceded by the letter G. Any valid double-byte characters may be
used. Examples of graphic self-defining terms are:

G'<.A>'
G'<.A.B>'
G'<Da>'
G'<.A><.B>'

The SO and SI are not represented in the assembled value of the self-defining
term, hence the assembled value is pure double-byte data. A redundant SI/SO pair
can be present between two double-byte characters, as shown in the last of the
above examples . However, if SO and SI are used without an intervening
double-byte character, this error is issued:

ASMA148E Self-defining term lacks ending quote or has bad
character

Location Counter Reference
The assembler maintains a location counter to assign storage addresses to your
program statements. It is the assembler's equivalent of the instruction counter in
the computer. You can refer to the current value of the location counter at any
place in a source module by specifying an asterisk as a term in an operand.

As the instructions and constants of a source module are being assembled, the
location counter has a value that indicates a location in the program. The
assembler increments the location counter according to the following:

1. After an instruction or constant has been assembled, the location counter
indicates the next available location.

2. Before assembling the current instruction or constant, the assembler checks the
boundary alignment required for it and adjusts the location counter, if
necessary, to the correct boundary.

3. While the instruction or constant is being assembled, the location counter value
does not change. It indicates the location of the current data after boundary
alignment and is the value assigned to the symbol, if present, in the name field
of the statement.

4. After assembling the instruction or constant, the assembler increments the
location counter by the length of the assembled data to indicate the next
available location.

These rules are shown below:

Location in Source
Hexadecimal Statements

KKKKK4 DONE DC CL3'ABC'
KKKKK7 BEFORE EQU D
KKKKK8 DURING DC F'2KK'
KKKKKC AFTER EQU D
KKKK1K NEXT DS D

34 HLASM V1R3 Language Reference  



  Terms, Literals, and Expressions
 

You can specify multiple location counters for each control section in a source
module; for more details about the location counter setting in control sections, see
“Location Counter Setting” on page 55.

Maximum Location Counter Value:  The assembler carries internal location
| counter values as 4-byte (32-bit) values. When you specify the NOXOBJECT
| assembler option, the assembler uses only the low-order 3 bytes for the location

counter, and prints only the low-order 3 bytes in the assembly listings. In this case
the maximum valid location counter value is 2^c−1.

 When you specify the XOBJECT assembler option, the assembler
uses the entire 4-byte value for the location counter and prints the 4-byte value in

| the assembly listings. In this case the maximum valid location counter value is
| 2b]−1. 

If the location counter exceeds its valid maximum value the assembler issues error
message 

ASMAK39S Location counter error

Controlling the Location Counter Value:  You can control the setting of the
location counter in a particular control section by using the START or ORG
instruction, described in Chapter 3, “Addressing, Program Sectioning, and Linking”
and Chapter 5, “Assembler Instruction Statements,” respectively. The counter
affected by either of these assembler instructions is the counter for the control
section in which they appear.

Referring to the Location Counter:  You can refer to the current value of the
location counter at any place in a program by using an asterisk as a term in an
operand. The asterisk is a relocatable term, specified according to the following
rules:

� The asterisk can be specified only in the operands of:

 – Machine instructions
– DC and DS instructions
– EQU, ORG, and USING instructions

� It can also be specified in literal constants. See “Literals” on page 38. For
example:

THERE L 3,=A(D)

The value of the location counter reference (*) is the current value of the location
counter of the control section in which the asterisk (*) is specified as a term. The
asterisk has the same value as the address of the first byte of the instruction in
which it appears. For example:

HERE B D+8

where the address value of * is the address of HERE.

For the value of the asterisk in address constants with duplication factors, see
“Subfield 1: Duplication Factor” on page 119 of “DC Instruction” on page 113, and
“Address Constants—A and Y” on page 136.

  Chapter 2. Coding and Structure 35



 Terms, Literals, and Expressions  
 

Symbol Length Attribute Reference
The length attribute of a symbol may be used as a term. Reference to the attribute
is made by coding L' followed by the symbol, as in:

L'BETA

The length attribute of BETA is substituted for the term. When you specify a symbol
length attribute reference, you obtain the length of the instruction or data named by
a symbol. You can use this reference as a term in instruction operands to:

� Specify assembler-determined storage area lengths
� Cause the assembler to compute length specifications for you
� Build expressions to be evaluated by the assembler

The symbol length attribute reference must be specified according to the following
rules:

� The format must be L' immediately followed by a valid symbol or the location
counter reference (*).

� The symbol must be defined in the same source module in which the symbol
length attribute reference is specified.

� The symbol length attribute reference can be used in the operand of any
instruction that requires an absolute term. However, it cannot be used in the
form L'D in any instruction or expression that requires a previously defined
symbol.

The value of the length attribute is normally the length in bytes of the storage area
required by an instruction, constant, or field represented by a symbol. The
assembler stores the value of the length attribute in the symbol table along with the
address value assigned to the symbol.

When the assembler encounters a symbol length attribute reference, it substitutes
the value of the attribute from the symbol table entry for the symbol specified.

The assembler assigns the length attribute values to symbols in the name field of
instructions as follows:

� For machine instructions (see �1� in Figure 14 on page 37), it assigns either 2,
4, or 6, depending on the format of the instruction.

� For the DC and DS instructions (see �2� in Figure 14), it assigns either the
implicitly or explicitly specified length of the first or only operand. The length
attribute is not affected by a duplication factor.

� For the EQU instruction, it assigns the length attribute value of the first or only
term (see �3� in Figure 14) of the first expression in the first operand, unless a
specific length attribute is supplied in a second operand.

Note the length attribute values of the following terms in an EQU instruction:

– Self-defining terms (see �4� in Figure 14)
– Location counter reference (see �5� in Figure 14)
– L'* (see �6� in Figure 14)

For assembler instructions such as DC, DS, and EQU, the length attribute of the
location counter reference (L'* — see �6� in Figure 14) is equal to 1. For
machine instructions, the length attribute of the location counter reference (L'*

36 HLASM V1R3 Language Reference  



  Terms, Literals, and Expressions
 

—see �7� in Figure 14) is equal to the length attribute of the instruction in which
the L'* appears.

The following example shows how to use the length attribute to move a character
constant into either the high-order or low-order end of a storage field.

A1 DS CL8
B2 DC CL2'AB'
HIORD MVC A1(L'B2),B2
LOORD MVC A1+L'A1-L'B2(L'B2),B2

A1 names a storage field 8 bytes in length and is assigned a length attribute of 8.
B2 names a character constant 2 bytes in length and is assigned a length attribute
of 2. The statement named HIORD moves the contents of B2 into the first 2 bytes of
A1. The term L'B2 in parentheses provides the length specification required by the
instruction.

The statement named LOORD moves the contents of B2 into the extreme right 2
bytes of A1. The combination of terms A1+L'A1-L'B2 adds the length of A1 to the
beginning address of A1, and subtracts the length of B2 from this value. The result
is the address of the seventh byte in field A1. The constant represented by B2 is
moved into A1 starting at this address. L'B2 in parentheses provides the length
specification in both instructions.

For ease in following the preceding example, the length attributes of A1 and B2 are
specified explicitly in the DS and DC statements that define them. However, keep

Figure 14. Assignment of Length Attribute Values to Symbols in Name Fields

Source Module
Length Attribute
Reference

Value of Symbol
Length Attribute At
Assembly Time

MACHA MVC TO,FROM
MACHB L 3,ADCON
MACHC LR 3,4

TO DS CL8K
FROM DS CL24K
ADCON DC A(OTHER)
CHAR DC C'YUKON'
DUPL DC 3F'2KK'

RELOC1 EQU TO �3�
RELOC2 EQU TO+8K �3�
ABSOL1 EQU FROM-TO �3�
ABSOL2 EQU ABSOL1 �3�

SDT1 EQU 1K2 �3�
SDT2 EQU X'FF'+A–B �3�
SDT3 EQU C'YUK'

ASTERISK EQU D+1K �3�

LOCTREF EQU L'D �3�
LENGTH1 DC A(L'D)

LENGTH2 MVC TO(L'D),FROM
LENGTH3 MVC TO(L'TO–2K),FROM

L'MACHA
L'MACHB
L'MACHC

L'TO
L'FROM
L'ADCON
L'CHAR
L'DUPL

L'RELOC1
L'RELOC2
L'ABSOL1
L'ABSOL2

L'SDT1
L'SDT2
L'SDT3

L'ASTERISK

L'LOCTREF
L'D
L'LENGTH1

L'D
L'TO

6 �1�
4 �1�
2 �1�

8K �2�
24K �2�
4 �2�
5 �2�
4 �2�

8K
8K
24K
24K

1 �4�
1 �4�
1 �4�

1 �5�

1 �6�
1 �6�
4

6 �7�
8K

  Chapter 2. Coding and Structure 37



 Terms, Literals, and Expressions  
 

in mind that the L'symbol term makes coding such as this possible in situations
where lengths are unknown. For example:

C3 DC C'This is too long a string to be worth counting'
STRING MVC BUF(L'C3),C3

Other Attribute References
Other attributes describe the characteristics and structure of the data you define in
a program; for example, the kind of constant you specify or the number of
characters you need to represent a value. These other attributes are:

 � Count (K')
 � Defined (D')
 � Integer (I')
 � Number (N')
� Operation code (O')

 � Scaling (S')
 � Type (T')

You can refer to the count (K'), defined (D'), number (N'), and operation code
(O') attributes only in conditional assembly instructions and expressions. For full
details, see “Data Attributes” on page 292.

 Literals
You can use literals as operands in order to introduce data into your program. The
literal is a special type of relocatable term. It behaves like a symbol in that it
represents data. However, it is a special kind of term because it also is used to
define the constant specified by the literal. This is convenient because:

� The data you enter as numbers for computation, addresses, or messages to be
printed is visible in the instruction in which the literal appears.

� You avoid the added effort of defining constants elsewhere in your source
module and then using their symbolic names in machine instruction operands.

The assembler assembles the data item specified in a literal into a literal pool (See
“Literal Pool” on page 41). It then assembles the address of this literal data item in
the pool into the object code of the instruction that contains the literal specification.
Thus, the assembler saves you a programming step by storing your literal data for
you. The assembler also organizes literal pools efficiently, so that the literal data is
aligned on the correct boundary alignment and occupies a minimum amount of
space.

Literals, Constants, and Self-Defining Terms
Literals, constants, and self-defining terms differ in three important ways:

� Where you can specify them in machine instructions, that is, whether they
represent data or an address of data

� Whether they have relocatable or absolute values
� What is assembled into the object code of the machine instruction in which they

appear

Figure 15 on page 39 shows examples of the differences between literals,
constants, and self-defining terms.

38 HLASM V1R3 Language Reference  



  Terms, Literals, and Expressions
 

1. A literal with a relocatable address:

L 3,=F'33' Register 3 set to 33. See note 1
L 3,F33 Register 3 set to 33. See note 2

 .
 .
 .
F33 DC F'33'

2. A literal with a self-defining term and a symbol with an absolute value

MVC FLAG,=X'KK' FLAG set to X'KK'. See note 1
MVI FLAG,X'KK' FLAG set to X'KK'. See note 3
MVI FLAG,ZERO FLAG set to X'KK'. See note 4

 .
 .
 .
FLAG DS X
ZERO EQU X'KK'

3. A symbol having an absolute address value specified by a self-defining term

LA 4,LOCORE Register 4 set to 1KKK. See note 4
LA 4,1KKK Register 4 set to 1KKK. See note 3

 .
 .
 .
LOCORE EQU 1KKK

Notes:

1. A literal both defines data and represents data. The address of the literal is assembled
into the object code of the instruction in which it is used. The constant specified by the
literal is assembled into the object code, in the literal pool.

2. A constant is represented by a symbol with a relocatable value. The address of a
constant is assembled into the object code.

3. A self-defining term has an absolute value. In this example, the absolute value of the
self-defining term is assembled into the object code.

4. A symbol with an absolute value does not represent the address of a constant, but
represents either immediate data or an absolute address. When a symbol with an
absolute value represents immediate data, it is the absolute value that is assembled into
the object code.

Figure 15. Differences between Literals, Constants, and Self-Defining Terms

General Rules for Using Literals
You can specify a literal as either a complete operand in a machine instruction, or
as part of an expression in the operand of a machine instruction. A literal can also
be specified as the name field on a macro call instruction.

Because literals define read-only data, they must not be used in operands that
represent the receiving field of an instruction that modifies storage.

The assembler requires a description of the type of literal being specified as well as
the literal itself. This descriptive information assists the assembler in assembling
the literal correctly. The descriptive portion of the literal must indicate the format of
the constant. It can also specify the length of the constant.

The method of describing and specifying a constant as a literal is nearly identical to
the method of specifying it in a single operand of a DC assembler instruction. The

  Chapter 2. Coding and Structure 39



 Terms, Literals, and Expressions  
 

only difference is that the literal must start with an equal sign (=), which indicates to
the assembler that a literal follows.

A literal may be coded as indicated here:

=1KXL5'F3'

where the subfields are:

Duplication factor 1K
Type X
Modifiers L5
Nominal value 'F3'

The following instruction shows one use of a literal:

GAMMA L 1K,=F'274'

The statement GAMMA is a load instruction using a literal as the second operand.
When assembled, the second operand of the instruction refers to the relative
address at which the value F'274' is stored.

In general, literals can be used wherever a storage address is permitted as an
operand, including in conjunction with an index register in instructions with the RX
format. For example:

DELTA LH 5,=H'11,23,39,48,64'(6)

is equivalent to:

DELTA LH 5,LENGTHS(6)
 .
 .
 .
LENGTHS DC H'11,23,39,48,64'

See “DC Instruction” on page 113 for a description of how to specify the subfields
in a literal.

Literals cannot be used in any assembler instruction where a previously defined
symbol is required. Literals are relocatable terms because the address of the
literal, rather than the literal-generated constant itself, is assembled in the
statement that references a literal. The assembler generates the literals, collects
them, and places them in a specific area of storage, as explained under “Literal
Pool” on page 41. Because the assembler determines the order in which literals
are placed in the literal pool, the effect of using two literals as paired relocatable
terms (see “Paired Relocatable Terms” on page 43) is unpredictable.

“Referring to the Location Counter” on page 35 describes how you can use the
current location counter in a literal.

Contrast with Immediate Data:  You should not confuse a literal with the
immediate data in an SI instruction. Immediate data is assembled into the
instruction.

40 HLASM V1R3 Language Reference  



  Terms, Literals, and Expressions
 

 Literal Pool
The literals processed by the assembler are collected and placed in a special area
called the literal pool. You can control the positioning of the literal pool. Unless
otherwise specified, the literal pool is placed at the end of the first control section.

You can also specify that multiple literal pools be created. However, the assembler
controls the sequence in which literals are ordered within the pool. Further
information on positioning literal pools is in “LTORG Instruction” on page 171.

 Expressions
This section discusses the expressions used in coding operand entries for source
statements. You can use an expressions to specify:

 � An address
� An explicit length

 � A modifier
� A duplication factor
� A complete operand

Expressions have absolute and relocatable values. Whether an expression is
absolute or relocatable depends on the value of the terms it contains. The
assembler evaluates relocatable and absolute expressions at assembly time.
Figure 16 shows examples of valid expressions.

There are three types of expression that you can use only in conditional assembly
instructions: arithmetic, logical, and character expressions. They are evaluated
during conditional assembly.

An expression is composed of a single term or an arithmetic combination of terms.
The assembler reduces multiterm expressions to single values. Thus, you do not
have to compute these values yourself. The following are examples of valid
expressions:

D BETAD1K
AREA1+X'2D' B'1K1'
D+32 C'ABC'
N–25 29
FIELD+332 L'FIELD
FIELD LAMBDA+GAMMA
(EXIT–ENTRY+1)+GO TEN/TWO
ALPHA–BETA/(1K+AREADL'FIELD)-1KK =F'1234'
=A(1KK,133,175,221)+8

Figure 16. Examples of Valid Expressions

Rules for Coding Expressions
The rules for coding an absolute or relocatable expression are:

� Both unary (operating on one value) and binary (operating on two values)
operators are allowed in expressions.

� An expression can have one or more unary operators preceding any term in
the expression or at the beginning of the expression.

� An expression must not begin with a binary operator, nor can it contain two
binary operators in succession.

  Chapter 2. Coding and Structure 41



 Terms, Literals, and Expressions  
 

� An expression must not contain two terms in succession.

� No blanks are allowed between an operator and a term, nor between two
successive operators.

� An expression can contain any number of unary and binary operators, and any
number of levels of parentheses.

� A single relocatable term is not allowed in a multiply or divide operation. Note
that paired relocatable terms have absolute values and can be multiplied and
divided if they are enclosed in parentheses. See “Paired Relocatable Terms”
on page 43.

Figure 17 shows the definitions of absolute and relocatable expressions.

┌───────────┐
│ │
│Absolute │
│Expression │
│ │
└─────┬─────┘
 │

+ Can be any of
 ├─────────────┬─────────────┬─────────────┬─────────────┬─────────────┬─────────────┬─────────────┬─────────────┐

│ │ │ │ │ │ │ │ │
+ + + + + + + + +

┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ Rel. Exp. │ │ Absolute │ │ Abs. Exp. │ │ Abs. Exp. │ │ Abs. Exp. │ │ Abs. Exp. │ │(Abs. Exp.)│ │ +Abs. Exp.│ │ –Abs. Exp.│
│ – │ │ Term │ │ + │ │ – │ │ D │ │ / │ │ │ │ < │ │ < │
│ Rel. Exp. │ │ │ │ Abs. Exp. │ │ Abs. Exp. │ │ Abs. Exp. │ │ Abs. Exp. │ │ │ │ │ │ │ │ │
└─────┬─────┘ └─────┬─────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘ └─┼─────────┘ └─┼─────────┘
 │ │ └──────┬──────┘

│ + Can be any of │
 │ ├─────────────┬─────────────┬─────────────┬─────────────┬─────────────┐ unary operators

│ │ │ │ │ │ │
│ + + + + + +
│ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐
│ │Absolute │ │ Self- │ │ Symbol │ │ Symbol │ │ Symbol │ │ Symbol │
│ │Valued │ │ Defining │ │ Length │ │ Integer │ │ Scaling │ │ Type │
│ │Ordinary │ │ Term │ │ Attribute │ │ Attribute │ │ Attribute │ │ Attribute │

 │ │Symbol │ │ │ │ │ │ │ │ │ │ │
│ └───────────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘

 │
 +
┌─────┴─────┐
│ │
│Relocatable│
│Expression │
│ │
└─────┬─────┘
 │

+ Can be any of
 ├─────────────┬─────────────┬─────────────┬─────────────┬─────────────┐

│ │ │ │ │ │
+ + + + + +

┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ Operators Allowed
│ │ │ │ │ │ │ │ │ │ │ │
│Relocatable│ │ Rel. Exp. │ │ Rel. Exp. │ │(Rel. Exp.)│ │+Rel. Exp. │ │–Rel. Exp. │ Unary: + Positive
│Term │ │ + │ │ – │ │ │ │< │ │< │ – Negative
│ │ │ Abs. Exp. │ │ Abs. Exp. │ │ │ ││ │ ││ │
└─────┬─────┘ └───────────┘ └───────────┘ └───────────┘ └┼──────────┘ └┼──────────┘ Binary: + Addition
 │ │ │ – Subtraction
 │ └──────┬──────┘ D Multiplication

+ Can be any of │ / Division
 ├─────────────┐ unary operators
 │ │
 + +
┌─────┴─────┐ ┌─────┴─────┐
│Relocatable│ │ Location │ Rel. Exp. = Relocatable Expression
│Valued │ │ Counter │ Abs. Exp. = Absolute Expression
│Ordinary │ │ Reference │
│Symbol │ │ │
└───────────┘ └───────────┘

Figure 17. Definitions of Absolute and Relocatable Expressions

42 HLASM V1R3 Language Reference  



  Terms, Literals, and Expressions
 

Evaluation of Expressions
A single-term expression, like 29 or BETA, has the value of the term involved. The
assembler reduces a multiterm expression, like 25D1K+A/B or BETA+1K, to a single
value, as follows:

1. It evaluates each term.

2. It does arithmetic operations from left to right. However:

a. It does unary operations before binary operations.
b. It does binary operations of multiplication and division before the binary

operations of addition and subtraction.

3. In division, it gives an integer result; any fractional portion is dropped. Division
by zero gives 0.

4. In parenthesized expressions, the assembler evaluates the innermost
expressions first and then considers them as terms in the next outer level of
expressions. It continues this process until the outermost expression is
evaluated.

5. A term or expression's intermediate value and computed result must lie in the
range of −231 through +231−1.

The assembler evaluates paired relocatable terms at each level of expression
nesting.

Absolute and Relocatable Expressions
An expression is absolute if its value is unaffected by program relocation. An
expression is relocatable if its value depends upon program relocation. The two
types of expressions, absolute and relocatable, take on these characteristics from
the term or terms composing them. A description of the factors that determine
whether an expression is absolute or relocatable follows.

Absolute Expression:  An absolute expression is one whose value remains the
same after program relocation. The value of an absolute expression is called an
absolute value.

An expression is absolute, and is reduced to a single absolute value if the
expression:

1. Comprises a symbol with an absolute value, a self-defining term, or a symbol
length attribute reference, or any arithmetic combination of absolute terms.

2. Contains relocatable terms alone or in combination with absolute terms, and if
all these relocatable terms are paired.

Relocatability Attribute:  The relocatability attribute describes the attribute of a
relocatable term. If a pair of terms are defined in the same control section, they
are characterized as having the same relocatability attribute.

Paired Relocatable Terms:  An expression can be absolute even though it
contains relocatable terms, provided that all the relocatable terms are paired. The
pairing of relocatable terms cancels the effect of relocation.

The assembler reduces paired terms to single absolute terms in the intermediate
stages of evaluation. The assembler considers relocatable terms as paired under
the following conditions:

  Chapter 2. Coding and Structure 43



 Terms, Literals, and Expressions  
 

� The paired terms must have the same relocatability attribute.

� The paired terms must have opposite signs after all unary operators are
resolved. In an expression, the paired terms do not have to be contiguous
(that is, other terms can come between the paired terms).

� The value represented by the paired terms is absolute.

The following examples show absolute expressions. A is an absolute term; X and Y
are relocatable terms with the same relocatability:

A-Y+X
A
ADA
X-Y+A

A reference to the location counter must be paired with another relocatable term
from the same control section; that is, with the same relocatability. For example:

D-Y

Relocatable Expression:  A relocatable expression is one whose value changes
by n if the origin of the control section in which it appears is relocated n bytes.

A relocatable expression can be a single relocatable term. The assembler reduces
a relocatable expression to a single relocatable value if the expression:

1. Is composed of a single relocatable term, or

2. Contains relocatable terms, alone or in combination with absolute terms, and

a. All the relocatable terms but one are paired. Note that the unpaired term
gives the expression a relocatable value; the paired relocatable terms and
other absolute terms constitute increments or decrements to the value of
the unpaired term.

b. The relocatability attribute of the whole expression is that of the unpaired
term.

c. The sign preceding the unpaired relocatable term must be positive, after all
unary operators have resolved.

The following examples show relocatable expressions. A is an absolute term, W
and X are relocatable terms with the same relocatability attribute, and Y is a
relocatable term with a different relocatability attribute.

Y–32DA W–X+D =F'1234' (literal)
D (reference to W–X+W Y
 location counter) W–X+Y ADA+W–W+Y

Complex Relocatable Expressions:  Complex relocatable expressions, unlike
relocatable expressions, can contain:

� Two or more unpaired relocatable terms
� An unpaired relocatable term preceded by a negative sign

Complex relocatable expressions are used in A-type and Y-type address constants
to generate address constant values. For more details, refer to “Complex
Relocatable Expressions”, and “Address Constants—A and Y” on page 136.
V-type and S-type constants may not contain complex relocatable expressions.

44 HLASM V1R3 Language Reference  



  Terms, Literals, and Expressions
 

You can assign a complex relocatable value to a symbol using the EQU instruction,
as described on page 163.

  Chapter 2. Coding and Structure 45



 Addressing  
 

Chapter 3. Addressing, Program Sectioning, and Linking

This chapter describes how you use symbolic addresses to refer to data in your
assembler language program, and how you divide a large program into smaller
parts and use symbolic addresses in one part to refer to data in another part.

 Addressing
This part of the chapter describes the techniques and introduces the instructions
that let you use symbolic addresses when referring to data. You can address data
that is defined within the same source module, or data that is defined in another
source module. Symbolic addresses are more meaningful and easier to use than
the corresponding object code addresses required for machine instructions. Also,
the assembler can convert the symbolic addresses you specify into their object
code form.

| The System/390 architecture has two ways of resolving addresses in your
| program, depending on the machine instruction type:

| � base-displacement, where the address is computed by adding the
| displacement to a base register.

| � immediate, where the address is computed by adding the signed immediate
| field to the instruction's address (refer to “RI Format” on page 79 and “RSI
| Format” on page 83).

Addressing within Source Modules: Establishing Addressability
You can use symbolic addresses, defined in a control section, in machine
instructions and certain assembler instructions. This is much easier than explicitly
coding the addresses in the form required by the hardware. Symbolic addresses
you code in the instruction operands are implicit addresses, and addresses in which
you specify the base-displacement or intermediate form are explicit addresses.

The assembler converts your implicit addresses into the explicit addresses required
for the assembled object code of the machine instruction. However, for
base-displacement operands, you must first establish the addressability of the
control section, as described below.

Base Address Definition:  The term base address is used throughout this manual
to mean the location counter value within a control section from which the
assembler can compute displacements to locations, or addresses, within the control
section. The base address is not always the storage address of a control section
when it is loaded into storage at execution time.

How to Establish Addressability
To establish the addressability of a control section (see “Control Sections” on
page 50), you must:

� Specify a base address from which the assembler can compute displacements
to the addresses within the control section.

� Assign the base registers to contain this base address.

� Write the instructions that loads the base registers with the base address.

46  Copyright IBM Corp. 1982, 1998



  Addressing
 

The following example shows the base address at MYPROG, that is assigned by
register 12. Register 12 is loaded with the value in register 15, which contains the
storage address of the control section (CSECT) when the program is loaded into
storage at execution time.

MYPROG CSECT The base address
USING MYPROG,12 Assign the base register
LR 12,15 Load the base address

During assembly, the implicit addresses you code are converted into their explicit
base-displacement form; then, they are assembled into the object code of the
machine instructions in which they have been coded.

During execution, the base address is loaded into the base register.

Base Register Instructions
The USING and DROP assembler instructions enable you to use expressions
representing implicit addresses as operands of machine instruction statements,
leaving the assignment of base registers and the calculation of displacements to
the assembler.

In order to use symbols in implicit addresses in the operand field of machine
instruction statements, you must:

� Code a USING instruction to assign one or more base registers to a base
address

� Code machine instructions to load each base register with the base address

Having the assembler determine base registers and displacements relieves you of
the need to separate each address into an explicit displacement value and an
explicit base register value. This feature of the assembler eliminates a likely source
of programming errors, thus reducing the time required to write and test programs.
You use the USING and DROP instructions to take advantage of this feature. For
information about how to use these instructions, see “USING Instruction” on page
192 and “DROP Instruction” on page 152.

 Qualified Addressing
Qualified addressing lets you use the same symbol to refer to data in different
storage locations. Qualified symbols are simply ordinary symbols prefixed by a
symbol qualifier and a period. A symbol qualifier is used to specify which base
register the assembler should use when converting an implicit address into its
explicit base-displacement form. Before you use a symbol qualifier, you must have
previously defined it in the name entry of a labeled USING instruction. For
information about labeled USING instructions, see “USING Instruction” on
page 192. When defined, you can use a symbol qualifier to qualify any symbol
that names a storage location within the range of the labeled USING. Qualified
symbols may be used anywhere a relocatable term may be used.

The following examples show the use of qualified symbols. SOURCE and TARGET are
both symbol qualifiers previously defined in two labeled USING instructions. X and
Y are both symbols that name storage locations within the range of both labeled
USING instructions.

  Chapter 3. Addressing, Program Sectioning, and Linking 47



 Program Sectioning and Linking  
 

 MVC TARGET.X,SOURCE.X
 MVC TARGET.Y+5(3),SOURCE.Y+5
 XC TARGET.X+1K(L'X-1K),TARGET.X+1K
 LA 2,SOURCE.Y

 Dependent Addressing
Dependent addressing lets you minimize the number of base registers required to
refer to data by making greater use of established addressability. For example, you
may want to describe the format of a table of data defined in your source module
with a dummy control section (see “Dummy Control Sections” on page 53). To
refer to the data in the table using the symbols defined in the dummy section, you
need to establish the addressability of the dummy section. To do this you must:

� Code a USING instruction to assign one or more base registers to a base
address

� Code machine instructions to load each base register with the base address

However, as the following discussion explains, dependent addressing offers an
alternative means of establishing addressability of the dummy section.

When you have established addressability of the control section in which the table
is defined, you can establish addressability of the dummy section by simply coding
a USING statement which specifies the name of the dummy section and the
address of the table. When you subsequently refer to the symbols in the dummy
section, the assembler makes use of the already established addressability of the
control section when converting the symbolic addresses into their
base-displacement form.

 Relative Addressing
Relative addressing is the technique of addressing instructions and data areas by
designating their location in relation to the location counter or to some symbolic
location. This type of addressing is always in bytes—never in bits, words, or
instructions. Thus, the expression D+4 specifies an address that is 4 bytes greater
than the current value of the location counter. In the sequence of instructions in
the following example, the location of the CR machine instruction can be expressed
in two ways, ALPHA+2, or BETA-4, because all the machine instructions in the
example are for 2-byte instructions.

ALPHA LR 3,4
 CR 4,6
 BCR 1,14
BETA AR 2,3

Program Sectioning and Linking
This part of the chapter explains how to subdivide a large program into smaller
parts that are easier to understand and maintain. It also explains how to divide
these smaller parts into convenient sections, for example, one section to contain
executable instructions, and another section to contain data constants and areas.

You should consider two different subdivisions when writing an assembler language
program:

� The source module
� The control section

48 HLASM V1R3 Language Reference  



  Program Sectioning and Linking
 

You can divide a program into two or more source modules. Each source module
is assembled into a separate object module. The object modules can then be
combined to form an executable program.

You can also divide a source module into two or more control sections. Each
control section is assembled as part of the same object module. By writing the
correct link-edit control statements, you can select a complete object module or any
individual control section of the object module to be link-edited and later loaded as
an executable program.

Size of Program Parts:  If a source module becomes so large that its logic is not
easily understood, divide it into smaller modules.

Unless you have special programming reasons, you should write each control
section so that the resulting object code is not larger than 4096 bytes. This is the
largest number of bytes that can be addressed by one base register.

Communication between Program Parts:  You must be able to communicate
between the parts of your program; that is, be able to refer to data in a different
part or branch to another part.

To communicate between two or more source modules, you must link them
together with applicable symbolic references.

To communicate between two or more control sections within a source module, you
must establish the addressability of each control section correctly from one section
to another.

 Source Module
A source module is composed of source statements in the assembler language.
You can include these statements in the source module in two ways:

� You can enter them directly into the file that contains your source program.

� You specify one or more COPY instructions among the source statements
being entered. When the assembler encounters a COPY instruction, it replaces
the COPY instruction with a predetermined set of source statements from a
library. These statements then become a part of the source module. See
“COPY Instruction” on page 110 for more details.

Beginning of a Source Module
The first statement of a source module can be any assembler language statement,
except MEXIT and MEND. You can initiate the first control section of a source
module by using the START instruction. However, you can write some source
statements before the beginning of the first control statement. See “First Control
Section” on page 51 for more details.

End of a Source Module
The END instruction usually marks the end of a source module. However, you can
code several END instructions. The assembler stops assembling when it
processes the first END instruction. If no END instruction is found, the assembler
generates one. See “END Instruction” on page 162 for more details.

Conditional Assembly:  Conditional assembly processing can determine which of
several coded or substituted END instructions is to be processed.

  Chapter 3. Addressing, Program Sectioning, and Linking 49



 Program Sectioning and Linking  
 

 Control Sections
A control section is the smallest subdivision of a program that can be relocated as
a unit. The assembled control sections contain the object code for machine
instructions, data constants, and areas.

Consider the concept of a control section at different processing times:

At coding time:  You create a control section when you write the instructions it
contains. In addition, you establish the addressability of each control section within
the source module, and provide any symbolic linkages between control sections
that lie in different source modules. You also write the linker control statements to
combine control sections into a load module, and to provide an entry point address
for the beginning of program execution.

At assembly time:  The assembler translates the source statements in the control
section into object code. Each source module is assembled into one object
module. The whole object module and each of the control sections it contains are
relocatable.

| At linking time:  As specified by linker or binder control statements, the linker or
| binder combines the object code of one or more control sections into one load
| module. It also calculates the addresses needed to accommodate common
| sections and external dummy sections from different object modules. In addition, it

calculates the space needed to accommodate external dummy sections.

At program fetch time:  The control program loads the load module into virtual
storage. All the relocatable addresses are converted to fixed locations in storage.

At execution time:  The control program passes control to the load module now in
virtual storage, and your program is run.

You can specify the relocatable address of the starting point for program execution
in a link-edit control statement or in the operand field of an assembler END
statement.

Executable Control Sections
An executable control section is one you initiate by using the START, CSECT, or
RSECT instruction, as described below:

� The START instruction can be used to initiate the first or only control section of
a source module. For more information about the START instruction, see
“START Instruction” on page 188.

� The CSECT instruction can be used anywhere in a source module to initiate or
continue an executable control section. For more information about the CSECT
instruction, see “CSECT Instruction” on page 111.

� Like the CSECT instruction, the RSECT instruction can be used anywhere in a
source module to initiate or continue an executable control section. Unlike the
CSECT instruction, however, the RSECT instruction causes the assembler to
check the coding in the control section for possible violations of reenterability.
For more information about the RSECT instruction, see “RSECT Instruction” on
page 186.

50 HLASM V1R3 Language Reference  



  Program Sectioning and Linking
 

At assembly time, an executable control section is assembled into object code. At
execution time, an executable control section contains the binary data assembled
from your coded instructions and constants.

An executable control section can also be initiated as an unnamed control section,
or private code, without using the START, CSECT, or RSECT instruction. For
more information, see “Unnamed Control Section” on page 52.

First Control Section
Before you initiate the first executable control section in your source module, you
may code only certain instructions. The following information lists those instructions
that initiate the first control section, and those instructions that may precede the first
control section.

Instructions that establish the first control section:  Any instruction that affects
the location counter, or uses its current value, establishes the beginning of the first
executable control section. The instructions that establish the first control section
include any machine instruction and the following assembler instructions:

CCW DC ORG
CCWK DROP RSECT
CCW1 DS START
CNOP END USING
CSECT EQU
CXD LTORG

These instructions are always considered a part of the control section in which they
appear.

The statements copied into a source module by a COPY instruction determine
whether it initiates the first control section. The PROFILE option causes the
assembler to generate a COPY statement as the first statement after any ICTL or
*PROCESS statements.

The DSECT, COM, and DXD instructions initiate reference control sections and do
not establish the first executable control section.

What must come before the first control section:  The ICTL instruction, if
specified, must be the first statement in a source module.

*PROCESS statements must precede all other statements in a source module,
except the ICTL instruction. There is a limit of 10 *PROCESS statements allowed
in a source module. Additional *PROCESS statements are treated as assembler
comment statements. See 91 for a description of the *PROCESS statement.

What can optionally come before the first control section:  The instructions or
groups of instructions that can optionally be specified before the first control section
are:

� The following assembler instructions:

  Chapter 3. Addressing, Program Sectioning, and Linking 51



 Program Sectioning and Linking  
 

| ACONTROL ENTRY PRINT
ADATA EXITCTL PUNCH

| AINSERT EXTRN PUSH
ALIAS ISEQ REPRO

| CEJECT MACRO SPACE
| COPY MEND TITLE
| DXD MEXIT WXTRN
| EJECT POP

� Comments statements, including macro format comment statements
� Any statement which is part of an inline macro definition
� Common control sections
� Dummy control sections
� External dummy control sections
� Any conditional assembly instruction

 � Macro instructions

The above instructions or groups of instructions belong to a source module, but are
not considered part of an executable control section.

Any instructions copied by a COPY instruction, or generated by the processing of a
macro instruction before the first control section, must belong exclusively to one of
the groups of instructions shown above. Any other instructions cause the
assembler to establish the first control section.

All the instructions or groups of instructions listed above can also appear as part of
a control section.

If you specify the PROFILE assembler option the assembler generates a COPY
statement as the first statement in the assembly after any ICTL or *PROCESS
statements. The copy member should not contain any ICTL or *PROCESS
statements.

Unnamed Control Section
The unnamed control section is an executable control section that can be initiated
in one of the following two ways:

� By coding a START, CSECT, or RSECT instruction without a name entry

� By coding any instruction, other than the START, CSECT, or RSECT
instruction, that initiates the first executable control section

The unnamed control section is sometimes referred to as private code.

All control sections should be given names so they can be referred to symbolically:

� Within a source module

� In EXTRN and WXTRN instructions and in linker control statements for linkage
between source modules

Unnamed common control sections or dummy control sections can be defined if the
name entry is omitted from a COM or DSECT instruction.

If you include an AMODE or RMODE instruction in the assembly and leave the
name field blank, you must provide an unnamed control section.

52 HLASM V1R3 Language Reference  



  Program Sectioning and Linking
 

Reference Control Sections
A reference control section is one you initiate by using the DSECT, COM, or DXD
instruction, as follows:

� You can use the DSECT instruction to initiate or continue a dummy control
section. For more information about dummy sections, see “Dummy Control
Sections.”

� You can use the COM instruction to initiate or continue a common control
section. For more information about common sections, see “Common Control
Sections” on page 54.

� You can use the DXD instructions to define an external dummy section. For
more information about external dummy sections, see “External Dummy
Sections” on page 54.

At assembly time, reference control sections are not assembled into object code.
You can use a reference control section either to reserve storage areas or to
describe data to which you can refer from executable control sections. These
reference control sections are considered empty at assembly time, and the actual
binary data to which they refer is not available until execution time.

Dummy Control Sections
A dummy control section is a reference control section that describes the layout of
data in a storage area without actually reserving any virtual storage.

You may want to describe the format of an area whose storage location is not
determined until the program is run. You can do so by describing the format of the
area in a dummy section, and using symbols defined in the dummy section in the
operands of machine instructions.

The DSECT instruction initiates a dummy control section or indicates its
continuation. For more information about the DSECT instruction, see “DSECT
Instruction” on page 158.

How to use a dummy control section:  A dummy control section (dummy
section) lets you write a sequence of assembler language statements to describe
the layout of data located elsewhere in your source module. The assembler
produces no object code for statements in a dummy control section, and it reserves
no storage in the object module for it. Rather, the dummy section provides a
symbolic format that is empty of data. However, the assembler assigns location
values to the symbols you define in a dummy section, relative to its beginning.

Therefore, to use a dummy section, you must:

� Reserve a storage area for the data

� Ensure that the locations of the symbols in the dummy section actually
correspond to the locations of the data being described

� Establish the addressability of the dummy section in combination with the
storage area

You can then refer to the data symbolically by using the symbols defined in the
dummy section.

  Chapter 3. Addressing, Program Sectioning, and Linking 53



 Program Sectioning and Linking  
 

Common Control Sections
A common control section is a reference control section that lets you reserve a
storage area that can be used by one or more source modules. One or more
common sections can be defined in a source module.

The COM instruction initiates a common control section, or indicates its
continuation. For more information about the COM instruction, see “COM
Instruction” on page 108.

How to use a common control section:  A common control section (common
section) lets you describe a common storage area in one or more source modules.

When the separately assembled object modules are linked as one program, the
required storage space is reserved for the common control section. Thus, two or
more modules may share the common area.

Only the storage area is provided; the assembler does not assemble the source
statements that make up a common control section into object code. You must
provide the data for the common area at execution time.

The assembler assigns locations to the symbols you define in a common section
relative to the beginning of that common section. This lets you refer symbolically to
the data that is placed in the common section at execution time. If you want to
refer to data in a common control section, you must establish the addressability of
the common control section in each source module that contains references to it. If
you code identical common sections in two or more source modules, you can
communicate data symbolically between these modules through this common
section.

Communicating with FORTRAN Modules:  You can code a common control
section in a source module written in the FORTRAN language. This lets you
communicate between assembler language modules and FORTRAN modules.

External Dummy Sections
An external dummy section is a reference control section that lets you describe
storage areas for one or more source modules, to be used as:

� Work areas for each source module
� Communication areas between two or more source modules

When the assembled object modules are linked and loaded, you can dynamically
allocate the storage required for all your external dummy sections at one time from
one source module (for example, by using the MVS GETMAIN macro instruction).
This is not only convenient, but it saves space and reduces fragmentation of virtual
storage.

To generate and use the external dummy sections, you need to specify a
combination of the following:

� DXD or DSECT instruction
� Q-type address constant

 � CXD instruction

For more information about the DXD and CXD instructions, see “DXD Instruction”
on page 160 and “CXD Instruction” on page 112.

54 HLASM V1R3 Language Reference  



  Program Sectioning and Linking
 

Generating an external dummy section:  An external dummy section is
generated when you specify a DXD instruction or a DSECT instruction in
combination with a Q-type address constant that contains the name of the DXD
instruction or the DSECT instruction.

Use the Q-type address constant to reserve storage for the offset to the external
dummy section whose name is specified in the operand. This offset is the distance
in bytes from the beginning of the area allocated for all the external dummy
sections to the beginning of the external dummy section specified. You can use
this offset value to address the external dummy section.

Using external dummy sections:  To use an external dummy section, you must
do the following:

1. Identify and define the external dummy section. The assembler computes the
length and alignment required.

2. Provide a Q-type constant for each external dummy section defined.

3. Use the CXD instruction to reserve a fullword area into which the linker or
loader inserts the total length of all the external dummy sections that are
specified in the source modules of your program. The linker computes this
length from the accumulated lengths of the individual external dummy sections
supplied by the assembler.

4. Allocate a storage area using this computed total length.

5. Load the address of the allocated area into a register.

6. Add to the address in the register the offset into the allocated area of the
applicable external dummy section. The linker inserts this offset into the area
reserved by the associated Q-type address constant.

7. Establish the addressability of the external dummy section in combination with
the portion of the allocated area reserved for the external dummy section.

You can now refer symbolically to the locations in the external dummy section.
Note that the source statements in an external dummy section are not assembled
into object code. Thus, you must create the data described by external dummy
sections at execution time.

Location Counter Setting
The assembler maintains a separate location counter for each control section. The
location counter setting for each control section starts at 0, except when an initial
control section is started with a START statement that specifies a non-zero location
counter value. The location values assigned to the instructions and other data in a
control section are, therefore, relative to the location counter setting at the
beginning of that control section.

However, for executable control sections, the location values that appear in the
listings do not restart at 0 for each subsequent executable control section. They
continue, after suitable alignment, from the end of the previous control section.
Your executable control sections are usually loaded into storage in the order in
which you write them. You can, therefore, match the source statements and object
code produced from them with the contents of a dump of your program.

  Chapter 3. Addressing, Program Sectioning, and Linking 55



 Program Sectioning and Linking  
 

For reference control sections, the location values that appear in the listings always
start from 0.

You can continue a control section that has been discontinued by another control
section, and, thereby, intersperse code sequences from different control sections.
Note that the location values that appear in the listings for a control section, divided
into segments, follow from the end of one segment to the beginning of the
subsequent segment.

The location values, listed for the next control section defined, begin after the last
location value assigned to the preceding control section.

| On VSE, or on MVS and CMS when you specify the NOXOBJECT assembler
| option, the maximum value of the location counter and the maximum length of a

control section is 224−1, or X'FFFFFF' bytes.

 When you specify the XOBJECT assembler option, the maximum
| value of the location counter and the maximum length of a control section is 231−1,
| or X'7FFFFFFF' bytes. 

The length counter for an executable control section increments until it reaches its
maximum value. The counter is then locked and remains at that value for the
control section. No error condition or message is issued by High Level Assembler
when the length counter exceeds its maximum. However, when the control section
location counter exceeds its maximum it issues one of the following messages:

� Message ASMAK39S Location counter error is issued for an executable control
section location counter that exceeds its maximum.

� Message ASMAK67S Illegal duplication factor is issued for a duplication
factor on a DS or DC statement that exceeds the maximum.

The location counter setting is relative to the beginning of the location it represents,
and the length counter represents the cumulative length of the control section. This
means that the length counter is nearly always greater than the location counter,
and can exceed its maximum value before the location counter.

Use of Multiple Location Counters
High Level Assembler lets you use multiple location counters for each individual
control section. Use the LOCTR instruction (see “LOCTR Instruction” on page 169)
to assign different location counters to different parts of a control section. The
assembler then rearranges and assembles the coding together, according to the
different location counters you have specified: All coding using the first location
counter is assembled together, then the coding using the second location counter is
assembled together, and so forth.

An example of the use of multiple location counters is shown in Figure 18 on
page 57. In the example, executable instructions and data areas have been
interspersed throughout the coding in their logical sequence, each group of
instructions preceded by a LOCTR instruction identifying the location counter under
which it is to be assembled. The assembler rearranges the control section so that
the executable instructions are grouped together and the data areas are grouped
together.

56 HLASM V1R3 Language Reference  



  Program Sectioning and Linking
 

 SOURCE MODULE OBJECT MODULE
(shown in source code format)

┌──────────────────────────────────┐ ┌──────────────────────────────────┐ ─┐
│ INST CSECT │ │ │ controlled │
│ LR 12,15 ├──────────────────�│ LR 12,15 │ by INST │
│ USING INST,12 ├──────────────────�│ USING INST,12 │ location │
│ . │ │ . │ counter │
│ . │┌─────────────────�│ TM CODE,X'K3' │ │
│ DATA LOCTR ││┌────────────────�│ BM NEWREC │ │
│ INPUTREC DS KCL8K ├┼┼───────────┐ │ │ │
│ RECCODE DS CL1 ├┼┼─────────┐ │ │ │ │ control
│ . │││ │ │ │ │ ├── section
│ INST LOCTR │││ │ │ │ │ │ INST
│ TM CODE,X'K3' ├┘│ │ │ ├ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ── ─ ┤ │
│ BM NEWREC ├─┘ │ └────�│ INPUTREC DS KCL8K │ controlled │
│ . │ └──────�│ RECCODE DS CL1 │ by DATA │
│ DATA LOCTR │ │ . │ location │
│ VAL1 DC F'56' ├──────────────────�│ VAL1 DC F'56' │ counter │
│ VAL2 DC F'84' ├──────────────────�│ VAL2 DC F'84' │ │
│ . │ │ . │ │
│ . │ ├──────────────────────────────────┤ ─┘
│ NEXT CSECT │ │ │ control
│ │ │ │ section
│ │ │ │ NEXT

Figure 18. Use of Multiple Location Counters

Literal Pools In Control Sections
Literals, collected into pools by the assembler, are assembled as part of the
executable control section to which the pools belong. If a LTORG instruction is
specified at the end of each control section, the literals specified for that section are
assembled into the pool starting at the LTORG instruction. If no LTORG instruction
is specified, a literal pool containing all the literals used in the whole source module
is assembled at the end of the first control section. This literal pool appears in the
listings after the END instruction. For more information about the LTORG
instruction, see “LTORG Instruction” on page 171.

Independently Addressed Segments:  If any control section is divided into
independently addressed segments, a LTORG instruction should be specified at the
end of each segment to create a separate literal pool for that segment.

External Symbol Dictionary Entries
For each control section, the assembler keeps a record of the following external
symbol dictionary (ESD) information:

� Symbolic name, if one is specified
 � Type code
 � Individual identification
 � Starting address
 � Length
� Alias, if one is specified

  Chapter 3. Addressing, Program Sectioning, and Linking 57



 Program Sectioning and Linking  
 

Figure 19 lists the assembler instructions that define control sections and dummy
control sections, or identify entry and external symbols, and tells their associated
type codes. You can define up to 65535 individual control sections and external
symbols in a source module.

Refer to Appendix C Object Deck Output in the High Level Assembler
Programmer's Guide, SC26-4941 for details about the ESD entries produced when
you specify the NOXOBJECT assembler option.

 Refer to DFSMS/MVS Program Management, SC26-4916 for details
about the ESD entries produced when you specify the XOBJECT assembler option.

| Figure 19. Defining CSECTs, DSECTs, and Symbols

| Name Entry| Instruction| Code Entered into External Symbol
| Dictionary

| NOXOBJECT| XOBJECT

| If present

| If omitted

| Instruction-
| dependent

| START, CSECT, or RSECT

| START, CSECT, or RSECT

| Any instruction that initiates
| the unnamed control section

| SD

| PC

| PC

| SD, LD

| SD

| SD

| Optional

| Optional

| COM

| DSECT

| CM

| None

| CM

| None

| Mandatory

| Mandatory

| DXD or external DSECT

| CATTR

| XD

| Not applicable

| XD

| ED

| Not applicable

| Not applicable

| Not applicable

| Not applicable

| ENTRY

| EXTRN

| DC (V-type address constant)

| WXTRN

| LD

| ER

| ER

| WX

| LD

| ER

| ER

| WX

Establishing Residence and Addressing Mode
The AMODE and RMODE instructions specify the addressing mode (AMODE) and
the residence mode (RMODE) to be associated with control sections in the object
deck. These modes may be specified for the following types of control sections:

� Control section (for example START, CSECT)
� Unnamed control section
� Common control section (COM instruction)

The assembler sets the AMODE and RMODE indicators in the ESD record for each
applicable control section in an assembly. The linker stores the AMODE and
RMODE values in the load module. They are subsequently used by the loader
program that brings the load module into storage. The loader program uses the
RMODE value to determine where it loads the load module, and passes the
AMODE value to the operating system to establish the addressing mode.

58 HLASM V1R3 Language Reference  



  Program Sectioning and Linking
 

For more information about the AMODE and RMODE instructions, see “AMODE
Instruction” on page 100 and “RMODE Instruction” on page 185.

 Symbolic Linkages
Symbols can be defined in one module and referred to in another, which results in
symbolic linkages between independently assembled program sections. These
linkages can be made only if the assembler can provide information about the
linkage symbols to the linker, which resolves the linkage references at link-edit
time.

Establishing symbolic linkage
You must establish symbolic linkage between source modules so that you can refer
or branch to symbolic locations defined in the control sections of external source
modules. You do this by using external symbol definitions, and external symbol
references. To establish symbolic linkage with an external source module, you
must do the following:

� In the current source module, you must identify the symbols that are not
defined in that source module, if you want to use them in instruction operands.
These symbols are called external symbols, because they are defined in
another (external) source module. You identify external symbols in the EXTRN
or WXTRN instruction, or the V-type address constant. For more information
about the EXTRN and WXTRN instructions, see “EXTRN Instruction” on
page 167 and “WXTRN Instruction” on page 202.

� In the external source modules, you must identify the symbols that are defined
in those source modules, and that you refer to from the current source module.
The two types of definitions that you can use are control section names
(defined by the CSECT, RSECT, and START instructions), and entry symbols.
Entry symbols are so called because they provide points of entry to a control
section in a source module. You identify entry symbols with the ENTRY
instruction. For more information about the ENTRY instruction, see “ENTRY
Instruction” on page 163.

� You must provide the A-type or V-type address constants needed by the
assembler to reserve storage for the addresses represented by the external
symbols.

The assembler places information about entry and external symbols in the external
symbol dictionary. The linker uses this information to resolve the linkage addresses
identified by the entry and external symbols.

Referring to external data
Use the EXTRN instruction to identify the external symbol that represents data in
an external source module, if you want to refer to this data symbolically.

For example, you can identify the address of a data area as an external symbol
and load the address constant specifying this symbol into a base register. Then,
you use this base register when establishing the addressability of a dummy section
that describes this external data. You can now refer symbolically to the data that
the external area contains.

You must also identify, in the source module that contains the data area, the
address of the data as an entry symbol.

  Chapter 3. Addressing, Program Sectioning, and Linking 59



 Program Sectioning and Linking  
 

Branching to an external address
Use the V-type address constant to identify the external symbol that represents the
address in an external source module that you want to branch to.

For example, you can load into a register the V-type address constant that
identifies the external symbol. Using this register, you can then branch to the
external address represented by the symbol.

If the symbol is the name entry of a START, CSECT, or RSECT instruction in the
other source module, and thus names an executable control section, it is
automatically identified as an entry symbol. If the symbol represents an address in
the middle of a control section, you must identify it as an entry symbol for the
external source module.

You can also use a combination of an EXTRN instruction to identify, and an A-type
address constant to contain, the external branch address. However, the V-type
address constant is more convenient because:

� You do not have to use an EXTRN instruction.

� The external symbol you specify, can be used in the name entry of any other
statement in the same source program.

The following example shows how you use an A-type address constant to contain
the address of an external symbol that you identify in an EXTRN instruction. You
cannot use the external symbol name EXMOD1 in the name entry of any other
statement in the source program.

 .
 .

L 15,EX_SYM Load address of external symbol
BASR 14,15 Branch to it

 .
 .
EX_SYM DC A(EXMOD1) Address of external symbol

EXTRN EXMOD1 Identify EXMOD1 as external symbol
 .
 .

The following example shows how you use the symbol EXMOD1 as both the name of
an external symbol and a name entry on another statement.

 .
 .

L 15,EX_SYM Load address of external symbol
BASR 14,15 Branch to it

 .
 .
EXMOD1 DS KH Using EXMOD1 as a name entry
 .
 .
EX_SYM DC V(EXMOD1) Address of external symbol
 .
 .

If the external symbol that represents the address to which you want to branch is to
be part of an overlay-structured module, you should identify it with a V-type address
constant, not with an EXTRN instruction and an A-type address constant. You can

60 HLASM V1R3 Language Reference  



  Program Sectioning and Linking
 

use the supervisor CALL macro instruction to branch to the address represented by
the external symbol. The CALL macro instruction generates the necessary V-type
address constant.

Establishing an external symbol alias
You can instruct the assembler to use an alias for an external symbol in place of
the external symbol itself, when it generates the object module. To do this you
must code an ALIAS instruction which specifies the external symbol and the alias
you want the assembler to use. The external symbol must be defined in a START,
CSECT, RSECT, ENTRY, COM, DXD, external DSECT, EXTRN, or WXTRN
instruction, or in a V-type address constant.

The following example shows how you use the ALIAS instruction to specify an alias
for the external symbol EXMOD1.

 .
 .

L 15,EX_SYM Load address of external symbol
BASR 14,15 Branch to it

 .
 .
EXMOD1 DS KH Using EXMOD1 as a name entry
 .
 .
EX_SYM DC V(EXMOD1) Address of external symbol
EXMOD1 ALIAS C'XMD1PGM' XMD1PGM is the real external name
 .
 .

See page 99 for information about the ALIAS instruction.

  Chapter 3. Addressing, Program Sectioning, and Linking 61



 Program Sectioning and Linking  
 

62 HLASM V1R3 Language Reference  



  Part 2. Machine and Assembler Instruction Statements
 

Part 2. Machine and Assembler Instruction Statements

Chapter 4. Machine Instruction Statements . . . . . . . . . . . . . . . . . . .  65
General Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Decimal Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Floating-Point Instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Control Instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Input/Output Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Branching with Extended Mnemonic Codes . . . . . . . . . . . . . . . . . . . . .  67
Statement Formats  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Symbolic Operation Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70
Operand Entries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Addresses  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Lengths  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Immediate Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Examples of Coded Machine Instructions . . . . . . . . . . . . . . . . . . . . . .  77
E Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
QST Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
QV Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

| RI Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
RR Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
RRE Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
RS Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
RSE Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

| RSI Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
RX Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
S Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
SI Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
SS Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
SSE Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
VR Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
VS Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
VST Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
VV Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 5. Assembler Instruction Statements . . . . . . . . . . . . . . . . .  90
*PROCESS Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

| ACONTROL Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
ADATA Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

| AINSERT Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
ALIAS Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
AMODE Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
CATTR Instruction (MVS and CMS Only) . . . . . . . . . . . . . . . . . . . . . .  101
CCW and CCW0 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103
CCW1 Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
CEJECT Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
CNOP Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
COM Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
COPY Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
CSECT Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
CXD Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

 Copyright IBM Corp. 1982, 1998  63



 Part 2. Machine and Assembler Instruction Statements  
 

DC Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Rules for DC Operand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115
General Information About Constants . . . . . . . . . . . . . . . . . . . . . . .  115
Padding and Truncation of Values . . . . . . . . . . . . . . . . . . . . . . . . .  117
Subfield 1: Duplication Factor . . . . . . . . . . . . . . . . . . . . . . . . . . .  119
Subfield 2: Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120
Subfield 3: Modifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121
Subfield 4: Nominal Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124

DROP Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
DS Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
DSECT Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
DXD Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
EJECT Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
END Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
ENTRY Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
EQU Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Using Conditional Assembly Values . . . . . . . . . . . . . . . . . . . . . . . .  165
EXITCTL Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
EXTRN Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
ICTL Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
ISEQ Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
LOCTR Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
LTORG Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Literal Pool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Addressing Considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Duplicate Literals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

OPSYN Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
ORG Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
POP Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
PRINT Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Process Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
PUNCH Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
PUSH Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
REPRO Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
RMODE Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
RSECT Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
SPACE Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
START Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
TITLE Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
USING Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

How to Use the USING Instruction . . . . . . . . . . . . . . . . . . . . . . . .  193
Base Registers for Absolute Addresses . . . . . . . . . . . . . . . . . . . . . .  193
Ordinary USING Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  194
Labeled USING Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197
Dependent USING Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . .  199

WXTRN Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

64 HLASM V1R3 Language Reference  



  General Instructions
 

Chapter 4. Machine Instruction Statements

This chapter introduces the main functions of the machine instructions and provides
general rules for coding them in their symbolic assembler language format. For the
complete specifications of machine instructions, their object code format, their
coding specifications, and their use of registers and virtual storage areas, see the
applicable Principles of Operation manual for your processor. If your program
requires vector facility instructions, see the applicable Vector Operations manual for
the complete specifications of vector-facility instructions.

At assembly time, the assembler converts the symbolic assembler language
representation of the machine instructions to the corresponding object code. The
computer processes this object code at execution time. Thus, the functions
described in this section can be called execution-time functions.

Also at assembly time, the assembler creates the object code of the data constants
and reserves storage for the areas you specify in your data definition assembler
instructions, such as DC and DS (see Chapter 5, “Assembler Instruction
Statements”). At execution time, the machine instructions can refer to these
constants and areas, but the constants themselves are not normally processed.

As defined in the applicable Principles of Operation manual, there are five
categories of machine instructions:

 � General instructions
 � Decimal instructions
 � Floating-Point instructions
 � Control instructions
 � Input/Output operations

Each is discussed in the following sections.

 General Instructions
Use general instructions to manipulate data that resides in general registers or in
storage, or that is introduced from the instruction stream. General instructions
include fixed-point, logical, and branching instructions. In addition, they include
unprivileged status-switching instructions. Some general instructions operate on
data that resides in the PSW or the TOD clock.

The general instructions treat data as four types: signed binary integers, unsigned
binary integers, unstructured logical data, and decimal data. Data is treated as
decimal by the conversion, packing, and unpacking instructions.

For further information, see “General Instructions” in the applicable Principles of
Operation manual.

 Copyright IBM Corp. 1982, 1998  65



 Control Instructions  
 

 Decimal Instructions
Use the decimal instructions when you want to do arithmetic and editing operations
on data that has the binary equivalent of decimal representation.

Decimal data may be represented in either zoned or packed format. In the zoned
format, the rightmost four bits of a byte are called the numeric bits and normally
consist of a code representing a decimal digit. The leftmost four bits of a byte are
called the zone bits, except for the rightmost byte of a decimal operand, where
these bits may be treated either as a zone or as a sign.

In the packed format, each byte contains two decimal digits, except for the
rightmost byte, which contains a sign to the right of a decimal digit.

Decimal instructions treat all numbers as integers. For example, 3.14, 31.4, and
314 are all processed as 314. You must keep track of the decimal point yourself.
The integer and scale attributes discussed in “Data Attributes” on page  292 can
help you do this.

Additional operations on decimal data are provided by several of the instructions in
“General Instructions” in the applicable Principles of Operation manual. Decimal
operands always reside in storage.

For further information, see “Decimal Instructions” in the applicable Principles of
Operation manual.

 Floating-Point Instructions
Use floating-point instructions when you want to do arithmetic operations on data in
the floating-point representation. Thus, you do not have to keep track of the
decimal point in your computations. Floating-point instructions also let you do
arithmetic operations on both very large numbers and very small numbers, usually
providing greater precision than fixed-point decimal instructions.

For further information, see “Floating-Point Instructions” in the applicable Principles
of Operation manual.

 Control Instructions
Control instructions include all privileged and semiprivileged machine instructions,
except the input/output instructions described on page 67.

Privileged instructions may be processed only when the processor is in the
supervisor state. An attempt to process an installed privileged instruction in the
problem state generates a privileged-operation exception.

Semiprivileged instructions are those instructions that can be processed in the
problem state when certain authority requirements are met. An attempt to process
an installed semiprivileged instruction in the problem state when the authority
requirements are not met generates a privileged-operation exception or some other
program-interruption condition depending on the particular requirement that is
violated.

66 HLASM V1R3 Language Reference  



  Branching with Extended Mnemonic Codes
 

For further details, see “Control Instructions” in the applicable Principles of
Operation manual.

 Input/Output Operations
Use the input/output instructions (instead of the IBM-supplied system macro
instructions) when you want to control your input and output operations more
closely.

The input or output instructions let you identify the channel or the device on which
the input or output operation is to be done. For information about how and when
you can use these instructions, see the applicable system manual.

For more information, see “Input/Output Operations” in the applicable Principles of
Operation manual and the applicable system manuals.

Branching with Extended Mnemonic Codes
Branch instructions let you specify an extended mnemonic code for the condition on
which a branch is to occur. Thus, you avoid having to specify the mask value, that

| represents the condition code, required by the BC, BCR, and BRC machine
instructions. The assembler translates the extended mnemonic code into the mask

| value, and then assembles it into the object code of the BC, BCR, or BRC machine
instruction.

The extended mnemonic codes are given in Figure 20 on page 68. They can be
| used as operation codes for branching instructions, replacing the BC, BCR, and
| BRC machine instruction codes (see �1� in Figure 20). Note that the first operand
| (see �2� in Figure 20) of the BC, BCR, and BRC instructions must not be present

in the operand field (see �3� in Figure 20) of the extended mnemonic branching
instructions.

  Chapter 4. Machine Instruction Statements 67



 Branching with Extended Mnemonic Codes  
 

Extended Code Meaning Format (Symbolic) Machine
 Instruction Equivalent
─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────

 �3� �4� �1�
 │ + │ ┌────�2�
 │ ┌───────┐ + +
B └─�Dg(Xg,Bg) ┐ Unconditional Branch RX BC 15,Dg(Xg,Bg)
BR Rg ┘ RR BCR 15,Rg

| J label Unconditional Jump RI BRC 15,label
NOP Dg(Xg,Bg) ┐ No Operation RX BC K,Dg(Xg,Bg)
NOPR Rg │ RR BCR K,Rg

| JNOP label ┘ RI BRC K,label

Used After Compare Instructions

BH Dg(Xg,Bg) ┐ Branch on High RX BC 2,Dg(Xg,Bg)
BHR Rg ┘ RR BCR 2,Rg

| JH label Jump on High RI BRC 2,label
BL Dg(Xg,Bg) ┐ Branch on Low RX BC 4,Dg(Xg,Bg)
BLR Rg ┘ RR BCR 4,Rg

| JL label Jump on Low RI BRC 4,label
BE Dg(Xg,Bg) ┐ Branch on Equal RX BC 8,Dg(Xg,Bg)
BER Rg ┘ RR BCR 8,Rg

| JE label Jump on Equal RI BRC 8,label
BNH Dg(Xg,Bg) ┐ Branch on Not High RX BC 13,Dg(Xg,Bg)
BNHR Rg ┘ RR BCR 13,Rg

| JNH label Jump on Not High RI BRC 13,label
BNL Dg(Xg,Bg) ┐ Branch on Not Low RX BC 11,Dg(Xg,Bg)
BNLR Rg ┘ RR BCR 11,Rg

| JNL label Jump on Not Low RI BRC 11,label
BNE Dg(Xg,Bg) ┐ Branch on Not Equal RX BC 7,Dg(Xg,Bg)
BNER Rg ┘ RR BCR 7,Rg

| JNE label Jump on Not Equal RI BRC 7,label

Used After Arithmetic Instructions

BP Dg(Xg,Bg) ┐ Branch on Plus RX BC 2,Dg(Xg,Bg)
BPR Rg ┘ RR BCR 2,Rg

| JP label Jump on Plus RI BRC 2,label
BM Dg(Xg,Bg) ┐ Branch on Minus RX BC 4,Dg(Xg,Bg)
BMR Rg ┘ RR BCR 4,Rg

| JM label Jump on Minus RI BRC 4,label
BZ Dg(Xg,Bg) ┐ Branch on Zero RX BC 8,Dg(Xg,Bg)
BZR Rg ┘ RR BCR 8,Rg

| JZ label Jump on Zero RI BRC 8,label
BO Dg(Xg,Bg) ┐ Branch on Overflow RX BC 1,Dg(Xg,Bg)
BOR Rg ┘ RR BCR 1,Rg

| JO label Jump on Overflow RI BRC 1,label
BNP Dg(Xg,Bg) ┐ Branch on Not Plus RX BC 13,Dg(Xg,Bg)
BNPR Rg ┘ RR BCR 13,Rg

| JNP label Jump on Not Plus RI BRC 13,label
BNM Dg(Xg,Bg) ┐ Branch on Not Minus RX BC 11,Dg(Xg,Bg)
BNMR Rg ┘ RR BCR 11,Rg

| JNM label Jump on Not Minus RI BRC 11,label
BNZ Dg(Xg,Bg) ┐ Branch on Not Zero RX BC 7,Dg(Xg,Bg)
BNZR Rg ┘ RR BCR 7,Rg

| JNZ label Jump on Not Minus RI BRC 7,label
BNO Dg(Xg,Bg) ┐ Branch on No Overflow RX BC 14,Dg(Xg,Bg)
BNOR Rg ┘ RR BCR 14,Rg

| JNO label Jump on No Overflow RI BRC 14,label

Figure 20 (Part 1 of 2). Extended Mnemonic Codes

68 HLASM V1R3 Language Reference  



  Statement Formats
 

Used After Test Under Mask Instructions

BO Dg(Xg,Bg) ┐ Branch if Ones RX BC 1,Dg(Xg,Bg)
BOR Rg ┘ RR BCR 1,Rg
BM Dg(Xg,Bg) ┐ Branch if Mixed RX BC 4,Dg(Xg,Bg)
BMR Rg ┘ RR BCR 4,Rg
BZ Dg(Xg,Bg) ┐ Branch if Zero RX BC 8,Dg(Xg,Bg)
BZR Rg ┘ RR BCR 8,Rg
BNO Dg(Xg,Bg) ┐ Branch if Not Ones RX BC 14,Dg(Xg,Bg)
BNOR Rg ┘ RR BCR 14,Rg
BNM Dg(Xg,Bg) ┐ Branch if Not Mixed RX BC 11,Dg(Xg,Bg)
BNMR Rg ┘ RR BCR 11,Rg
BNZ Dg(Xg,Bg) ┐ Branch if Not Zero RX BC 7,Dg(Xg,Bg)
BNZR Rg ┘ RR BCR 7,Rg

Notes:

1. Dg=displacement, Xg=index register, Bg=base register, Rg=register containing branch address

2. The addresses represented are explicit address (see �4�). However, implicit addresses can also be used in this type of
instruction.

3. Avoid using BM, BNM, JM, and JNM after the TMH or TML instruction.

Figure 20 (Part 2 of 2). Extended Mnemonic Codes

 Statement Formats
Machine instructions are assembled into 2, 4, or 6 bytes of object code according
to the format of each instruction. Machine instruction formats include the following
(ordered by length attribute):

Length Attribute Basic Formats
2 E, RR

| 4 QST, QV, RRE, RI, RS, RSI, RX, S, SI, VR, VS, VST, VV
6 RSE, SS, SSE

See the applicable Principles of Operation for complete details about machine
instruction formats. See also “Examples of Coded Machine Instructions” on
page 77.

When you code machine instructions, you use symbolic formats that correspond to
the actual machine language formats. Within each basic format, you can also code
variations of the symbolic representation, divided into groups according to the basic
formats shown below.

The assembler converts only the operation code and the operand entries of the
assembler language statement into object code. The assembler assigns to a name
entry symbol the value of the address of the first byte of the assembled instruction.
When you use this same symbol in the operand of an assembler language
statement, the assembler uses this address value in converting the symbolic
operand into its object code form. The length attribute assigned to the symbol
depends on the basic machine language format of the instruction in which the
symbol appears as a name entry.

A remarks entry is not converted into object code.

An example of a typical assembler language statement follows:

LABEL L 4,256(5,1K) LOAD INTO REG4

  Chapter 4. Machine Instruction Statements 69



 Symbolic Operation Codes  
 

where:

LABEL is the name entry
L is the operation code mnemonic (converted to hex 58)
4 is the register operand (converted to hex 4)
256(5,1K) are the storage operand entries (converted to hex 5A100)
LOAD INTO REG4 are remarks not converted into object code

The object code of the assembled instruction, in hexadecimal, is:

5845A1KK (4 bytes in RX format)

Symbolic Operation Codes
You must specify an operation code for each machine instruction statement. The
symbolic operation code, or mnemonic code as it is also called, indicates the type
of operation to be done; for example, A indicates the addition operation. See the
applicable Principles of Operation for a complete list of symbolic operation codes
and the formats of the corresponding machine instructions.

The general format of the machine instruction operation code is:

Operation Code Format 

��──VERB─ ──┬ ┬────────── ──┬ ┬─────────── ──┬ ┬──────────────── ─────────��
 └ ┘ ─MODIFIER─ └ ┘ ─DATA TYPE─ └ ┘ ─MACHINE FORMAT─

Verb:  The verb must always be present. It usually consists of one or two
characters and specifies the operation to be done. The verb is underscored in the
following examples:

A 3,AREA A indicates an add operation
MVC TO,FROM MV indicates a move operation

The other items in the operation code are not always present. They include the
following (underscores are used to indicate modifiers, data types, and machine
formats in the examples below):

Modifier:  Modifier, which further defines the operation:

AL 3,AREA L indicates a logical operation

Data Type:  Type qualifier, which indicates the type of data used by the instruction
in its operation:

CVB 3,BINAREA B indicates binary data

MVC TO,FROM C indicates character data

AE 2,FLTSHRT E indicates normalized short
 floating-point data

AD 2,FLTLONG D indicates normalized long
 floating-point data

Machine Format:  Format qualifier, R indicating a register operand, or I indicating
an immediate operand. For example:

70 HLASM V1R3 Language Reference  



  Operand Entries
 

ADR 2,4 R indicates a register operand

MVI FIELD,X'A1' I indicates an immediate operand
 AHI 7,123

 Operand Entries
You may specify one or more operands in each machine instruction statement to
provide the data or the location of the data upon which the machine operation is to
be done. The operand entries consist of one or more fields or subfields, depending
on the format of the instruction being coded. They can specify a register, an
address, a length, or immediate data. You can omit length fields or subfields,
which the assembler computes for you from the other operand entries. You can
code an operand entry either with symbols or with self-defining terms.

The rules for coding operand entries are:

� A comma must separate operands.
� Parentheses must enclose subfields.
� A comma must separate subfields enclosed in parentheses.
� If a subfield is omitted because it is implicit in a symbolic address, the

parentheses that would have enclosed the subfield must be omitted.
� If two subfields are enclosed in parentheses and separated by commas, the

following applies:

– If both subfields are omitted because they are implicit in a symbolic entry,
the separating comma and the parentheses that would have been needed
must also be omitted.

– If the first subfield is omitted, the comma that separates it from the second
subfield must be written, as well as the enclosing parentheses.

– If the second subfield is omitted, the comma that separates it from the first
subfield must be omitted; however, the enclosing parentheses must be
written.

� Blanks must not appear within the operand field, except as part of a character
self-defining term, or in the specification of a character literal.

 Registers
You can specify a register in an operand for use as an arithmetic accumulator, a
base register, an index register, and as a general depository for data to which you
want to refer repeatedly.

You must be careful when specifying a register whose contents have been affected
by the execution of another machine instruction, the control program, or an
IBM-supplied system macro instruction.

For some machine instructions, you are limited in which registers you can specify in
an operand.

The expressions used to specify registers must have absolute values; in general,
registers 0 through 15 can be specified for machine instructions. However, the
following restrictions on register usage apply:

| � If the NOAFPR assembler option is specified, then only the floating-point
| registers (0, 2, 4, or 6) may be specified for floating-point instructions.

  Chapter 4. Machine Instruction Statements 71



 Operand Entries  
 

� The even-numbered registers (0, 2, 4, 6, 8, 10, 12, 14) must be specified for
the following groups of instructions:

– The double-shift instructions
– The fullword multiply and divide instructions
– The move long and compare logical long instructions

| � If the AFPR assembler option is specified, then one of the floating-point
| registers 0, 1, 4, 5, 8, 9, 12 or 13 can be specified for the instructions that use
| extended floating-point data in pairs of registers, such as AXR, SXR, LTXBR,
| and SQEBR.

| � If the NOAFPR assembler option is specified, then either floating-point register
| 0 or 4 must be specified for these instructions.

� For a processor with a vector facility, the even-numbered vector registers (0, 2,
4, 6, 8, 10, 12, 14) must be specified in vector-facility instructions that are used
to manipulate long floating-point data or 64-bit signed binary data in vector
registers.

The assembler checks the registers specified in the instruction statements of the
above groups. If the specified register does not comply with the stated restrictions,
the assembler issues a diagnostic message and does not assemble the instruction.
Binary zeros are generated in place of the machine code.

Register Usage by Machine Instructions
Registers that are not explicitly coded in symbolic assembler language
representation of machine instructions, but are nevertheless used by assembled
machine instructions, are divided into two categories:

� Base registers that are implicit in the symbolic addresses specified. (See
“Addresses” on page 73.) The registers can be identified by examining the
object code or the USING instructions that assign base registers for the source
module.

� Registers that are used by machine instructions, but don't appear in assembled
object code.

– For double shift and fullword multiply and divide instructions, the
odd-numbered register, whose number is one greater than the
even-numbered register specified as the first operand.

– For Move Long and Compare Logical Long instructions, the odd-numbered
registers, whose number is one greater than even-numbered registers
specified in the two operands.

– For Branch on Index High (BXH) and the Branch on Index Low or Equal
(BXLE) instructions, if the register specified for the second operand is an
even-numbered register, the next higher odd-numbered register is used to
contain the value to be used for comparison.

– For Load Multiple (LM) and Store Multiple (STM) instructions, the registers
that lie between the registers specified in the first two operands.

– For extended-precision floating point instructions, the second register of the
register pair.

– For Compare and Form Codeword (CFC) instruction, registers 1, 2 and 3
are used.

– For Translate and Test (TRT) instruction, registers 1 and 2 are used.

72 HLASM V1R3 Language Reference  



  Operand Entries
 

– For Update Tree (UPT) instruction, registers 0-5 are used.

– For Edit and Mark (EDMK) instruction, register 1 is used.

– For certain control instructions, one or more of registers 0-4 and register 14
are used. See “Control Instructions” in the applicable Principles of
Operation manual.

– For certain input/output instructions, either or both registers 1 and 2 are
used. See “Input/Output Instructions” in the applicable Principles of
Operation manual.

– On a processor with a vector facility:

1. For instructions that manipulate long floating-point data in vector
registers, the odd-numbered vector registers, whose number is one
greater than the even-numbered vector registers specified in each
operand.

2. For instructions that manipulate 64-bit signed binary data in vector
registers, the odd-numbered vector registers, whose number is one
greater than the even-numbered vector registers specified in each
operand.

Register Usage by System
The programming interface of the system control programs uses registers 0, 1, 13,
14, and 15.

 Addresses
You can code a symbol in the name field of a machine instruction statement to
represent the address of that instruction. You can then refer to the symbol in the
operands of other machine instruction statements. The object code for the IBM
System/370 and IBM System/390 requires that addresses be assembled in a
numeric base-displacement format. This format lets you specify addresses that are
relocatable or absolute. Chapter 3, “Addressing, Program Sectioning, and Linking”
on page 46 describes how you use symbolic addresses to refer to data in your
assembler language program.

Defining Symbolic Addresses:  Define relocatable addresses by either using a
symbol as the label in the name field of an assembler language statement, or
equating a symbol to a relocatable expression.

Define absolute addresses (or values) by equating a symbol to an absolute
expression.

Referring to Addresses:  You can refer to relocatable and absolute addresses in
the operands of machine instruction statements. (Such address references are
also called addresses in this manual.) The two ways of coding addresses are:

� Implicitly—in a form that the assembler must first convert into an explicit
base-displacement form before it can be assembled into object code.

� Explicitly—in a form that can be directly assembled into object code.

  Chapter 4. Machine Instruction Statements 73



 Operand Entries  
 

 Implicit Address
An implicit address is specified by coding one expression. The expression can be
relocatable or absolute. The assembler converts all implicit addresses into their
base-displacement form before it assembles them into object code. The assembler
converts implicit addresses into explicit addresses only if a USING instruction has
been specified, or for small absolute expressions, where the address is resolved
without a USING. The USING instruction assigns both a base address, from which
the assembler computes displacements, and a base register, which is assumed to
contain the base address. The base register must be loaded with the correct base
address at execution time. For more information, refer to “Addressing” on page 46.

 Explicit Address
An explicit address is specified by coding two absolute expressions as follows:

� The first is an absolute expression for the displacement, whose value must lie
in the range 0 through 4095 (4095 is the maximum value that can be
represented by the 12 binary bits available for the displacement in the object
code).

� The second (enclosed in parentheses) is an absolute expression for the base
register, whose value must lie in the range 0 through 15.

An explicit base register designation must not accompany an implicit address.
However, in RX-format instructions, an index register can be coded with an implicit
address as well as with an explicit address. When two addresses are required,
each address can be coded as an explicit address or as an implicit address.

|  Relative Address
| A relative address is specified by coding one expression. The expression may be
| relocatable or absolute. If a relocatable expression is used, then the assembler
| converts the value to a 16-bit signed number of halfwords relative to the current
| location counter, and then uses that value in the object code. An absolute value
| may be used for a relative address, but the assembler issues a warning message,
| as it uses the supplied value, and this may cause unpredictable results.

Relocatability of Addresses
If the value of an address expression changes when the assumed origin of the
program is changed, and changes by the same amount, then the address is simply
relocatable. If the addressing expression does not change when the assumed origin
of the program is changed, then that address is absolute. If the addressing
expression changes by some other amount, the address may be complexly
relocatable.

Addresses in the base-displacement form are relocatable, because:

� Each relocatable address is assembled as a displacement from a base address
and a base register.

� The base register contains the base address.

� If the object module assembled from your source module is relocated, only the
contents of the base register need reflect this relocation. This means that the
location in virtual storage of your base has changed, and that your base
register must contain this new base address.

74 HLASM V1R3 Language Reference  



  Operand Entries
 

� Addresses in your program have been assembled as relative to the base
address; therefore, the sum of the displacement and the contents of the base
register point to the correct address after relocation.

Absolute addresses are also assembled in the base-displacement form, but always
indicate a fixed location in virtual storage. This means that the contents of the
base register must always be a fixed absolute address value regardless of
relocation.

Machine or Object Code Format
All addresses assembled into the object code of the IBM System/370 and IBM
System/390 machine instructions have the format given in Figure 21 on page 76.
Not all of the instruction formats are shown in Figure 21.

The addresses represented have a value that is the sum of a displacement (see
�1� in Figure 21) and the contents of a base register (see �2� in Figure 21).

Index Register:  In RX-format instructions, the address represented has a value
that is the sum of a displacement, the contents of a base register, and the contents
of an index register (see �3� in Figure 21).

  Chapter 4. Machine Instruction Statements 75



 Operand Entries  
 

Format │ Coded or Symbolic │ Object Code
│ Representation of │ Representation
│ Explicit Address │ of Addresses

───────┼───────────────────┼──────────────────────────────────────────────────────────────────────────────
 │ │

│ │ │8 bits │4 │4 │4 │12 bits │4 │12 bits │
│ │ │Operation │bits │bits │bits │Displacement │bits │Displacement │
│ │ │Code │ │ │Base │ │ │ │
│ │ │ │ │ │Reg. │ │ │ │

 │ │ ├───────────┼─────┼─────┼─────┼─────────────────┼─────┼─────────────────┤
│ │ │ │ │ │ �2� │ �1� │ │ │
│ │ │ │ │ │ + │ + │ │ │
│ │ ├ ─ ─ ─ ─ ─ ┼ ─ ─ ┼ ─ ─ ┼─────┼─────────────────┤ │ │

RS │ Dg(Bg) │ │OP CODE │ Rh │ Ri │ Bg │ Dg │ │ │
│ │ ├ ─ ─ ─ ─ ─ ┴ ─ ─ ┴ ─ ─ ┴─────┴─────────────────┤ │ │
│ │ │ ┌──�3� (Index Register) │ │ │

 │ │ │ + │ │ │
│ │ ├ ─ ─ ─ ─ ─ ┬ ─ ─ ┬ ─ ─ ┬─────┬─────────────────┤ │ │

RX │ Dg(Xg,Bg) │ │OP CODE │ Rh │ Xg │ Bg │ Dg │ │ │
│ │ ├ ─ ─ ─ ─ ─ ┴ ─ ─ ┴ ─ ─ ┴─────┴─────────────────┤ │ │

 │ │ │ │ │ │
 │ │ │ │ │ │

│ │ ├ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┬─────┬─────────────────┤ │ │
S │ Dh(Bh) │ │OP CODE │ Bh │ Dh │ │ │

│ │ ├ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┴─────┴─────────────────┤ │ │
 │ │ │ │ │ │
 │ │ │ │ │ │

│ │ ├ ─ ─ ─ ─ ─ ┬ ─ ─ ─ ─ ─ ┬─────┬─────────────────┤ │ │
SI │ Dh(Bh) │ │OP CODE │ Ig │ Bh │ Dh │ │ │

│ │ ├ ─ ─ ─ ─ ─ ┴ ─ ─ ─ ─ ─ ┴─────┴─────────────────┤ │ │
│ │ │ │ �2� │ �1� │
│ │ │ │ + │ + │
│ │ ├ ─ ─ ─ ─ ─ ┬ ─ ─ ─ ─ ─ ┬─────┬─────────────────┼─────┼─────────────────┤

SS │ Dh(,Bh),Dg(Bg) │ │OP CODE │ L │ Bh │ Dh │ Bg │ Dg │
│ │ ├ ─ ─ ─ ─ ─ ┴ ─ ─ ─ ─ ─ ┴─────┴─────────────────┴─────┴─────────────────┤

 │ │ │ │
 │ │ │ │

│ │ ├ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┬─────┬─────────────────┬─────┬─────────────────┤
SSE │ Dh(Bh),Dg(Bg) │ │OP CODE │ Bh │ Dh │ Bg │ Dg │

│ │ ├ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┴─────┴─────────────────┴─────┴─────────────────┤
 │ │ │ │
 │ │ │ │

│ │ ├ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┬─────┬─────┬─────┬─────┬─────┬─────────────────┤
RSE │ Dg(Bg) │ │OP CODE │ Ri │/////│ VRh │/////│ Bg │ Dg │

│ │ └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┴─────┴─────┴─────┴─────┴─────┴─────────────────┘

Ig represents an immediate value
L represents a length
Rh and Ri represent registers
VRh represents a vector register

Figure 21. Format of Addresses in Object Code

 Lengths
You can specify the length field in an SS-format instruction. This lets you indicate
explicitly the number of bytes of data at a virtual storage location that is to be used
by the instruction. However, you can omit the length specification, because the
assembler computes the number of bytes of data to be used from the expression
that represents the address of the data.

See page 86 for more information about SS-format instructions.

76 HLASM V1R3 Language Reference  



  Examples of Coded Machine Instructions
 

Implicit Length:  When a length subfield is omitted from an SS-format machine
instruction, an implicit length is assembled into the object code of the instruction.
The implicit length is either of the following:

� For an implicit address, it is the length attribute of the first or only term in the
expression representing the implicit address.

� For an explicit address, it is the length attribute of the first or only term in the
expression representing the displacement.

Explicit Length:  When a length subfield is specified in an SS-format machine
instruction, the explicit length always overrides the implicit length.

An implicit or explicit length is the effective length. The length value assembled is
always one less than the effective length. If you want an assembled length value
of 0, an explicit length of 0 or 1 can be specified.

In the SS-format instructions requiring one length value, the allowable range for
explicit lengths is 0 through 256. In the SS-format instructions requiring two length
values, the allowable range for explicit lengths is 0 through 16.

 Immediate Data
In addition to registers, numeric values, relative addresses, and lengths, some
machine instruction operands require immediate data. Such data is assembled
directly into the object code of the machine instructions. Use immediate data to
specify the bit patterns for masks or other absolute values you need.

Specify immediate data only where it is required. Do not confuse it with address
references to constants and areas, or with any literals you specify as the operands
of machine instructions.

Immediate data must be specified as absolute expressions whose range of values
depends on the machine instruction for which the data is required. The immediate
data is assembled into its binary representation.

Examples of Coded Machine Instructions
The examples that follow are grouped according to machine instruction format, and
the groups are shown in order of the instruction length. They show the various
ways in which you can code the operands of machine instructions. Both symbolic
and numeric representation of fields and subfields are shown in the examples.
Therefore, assume that all symbols used are defined elsewhere in the same source
module.

The object code assembled from at least one coded statement per group is also
included. A complete summary of machine instruction formats with the coded
assembler language variants can be found in the applicable Principles of Operation
manual.

The examples that follow show the various instruction formats, and are not meant
to show how the machine instructions should be used.

  Chapter 4. Machine Instruction Statements 77



 Examples of Coded Machine Instructions  
 

 E Format
E-format instructions do not have an operand.

Examples:

ALPHA1 UPT
GAMMA1 PR

The instruction labeled ALPHA1, Update Tree (UPT), is available only on systems
operating in the 370-XA mode, or on ESA/370 or ESA/390 systems. The
instruction labeled GAMMA1, Program Return (PR), is a semiprivileged instruction
available only on ESA/370 or ESA/390 systems.

When assembled, the object code of the instruction labeled ALPHA1, in hexadecimal,
is:

K1K2

where:

K1K2 is the operation code

 QST Format
The operand fields of QST-format instructions designate a vector register or a 4-bit
modifier, one or two general registers, and a floating-point or general register.

In vector-comparison instructions, a 4-bit modifier with a value between 0 and 15
replaces the first vector register specification. (See B'1KKK' in the instruction
labeled DELTA1 below).

Symbols used in QST-format instructions to represent registers (see VREG1, FREG2,
REG3, and REG4 in the instruction labeled ALPHA1 below) are assumed to be equated
to absolute values between 0 and 15.

Examples:

ALPHA1 VAES VREG1,FREG2,REG3(REG4)
BETA1 VMADS 1,2,3
GAMMA1 VMSES 4,6,8(1K)
DELTA1 VCES B'1KKK',6,8(1K)

When assembled, the object code of the instruction labeled GAMMA1, in hexadecimal,
is:

A4856A48

where:

A485 is the operation code
6 is register QRi
A is register RTg
4 is register VRh
8 is register RSg

78 HLASM V1R3 Language Reference  



  Examples of Coded Machine Instructions
 

 QV Format
The operand fields of QV-format instructions designate one or two vector registers,
or a 4-bit modifier and a vector register, and one general or floating pointing
register.

In vector-comparison instructions, a 4-bit modifier (Mh) with a value between 0 and
15 replaces the first vector register specification (VRh). (See B'1KKK' in the
instruction labeled DELTA1 below).

Symbols used in QV-format instructions to represent registers (see VREG1, FREG2,
REG3, and REG4 in the instruction labeled ALPHA1 below) are assumed to be equated
to absolute values between 0 and 15.

Examples:

ALPHA1 VAEQ VREG1,FREG2,REG3
BETA1 VMADQ 1,2,3
GAMMA1 VMSEQ 4,6,8
DELTA1 VCEQ B'1KKK',6,4

When assembled, the object code of the instruction labeled DELTA1, in hexadecimal,
is:

A5886K84

where:

A588 is the operation code
6 is register QRi
K is zero (unused)
8 is modifier Mh
4 is register VRg

|  RI Format
| The operand fields of RI-format instructions designate a register and a 16-bit
| immediate operand, with the following exception:

| � In BRC branching instructions, a 4-bit branching mask with a value between 0
| and 15 inclusive replaces the register designation.

| Symbols used to represent registers (such as REG1 in the example) are assumed
| to be equated to absolute values between 0 and 15. The 16-bit immediate operand
| has two different interpretations, depending on whether the instruction is a
| branching instruction or not.

| For non-branching RI-format instructions, the immediate value is treated as a 16-bit
| signed binary integer (that is a value between −32768 and +32767). This value
| may be specified using self-defining terms or equated symbols.

| Examples:

| ALPHA1 AHI REG1,2KKK
| ALPHA2 MHI 3,1234
| BETA1 TMH 7,X'8KK1'

| When assembled, the object code for the instruction labeled BETA1, in
| hexadecimal, is

  Chapter 4. Machine Instruction Statements 79



 Examples of Coded Machine Instructions  
 

| A77K8KK1

| where:

| A7.K is the operation code
| 7 is register Rh
| 8KK1 is the immediate data I2

| For branching RI-format instructions, the immediate value is treated as a 16-bit
| signed binary integer representing the number of halfwords to branch relative to the
| current location.

| The branch target may be specified as a relocatable expression, in which case the
| assembler performs some checking, and calculates the immediate value.

| The branch target may also be specified as an absolute value in which case the
| assembler issues a warning before it assembles the instruction.

| Examples:

| ALPHA1 BRAS 1,BETA1
| ALPHA2 BRC 3,ALPHA1
| BETA1 BRCT 7,ALPHA1

| When assembled, the object code for the instruction labeled BETA1, in
| hexadecimal, is

| A776FFFC

| where:

| A7.6 is the operation code
| 7 is register Rh
| FFFC is the immediate data I2; a value of −4 decimal

 RR Format
The operand fields of RR-format instructions designate two registers, with the
following exceptions:

� In BCR branching instructions, when a 4-bit branching mask replaces the first
register specification (see 8 in the instruction labeled GAMMA1 below)

� In SVC instructions, where an immediate value (between 0 and 255) replaces
both registers (see 2KK in the instruction labeled DELTA1 below)

Symbols used to represent registers in RR-format instructions (see INDEX and REG2
in the instruction labeled ALPHA2 below) are assumed to be equated to absolute
values between 0 and 15.

Symbols used to represent immediate values in SVC instructions (see TEN in the
instruction labeled DELTA2 below) are assumed to be equated to absolute values
between 0 and 255.

Examples:

ALPHA1 LR 1,2
ALPHA2 LR INDEX,REG2
GAMMA1 BCR 8,12
DELTA1 SVC 2KK
DELTA2 SVC TEN

80 HLASM V1R3 Language Reference  



  Examples of Coded Machine Instructions
 

When assembled, the object code of the instruction labeled ALPHA1, in
hexadecimal, is:

1812

where:

18 is the operation code
1 is register Rh
2 is register Rg

 RRE Format
The operand fields of RRE-format instructions designate one or two registers,
depending on the specific instruction. If the instruction has only one register
operand, then register Rg is assembled as a zero in the object code.

Symbols used in RRE-format instructions to represent registers (such as REG5 in the
instruction labeled ALPHA1 below) are assumed to be equated to absolute values
between 0 and 15.

Examples:

ALPHA1 IPM REG5
ALPHA2 IPTE 6,7
BETA DXR K,4

When assembled, the object code of the instruction labeled BETA, in hexadecimal,
is:

B22DKKK4

where:

B22D is the operation code
KK is zero
K is register Rh
4 is register Rg

 RS Format
The operand fields of RS-format instructions designate two registers, and a virtual
storage address (coded as an implicit address or an explicit address).

In the Insert Characters under Mask (ICM) and the Store Characters under Mask
(STCM) instructions, a 4-bit mask (see X'E' and MASK in the instructions labeled
DELTA1 and DELTA2 below), with a value between 0 and 15, replaces the second
register specifications.

Symbols used to represent registers (see REG4, REG6, and BASE in the instruction
labeled ALPHA2 below) are assumed to be equated to absolute values between 0
and 15.

Symbols used to represent implicit addresses (see AREA and IMPLICIT in the
instructions labeled BETA1 and DELTA2 below) can be either relocatable or absolute.

Symbols used to represent displacements (see DISPL in the instruction labeled
BETA2 below) in explicit addresses are assumed to be equated to absolute values
between 0 and 4095.

  Chapter 4. Machine Instruction Statements 81



 Examples of Coded Machine Instructions  
 

Examples:

ALPHA1 LM 4,6,2K(12)
ALPHA2 LM REG4,REG6,2K(BASE)
BETA1 STM 4,6,AREA
BETA2 STM 4,6,DISPL(BASE)
GAMMA1 SLL 2,15
DELTA1 ICM 3,X'E',1K24(1K)
DELTA2 ICM REG3,MASK,IMPLICIT

When assembled, the object code for the instruction labeled ALPHA1, in
hexadecimal, is:

9846CK14

where:

98 is the operation code
4 is register Rh
6 is register Ri
C is base register Bh
K14 is displacement Dh from base register Bh

When assembled, the object code for the instruction labeled DELTA1, in
hexadecimal, is:

BF3EA4KK

where:

BF is the operation code
3 is register Rh
E is mask Mi
A is base register Bh
4KK is displacement Dh from base register Bh

 RSE Format
The operand fields of RSE-format instructions designate one or two vector registers
and a virtual storage address (coded as an implicit address or an explicit address).

Symbols used in RSE-format instructions to represent registers (see VREG1, VREG2,
and BASE in the instruction labeled ALPHA1 below) are assumed to be equated to
absolute values between 0 and 15.

Symbols used to represent displacements (see DISPL in the instruction labeled
ALPHA1 below) in explicit address are assumed to be equated to absolute values
between 0 and 4095.

Examples:

ALPHA1 VLI VREG1,VREG2,DISPL(BASE)
BETA1 VSLL 4,5,16
BETA2 VSLL 4,5,K(15)
GAMMA1 VSTIE 2,3,2KK(1K)

When assembled, the object code of the instruction labeled GAMMA1, in hexadecimal,
is:

E4K13K2KAKC8

82 HLASM V1R3 Language Reference  



  Examples of Coded Machine Instructions
 

where:

E4K1 is the operation code
3 is register Ri
K is zero (unused)
2 is register VRh
K is zero (unused)
A is base register Bg
KC8 is displacement Dg from base register Bg

|  RSI Format
| The operand fields of RSI-format instructions designate two registers and a 16-bit
| immediate operand.

| Symbols used to represent registers (See REG1 below) are assumed to be
| equated to absolute values between 0 and 15.

| The immediate value is treated as a 16-bit signed binary integer representing the
| number of halfwords to branch relative to the current location.

| The branch target may be specified as a label in which case the assembler
| calculates the immediate value and performs some checking of the value.

| The branch target may also be specified as an absolute value in which case the
| assembler issues a warning before it assembles the instruction.

| Examples:

| ALPHA1 BRXH REG1,REG3,BETA1
| BETA1 BRXLE 1,2,ALPHA1

| When assembled, the object code for the instruction labeled ALPHA1, in
| hexadecimal, is

| 8413KKK2

| where:

| 84 is the operation code
| 1 is register REG1
| 3 is register REG3
| KKK2 is the immediate data I2

 RX Format
The operand fields of RX-format instructions designate one or two registers,
including an index register, and a virtual storage address (coded as an implicit
address or an explicit address), with the following exception:

In BC branching instructions, a 4-bit branching mask (see 7 and TEN in the
instructions labeled LAMBDAn below) with a value between 0 and 15,
replaces the first register specification.

Symbols used to represent registers (see REG1, INDEX, and BASE in the ALPHA2
instruction below) are assumed to be equated to absolute values between 0 and
15.

  Chapter 4. Machine Instruction Statements 83



 Examples of Coded Machine Instructions  
 

Symbols used to represent implicit addresses (see IMPLICIT in the instructions
labeled GAMMAn below) can be either relocatable or absolute.

Symbols used to represent displacements (see DISPL in the instructions labeled
BETA2 and LAMBDA1 below) in explicit addresses are assumed to be equated to
absolute values between 0 and 4095.

Examples:

ALPHA1 L 1,2KK(4,1K)
ALPHA2 L REG1,2KK(INDEX,BASE)
BETA1 L 2,2KK(,1K)
BETA2 L REG2,DISPL(,BASE)
GAMMA1 L 3,IMPLICIT
GAMMA2 L 3,IMPLICIT(INDEX)
DELTA1 L 4,=F'33'
LAMBDA1 BC 7,DISPL(,BASE)
LAMBDA2 BC TEN,ADDRESS

When assembled, the object code for the instruction labeled ALPHA1, in
hexadecimal, is:

5814AKC8

where:

58 is the operation code
1 is register Rh
4 is index register Xg
A is base register Bg
KC8 is displacement Dg from base register Bg

When assembled, the object code for the instruction labeled GAMMA1, in
hexadecimal, is:

5824xyyy

where:

58 is the operation code
2 is register Rh
4 is the index register Xg
x is base register Bg
yyy is displacement Dg from base register Bg

 S Format
The operand field of S-format instructions designates a virtual storage address
(coded as an implicit address or an explicit address).

The instructions labeled GAMMA1, GAMMA2, and GAMMA3 specify explicit addresses.
The instruction labeled GAMMA4 specifies an implicit address. The instruction
labeled GAMMA2 specifies a displacement of zero. The instruction labeled GAMMA3
does not specify a base register.

Examples:

84 HLASM V1R3 Language Reference  



  Examples of Coded Machine Instructions
 

GAMMA1 SIO 4K(9)
GAMMA2 SIO K(9)
GAMMA3 SIO 4K(K)
GAMMA4 SIO ZETA

When assembled, the object code of the instruction labeled GAMMA1, in hexadecimal,
is:

9CKK9K28

where:

9CKK is the operation code
9 is base register Bh
K28 is displacement Dh from base register Bh

 SI Format
The operand fields of SI-format instructions designate immediate data and a virtual
storage address (coded as an implicit address or an explicit address), with the
following exception: An immediate field is not needed (see the instructions labeled
GAMMA1 and GAMMA2 below) in the statements whose operation codes are LPSW,
SSM, TS, TCH, and TIO.

Symbols used to represent immediate data (see HEX4K and TEN in the instructions
labeled ALPHA2 and BETA1 below) are assumed to be equated to absolute values
between 0 and 255.

Symbols used to represent implicit addresses (see IMPLICIT, KEY, and NEWSTATE in
the instruction labeled BETA and GAMMA2) can be either relocatable or absolute.

Symbols used to represent displacements (see DISPL4K in the instruction labeled
ALPHA2 below) in explicit addresses are assumed to be equated to absolute values
between 0 and 4095.

Examples:

ALPHA1 CLI 4K(9),X'4K'
ALPHA2 CLI DISPL4K(NINE),HEX4K
BETA1 CLI IMPLICIT,TEN
BETA2 CLI KEY,C'E'
GAMMA1 LPSW K(9)
GAMMA2 LPSW NEWSTATE

When assembled, the object code for the instruction labeled ALPHA1, in
hexadecimal, is:

954K9K28

where

95 is the operation code.
4K is the immediate data.
9 is the base register.
K28 is the displacement from the base register

  Chapter 4. Machine Instruction Statements 85



 Examples of Coded Machine Instructions  
 

 SS Format
The operand fields and subfields of SS-format instructions designate two virtual
storage addresses (coded as implicit addresses or explicit addresses) and,
optionally, the explicit data lengths you want to include. However, note that, in the
Shift and Round Decimal (SRP) instruction, a 4-bit immediate data field (see 3 in
SRP instruction below), with a value between 0 and 9, is specified as a third
operand.

Symbols used to represent base registers (see BASE8 and BASE7 in the instruction
labeled ALPHA2 below) in explicit addresses are assumed to be equated to absolute
values between 0 and 15.

Symbols used to represent explicit lengths (see NINE and SIX in the instruction
labeled ALPHA2 below) are assumed to be equated to absolute values between 0
and 256 for SS-format instructions with one length specification, and between 0 and
16 for SS-format instructions with two length specifications.

Symbols used to represent implicit addresses (see FIELD1 and FIELD2 in the
instruction labeled ALPHA3, and FIELD1,X'8' in the SRP instructions below) can be
either relocatable or absolute.

Symbols used to represent displacements (see DISP4K and DISP3K in the instruction
labeled ALPHA5 below) in explicit addresses are assumed to be equated to absolute
values between 0 and 4095.

See page 76 for more information about the lengths of SS-format instructions.

Examples:

ALPHA1 AP 4K(9,8),3K(6,7)
ALPHA2 AP 4K(NINE,BASE8),3K(SIX,BASE7)
ALPHA3 AP FIELD1,FIELD2
ALPHA4 AP AREA(9),AREA2(6)
ALPHA5 AP DISP4K(,8),DISP3K(,7)
BETA1 MVC K(8K,8),K(7)
BETA2 MVC DISPK(,8),DISPK(7)
BETA3 MVC TO,FROM
 SRP FIELD1,X'8',3

When assembled, the object code for the instruction labeled ALPHA1, in
hexadecimal, is:

FA858K287K1E

where:

FA is the operation code.
8 is length Lh
5 is length Lg
8 is base register Bh
K28 is displacement Dh from base register Bh
7 is base register Bg
K1E is displacement Dg from base register Bg

When assembled, the object code for the instruction labeled BETA1, in hexadecimal,
is:

D24F8KKK7KKK

86 HLASM V1R3 Language Reference  



  Examples of Coded Machine Instructions
 

where:

D2 is the operation code
4F is length L
8 is base register Bh
KKK is displacement Dh from base register Bh
7 is base register Bg
KKK is displacement Dg from base register Bg

 SSE Format
The operand fields of SSE-format instructions designate two virtual storage
addresses (coded as implicit addresses or explicit addresses).

Symbols used to represent base registers in explicit addresses (such as BASE8 and
BASE7 in the ALPHA1 instruction below) are assumed to be equated to absolute
values between 0 and 15.

Symbols used to represent implicit addresses (such as LOC1,LOC2 in the instruction
labeled BETA1 below) can be either relocatable or absolute.

Symbols used to represent displacements in explicit addresses (such as DISP4K
and DISP3K in the instruction labeled BETA2 below) are assumed to be equated to
absolute values between 0 and 4095.

Examples:

ALPHA1 LASP 4K(BASE8),3K(BASE7)
ALPHA2 LASP 4K(8),3K(7)
BETA1 TPROT LOC1,LOC2
BETA2 TPROT DISP4K(8),DISP3K(8)

When assembled, the object code of the instruction labeled ALPHA2, in hexadecimal,
is:

E5KK8K287K1E

where:

E5KK is the operation code
8 is base register Bh
K28 is displacement Dh from base register Bh
7 is base register Bg
K1E is displacement Dg from base register Bg

 VR Format
The operand fields of VR-format instructions designate a vector register, and may,
depending on the instruction, also designate a general register and a floating point
register, or two general registers.

Symbols used in VR-format instructions to represent registers (see VREG1, VREG2,
FREG2, REG2, and REG4 in the instructions below) are assumed to be equated to
absolute values between 0 and 15.

Examples:

  Chapter 4. Machine Instruction Statements 87



 Examples of Coded Machine Instructions  
 

ALPHA1 VZPSD VREG2
BETA1 VSPSD VREG2,FREG2
GAMMA1 VMXSE VREG1,FREG2,REG4
DELTA1 VLEL VREG1,REG2,REG4
EPSILON1 VLELE 1,2,4

When assembled, the object code of the instruction labeled DELTA1, in hexadecimal,
is:

A6282K14

where:

A628 is the operation code
2 is register QRi
K is zero (unused)
1 is register VRh
4 is register GRg

 VS Format
The operand field of VS-format instructions designate a general register.

Examples:

ALPHA1 VLCVM 4
BETA1 VNVM 5
GAMMA1 VXVM 12

When assembled, the object code of the instruction labeled GAMMA1, in hexadecimal,
is:

A686KKKC

where:

A686 is the operation code
KKK is zero (unused)
C is register RSi

 VST Format
The operand field of VST-format instructions designate one or two vector registers
and a virtual storage address (coded as an implicit address or an explicit address).

In vector-comparison instructions, a 4-bit modifier (Mh) with a value between 0 and
15 replaces the first vector register specification (VRh). (See B'1KKK' in the
instruction labeled DELTA1 below).

Symbols used in VST-format instructions to represent registers (see VREG2, REG6,
and REG4 in the instruction labeled ALPHA1 below) are assumed to be equated to
absolute values between 0 and 15.

Examples:

ALPHA1 VACE VREG2,REG6(REG4)
BETA1 VLY 1,6(4)
GAMMA1 VMSE 4,6,8(1K)
DELTA1 VCER B'1KKK',1,2

88 HLASM V1R3 Language Reference  



  Examples of Coded Machine Instructions
 

When assembled, the object code of the instruction labeled GAMMA1, in hexadecimal,
is:

A4K56A48

where:

A4K5 is the operation code
6 is register VRi
A is register RTg
4 is register VRh
8 is register RSg

 VV Format
The operand fields of VV-format instructions designate one, two, or three vector
registers, with the exception that in vector-comparison instructions, a 4-bit modifier
with a value between 0 and 15 replaces the first vector register specification.

Symbols used in VV-format instructions to represent registers (see VREG2 and VREG4
in the instruction labeled ALPHA1 below) are assumed to be equated to absolute
values between 0 and 15.

Examples:

ALPHA1 VACDR VREG2,VREG4
BETA1 VCER X'4',7,8
GAMMA1 VLZDR 2
DELTA1 VSER 1,5,7

When assembled, the object code of the instruction labeled DELTA1, in hexadecimal,
is:

A5K15K17

where:

A5K1 is the operation code
5 is register VRi
K is zero (unused)
1 is register VRh
7 is register VRg

  Chapter 4. Machine Instruction Statements 89



  
 

Chapter 5. Assembler Instruction Statements

This chapter describes, in detail, the syntax and usage rules of each assembler
instruction. The following table lists the assembler instructions by type, and
provides the page number where the instruction is described.

Figure 22 (Page 1 of 2). Assembler Instructions

Type of Instruction Instruction Page No.

Program Control| AINSERT 97 

CNOP 107 

COPY 110 

END 162 

EXITCTL 166 

ICTL 168 

ISEQ 168 

LTORG 171 

ORG 175 

POP 178 

PUNCH 183 

PUSH 184 

REPRO 185 

Listing Control CEJECT 106 

EJECT 161 

PRINT 178 

SPACE 187 

TITLE 189 

Operation Code Definition OPSYN 173 

90  Copyright IBM Corp. 1982, 1998



  *PROCESS Statement
 

Figure 22 (Page 2 of 2). Assembler Instructions

Type of Instruction Instruction Page No.

Program Section and Linking ALIAS 99 

AMODE 100 

CATTR (MVS
and CMS Only)

101 

COM 108 

CSECT 111 

CXD 112 

DSECT 158 

DXD 160 

ENTRY 163 

EXTRN 167 

LOCTR 169 

RMODE 185 

RSECT 186 

START 188 

WXTRN 202 

Base Register DROP 152 

USING 192 

Data Definition CCW 103 

CCW0 103 

CCW1 105 

DC 113 

DS 154 

Symbol Definition EQU 163 

Associated Data ADATA 96 

Assembler Options *PROCESS 91 

| ACONTROL 92 

 *PROCESS Statement
Process (*PROCESS) statements specify assembler options in an assembler
source program. You can include them in the primary input data set or provide
them from a SOURCE user exit.

You can specify up to 10 process statements in each source program. Except for
the ICTL instruction, process statements must be the first statements in your source
program. If you include process statements anywhere else in your source program
the assembler treats them as comments.

A process statement has a special coding format, unlike any other assembler
instruction, although it is affected by the column settings of the ICTL instruction.
You must code the characters DPROCESS starting in the begin column of the source

  Chapter 5. Assembler Instruction Statements 91



 ACONTROL Statement  
 

statement, followed by one or more blanks. You can code as many assembler
options that can fit in the remaining columns up to, and including the end column of
the source statement.

You cannot continue a process statement on to the next statement.

 

 ┌ ┐─,────────────────
��─  ─DPROCESS─ ───+ ┴─assembler_option─ ────────────────────────────────��

assembler_option
is any assembler option except the following:

 ADATA LANGUAGE SIZE
 ASA LINECOUNT SYSPARM
DECK LIST TERM

 EXIT OBJECT TRANSLATE
 GOFF OPTABLE XOBJECT

When the assembler detects an error in a process statement, it produces an error
message in the High Level Assembler Option Summary section of the assembler
listing. If the installation default option PESTOP is set then the assembler stops
after it finishes processing any remaining process statements.

The assembler lists the options from process statements in the High Level
Assembler Option Summary section of the assembler listing. The process
statements are also shown as comment lines in the Source and Object section of
the assembler listing.

|  ACONTROL Statement
| The ACONTROL instruction can change these HLASM options within a program:

|  � AFPR
|  � COMPAT
| � FLAG (except the RECORD/NORECORD suboption)
|  � LIBMAC
|  � RA2

| Note:  The AFPR option is not available as an assembler option at invocation of
| the assembler.

| The selections which can be specified are documented here for completeness.

|  

|  ┌ ┐─,─────────
| ��─ ──┬ ┬───────────────── ─ACONTROL─ ───+ ┴─selection─ ──────────────────��
|  └ ┘|  ─sequence_symbol─

| sequence_symbol
| is a sequence symbol.

92 HLASM V1R3 Language Reference  



  ACONTROL Statement
 

| selection
| is one or more selections from the group of selections described below.

| Because ACONTROL is making changes to existing values, there are no default
| values for the ACONTROL statement.

|  

| ��─ ──┬ ┬─AFPR─── ──────────────────────��
|  └ ┘─NOAFPR─

| AFPR
| instructs the assembler that the additional
| floating point registers 1, 3, 5 and 7 through
| 15 may be specified in the program.

| Note:  The assembler starts with AFPR
| enabled.

| NOAFPR
| instructs the assembler that no additional
| floating point registers, that is, only floating
| point registers 0, 2, 4 and 6 may be specified
| in the program.

  Chapter 5. Assembler Instruction Statements 93



 ACONTROL Statement  
 

|  

| ��─ ──┬ ┬─NOCOMPAT──────────────────────── ──��
|  │ │┌ ┐─,─────────────
|  └ ┘|  ─COMPAT──(─ ───+ ┴┬ ┬─CASE──────── ─)─
|  ├ ┤─LITTYPE─────
|  ├ ┤─MACROCASE───
|  ├ ┤─SYSLIST─────
|  ├ ┤─NOCASE──────
|  ├ ┤─NOLITTYPE───
|  ├ ┤─NOMACROCASE─
|  └ ┘─NOSYSLIST───

| COMPAT(CASE), abbreviation CPAT(CASE)
| instructs the assembler to maintain uppercase
| alphabetic character set compatibility with
| earlier assemblers.

| COMPAT(LITTYPE), abbreviation CPAT(LIT)
| instructs the assembler to return 'U' as the
| type attribute for all literals.

| COMPAT(MACROCASE), abbreviation
| CPAT(MC)
| instructs the assembler to convert lowercase
| alphabetic characters in unquoted macro
| operands to uppercase alphabetic characters.

| COMPAT(SYSLIST), abbreviation CPAT(SYSL)
| instructs the assembler to treat sublists in
| SETC symbols as compatible with earlier
| assemblers.

| COMPAT(NOCASE), abbreviation
| CPAT(NOCASE)
| instructs the assembler to allow mixed case
| alphabetic character set.

| COMPAT(NOMACROCASE), abbreviation
| CPAT(NOMC)
| instructs the assembler not to convert
| lowercase alphabetic characters (a through z)
| in unquoted macro operands.

| COMPAT(NOSYSLIST), abbreviation
| CPAT(NOSYSL)
| instructs the assembler not to treat sublists in
| SETC symbols as character strings, when
| passed to a macro definition in an operand of
| a macro instruction.

| COMPAT(NOLITTYPE), abbreviation
| CPAT(NOLIT)
| instructs the assembler to return the correct
| type attribute for literals once the literals have
| been defined.

| NOCOMPAT, abbreviation NOCPAT
| instructs the assembler to allow lowercase
| alphabetic characters in all language
| elements, to treat sublists in SETC symbols
| as sublists when passed to a macro definition
| in the operand of a macro instruction, and to
| return the correct type attribute for literals
| once the literals have been defined.

94 HLASM V1R3 Language Reference  



  ACONTROL Statement
 

|  

|  ┌ ┐─,──────────
| ��─ ──FLAG( ───+ ┴┬ ┬─ALIGN──── ) ──────────��
|  ├ ┤─CONT─────
|  ├ ┤─NOIMPLEN─
|  ├ ┤─PAGEK────
|  ├ ┤─NOSUBSTR─
|  ├ ┤─integer──
|  ├ ┤─NOALIGN──
|  ├ ┤─NOCONT───
|  ├ ┤─IMPLEN───
|  ├ ┤─NOPAGEK──
|  └ ┘─SUBSTR───

| integer
| specifies that error diagnostic messages with
| this or a higher severity code are printed in
| the source and object section of the assembly
| listing.

| FLAG(ALIGN), abbreviation FLAG(AL)
| instructs the assembler to issue diagnostic
| message ASMAK33W when an inconsistency is
| detected between the operation code and the
| alignment of addresses in machine
| instructions.

| FLAG(NOALIGN), abbreviation FLAG(NOAL)
| instructs the assembler not to issue diagnostic
| message ASMAK33W when an inconsistency is
| detected between the operation code and the
| alignment of addresses in machine
| instructions.

| FLAG(CONT)
| specifies that the assembler is to issue
| diagnostic messages ASMA43KW through
| ASMA433W when an inconsistent continuation is
| encountered in a statement.

| FLAG(NOCONT)
| specifies that the assembler is not to issue
| diagnostic messages ASMA43KW through
| ASMA433W when an inconsistent continuation is
| encountered in a statement.

| FLAG(IMPLEN)
| instructs the assembler to issue diagnostic
| message ASMA169I when an explicit length
| subfield is omitted from an SS-format machine
| instruction.

| FLAG(NOIMPLEN)
| instructs the assembler not to issue diagnostic
| message ASMA169I when an explicit length
| subfield is omitted from an SS-format machine
| instruction.

| FLAG(PAGE0)
| instructs the assembler to issue diagnostic
| message ASMA3K9W when an operand is
| resolved to a baseless address and a base
| and displacement is expected.

  Chapter 5. Assembler Instruction Statements 95



 ADATA Instruction  
 

| FLAG(NOPAGE0)
| instructs the assembler not to issue diagnostic
| message ASMA3K9W when an operand is
| resolved to a baseless address and a base
| and displacement is expected.

| FLAG(SUBSTR), abbreviation FLAG(SUB)
| instructs the assembler to issue warning
| diagnostic message ASMAK94 when the second
| subscript value of the substring notation
| indexes past the end of the character
| expression.

| FLAG(NOSUBSTR), abbreviation
| FLAG(NOSUB)
| instructs the assembler not to issue warning
| diagnostic message ASMAK94 when the second
| subscript value of the substring notation
| indexes past the end of the character
| expression.

|  

| ��─ ──┬ ┬─NOLIBMAC─ ────────────────────��
|  └ ┘─LIBMAC───

| LIBMAC, abbreviation LMAC
| specifies that, for each macro, macro
| definition statements read from a macro library
| are to be imbedded in the input source
| program immediately preceding the first
| invocation of that macro.

| NOLIBMAC, abbreviation NOLMAC
| specifies that macro definition statements read
| from a macro library are not to be included in
| the input source program.

|  

| ��─ ──┬ ┬─NORA2─ ───────────────────────��
|  └ ┘─RA2───

| RA2
| instructs the assembler to suppress error
| diagnostic message ASMAK66 when 2-byte
| relocatable address constants are defined in
| the source

| NORA2
| instructs the assembler to issue error
| diagnostic message ASMAK66 when 2-byte
| relocatable address constants are defined in
| the source

 ADATA Instruction
The ADATA instruction writes records to the associated data file.

96 HLASM V1R3 Language Reference  



  AINSERT Instruction
 

 

��─ ──┬ ┬───────────────── ─ADATA──────────────────────────────────────�
 └ ┘ ─sequence_symbol─

�─ ──value1,value2,value3,value4,character_string ───────────────────��

sequence_symbol
is a sequence symbol.

value1-value4
up to four values may be specified, separated by commas. If a value is
omitted, the field written to the associated data file contains binary zeros. You
must code a comma in the operand for each omitted value. If specified, value1
through value4 must be a decimal self-defining term with a value in the range
−2b] to +2b]−1.

character_string
is a character string up to 255 bytes long, enclosed in single quotes. If omitted,
the length of the user data field in the associated data file is set to zero.

Notes:

1. All operands may be omitted to produce a record containing binary zeros in all
fields except the user data field.

2. The record written to the associated data file is described under “User-Supplied
Information Record X'0070',” in Appendix D, “Associated Data File Output” of
the High Level Assembler Programmer's Guide.

| 3. If you do not specify the ADATA assembler option, or the XOBJECT(ADATA)
| assembler option (MVS or CMS), the assembler only checks the syntax of an
| ADATA instruction, and prints it in the assembler listing.

| 4. The assembler writes associated data records to the SYSADATA (MVS or
| CMS), or the SYSADAT (VSE) file.

|  AINSERT Instruction
| The AINSERT instruction inserts statements into the input stream. These
| statements are queued in an internal buffer until the macro generator has
| completed. At that point the internal buffer queue provides the next statement or
| statements. An operand controls the sequence of the statements within the internal
| buffer queue.

| Note:  While inserted statements may be placed at either end of the buffer queue,
| the statements are removed only from the front of the buffer queue.

|  

| ��─ ──┬ ┬───────────────── ─AINSERT──'statement'─ ──┬ ┬─,BACK── ─────────��
|  └ ┘|  ─sequence_symbol─ └ ┘─,FRONT─

| sequence_symbol
| is a sequence symbol.

| statement
| is the statement stored in the internal buffer. It may be any characters
| enclosed in single quotation marks.

  Chapter 5. Assembler Instruction Statements 97



 AINSERT Instruction  
 

| The rules that apply to this character string are:

| � Variable symbols are allowed.

| � The string may be up to 80 characters in length. If the string is longer than
| 80 characters, only the first 80 characters are used. The rest of the string
| is ignored.

| BACK
| The statement is placed at the back of the internal buffer.

| FRONT
| The statement is placed at the front of the internal buffer.

| Notes:

| 1. The ICTL instruction does not affect the format of the stored statements. The
| assembler processes these statements according to the standard begin, end
| and continue columns.

| 2. The assembler does not check the stored statements, even when the ISEQ
| instruction is active.

98 HLASM V1R3 Language Reference  



  ALIAS Instruction
 

| Example:

|  MACRO
|  MAC1
|  .
|  .A AINSERT 'INSERT STATEMENT NUMBER ONE',FRONT Insert record into the input stream
|  .B AINSERT 'INSERT STATEMENT NUMBER TWO',FRONT Insert record at the top of the input stream
|  .C AINSERT 'INSERT STATEMENT NUMBER THREE',BACK Insert record at the bottom of the input stream
|  .
|  .
|  .
|  &FIRST AREAD Retrieve record TWO from the top of the input stream
|  .
|  .D AINSERT 'INSERT STATEMENT NUMBER FOUR',FRONT Insert record at the top of the input stream
|  .
|  &SECOND AREAD Retrieve record FOUR from the top of the input stream
|  .
|  MEND
|  CSECT
|  .
|  MAC1
|  .
|  END

| In this example the variable &FIRST receives the operand of the AINSERT
| statement created at .B. &SECOND receives the operand of the AINSERT
| statement created at .D. The operand of the AINSERT statements at .A and .C are
| in the internal buffer in the sequence .A followed by .C and are the next statements
| processed when the macro generator has finished processing.

| Figure 54 on page 234 shows code using AINSERT in statements 16, 22, and 23.

 ALIAS Instruction
The ALIAS instruction specifies alternate names for the external symbols that
identify control sections, entry points, and external references. The instruction has
nothing to do with the link-time aliases in libraries.

 

��──name──ALIAS──alias_string──────────────────────────────────────��

name
is an external symbol that is represented by one of the following:

� An ordinary symbol

� A variable symbol that has been assigned a character string with a value
that is valid for an ordinary symbol

alias_string
is the alternate name for the external symbol, represented by one of the
following:

� A character constant in the form C'aaaaaaaa', where aaaaaaaa is a string
of characters each of which has a hexadecimal value of X'42' to X'FE'
inclusive

� A hexadecimal constant in the form X'xxxxxxxx', where xxxxxxxx is a
string of hexadecimal digits, each pair of which is in the range X'42' to
X'FE' inclusive

  Chapter 5. Assembler Instruction Statements 99



 AMODE Instruction  
 

The ordinary symbol denoted by name must also appear in one of the following in
this assembly:

� The name entry field of a START, CSECT, RSECT, COM, or DXD instruction

� The name entry field of a DSECT instruction and the nominal value of a Q-type
offset constant

� The operand of an ENTRY, EXTRN or WXTRN instruction

� The nominal value of a V-type address constant

The assembler uses the string denoted by alias_string to replace the external
symbol denoted by name in the external symbol dictionary records in the object
module. If the string is shorter than 8 characters, or 16 hexadecimal digits, it is
padded on the right with EBCDIC spaces (X'40'). If the string is longer than 8
characters, it is truncated. Some programs that process object modules do not
support external symbols longer than 8 characters.

 If the extended object data set is being generated (XOBJECT
assembler option), the alias_string can be up to 64 characters, or 128 hexadecimal
digits. 

The following examples are of the ALIAS instruction, and show both formats of the
alternate name denoted by alias_string. In both examples the alternate name is the
lowercase equivalent of the external symbol.

EXTSYM1 ALIAS C'extsym1'
EXTSYM2 ALIAS X'85A7A3A2A894F2'

 AMODE Instruction
The AMODE instruction specifies the addressing mode associated with control
sections in the object deck.

 

��─ ──┬ ┬────── ─AMODE─ ──┬ ┬─24── ──────────────────────────────────────��
 └ ┘ ─name─ ├ ┤─31──
 └ ┘─ANY─

name Is one of the following:

� An ordinary symbol

� A variable symbol that has been assigned a character string with a
value that is valid for an ordinary symbol

� A sequence symbol

� If the extended object data set is being generated
(XOBJECT assembler option), a relocatable symbol that names an
entry point specified on an ENTRY instruction. 

24 Specifies that 24-bit addressing mode is to be associated with a control
section, or entry point.

31 Specifies that 31-bit addressing mode is to be associated with a control
section, or entry point.

100 HLASM V1R3 Language Reference  



  CATTR Instruction
 

ANY The control point or entry point is not sensitive to addressing mode in
which it is entered.

Any field of this instruction may be generated by a macro, or by substitution in open
code.

If name denotes an ordinary symbol, the ordinary symbol associates the addressing
mode with a control section. The ordinary symbol must also appear in the name
field of a START, CSECT, RSECT, or COM instruction in this assembly.

If name is not specified, or if name is a sequence symbol, there must be an
unnamed control section in this assembly.

Notes:

1. AMODE can be specified anywhere in the assembly. It does not initiate an
unnamed control section.

2. An assembly can have multiple AMODE instructions; however, two AMODE
instructions cannot have the same name field.

3. Specification of AMODE 24 and RMODE ANY or for the same name field is not
permitted. All other combinations are permitted.

4. AMODE or RMODE cannot be specified for an unnamed common control
section.

5. The defaults when AMODE and RMODE are not both specified for a name field
are as follows:

Specified Defaulted

Neither AMODE 24, RMODE 24

AMODE 24 RMODE 24

AMODE 31 RMODE 24

AMODE ANY RMODE 24

RMODE 24 AMODE 24

RMODE ANY AMODE 31

CATTR Instruction (MVS and CMS Only)
The CATTR instruction establishes a program object external class name, and
assigns binder attributes for the class. This instruction is only valid when you
specify the XOBJECT assembler option.

 

 ┌ ┐─,─────────
��──class_name──CATTR─ ───+ ┴─attribute─ ──────────────────────────────��

class_name
is a valid program object external class name. The class name must follow the
rules for naming external symbols, except that:

� Class names are restricted to a maximum of 16 characters

  Chapter 5. Assembler Instruction Statements 101



 CATTR Instruction  
 

� Class names with an underscore (_) in the second character are reserved
for IBM use; for example B_TEXT. If you use a class name of this format,
it might conflict with an IBM-defined binder class.

attribute
is one or more binder attributes that are assigned to the text in this class:

ALIGN(n) 
Aligns the text on a 2n boundary. n is an integer in the range from 0 to 12.

EXECUTABLE
The text can be branched to or executed—it is instructions, not data.

DEFLOAD
The text is not loaded when the program object is brought into storage, but
will probably be requested, and therefore should be partially loaded, for fast
access.

MERGE
The text has the merge binding property. For example, pseudo-registers or
external dummy sections have the “merge” binding property.

Merge classes can contain initial text. If they do contain initial text, they
must have a class name beginning with C_.

MOVABLE 
The text can be moved, and is reenterable (that is, it is free of
location-dependent data such as address constants, and executes normally
if moved to a properly aligned boundary).

NOLOAD 
The text for this class is not loaded when the program object is brought into
storage. An external dummy section is an example of a class which is
defined in the source program but not loaded.

NOTEXECUTABLE 
The text cannot be branched to or executed (that is, it is data, not
instructions).

NOTREUS 
The text is marked not reusable.

READONLY 
The text is storage-protected.

REFR 
The text is marked refreshable.

RENT 
The text is marked reenterable.

REUS 
The text is marked reusable.

RMODE(24) 
The text has a residence mode of 24.

RMODE(31) 
The text has a residence mode of 31.

102 HLASM V1R3 Language Reference  



  CCW and CCW0 Instructions
 

RMODE(ANY) 
The text may be placed in any addressable storage.

Refer to the DFSMS/MVS Program Management, SC26-4916 for details about the
binder attributes.

Default Attributes:  When you don't specify attributes on the CATTR instruction
the defaults are:

 ALIGN(3),EXECUTABLE,NOTREUS,RMODE(24)

Where to Use the CATTR Instruction:  Use the CATTR instruction anywhere in a
source module after any ICTL or *PROCESS statements. The CATTR instruction
must be preceded by a START, CSECT, or RSECT statement, otherwise the
assembler issues diagnostic message ASMA190.

If several CATTR instructions within a source module have the same class name,
the first occurrence establishes the class and its attributes, and the rest indicate the
continuation of the text for the class. If you specify attributes on subsequent
CATTR instructions having the same class name as a previous CATTR instruction,
the assembler ignores the attributes and issues diagnostic message ASMA191.

If you specify conflicting attributes, the assembler uses the last one specified. In
the following example, the assembler uses RMODE(ANY):

MYCLASS CATTR RMODE(24),RMODE(ANY)

Syntax Checking Only:  If you code a CATTR instruction but don't specify the
XOBJECT option, the assembler checks the syntax of the instruction statement and
does not process the attributes.

CCW and CCW0 Instructions
The CCW and CCW0 instructions define and generate an 8-byte, format-0 channel
command word for input/output operations. A format-0 channel command word
allows a 24-bit data address. The CCW and CCW0 instructions have identical
functions.

 

��──name─ ──┬ ┬─CCW── ──command_code,data_address,flags,data_count ────��
 └ ┘─CCWK─

name
is one of the following:

� An ordinary symbol

� A variable symbol that has been assigned a character string with a value
that is valid for an ordinary symbol

� A sequence symbol

command_code
is an absolute expression that specifies the command code. This expression's
value is right-justified in byte 0 of the generated channel command word.

  Chapter 5. Assembler Instruction Statements 103



 CCW and CCW0 Instructions  
 

data_address
is a relocatable or absolute expression that specifies the address of the data to
operate upon. This value is treated as a 3-byte, A-type address constant. The
value of this expression is right-justified in bytes 1 to 3 of the generated
channel command word.

flags
is an absolute expression that specifies the flags for bits 32 to 37, and zeros for
bits 38 and 39, of the generated channel command word. The value of this
expression is right-justified in byte 4 of the generated channel command word.
Byte 5 is set to zero by the assembler.

data_count
is an absolute expression that specifies the byte count or length of data. The
value of this expression is right-justified in bytes 6 and 7 of the generated
channel command word.

The generated channel command word is aligned at a doubleword boundary. Any
skipped bytes are set to zero.

The internal machine format of a channel command word is shown in Figure 23.

If symbol is an ordinary symbol or a variable symbol that has been assigned an
ordinary symbol, the ordinary symbol is assigned the value of the address of the
first byte of the generated channel command word. The length attribute value of
the symbol is 8.

The following are examples of CCW and CCW0 statements:

WRITE1 CCW 1,DATADR,X'48',X'5K'
WRITE2 CCWK 1,DATADR,X'48',X'5K'

The object code generated (in hexadecimal) for either of the above examples is:

K1 xxxxxx 48 KK KK5K

where xxxxxx contains the address of DATADR, and DATADR must reside below 16
megabytes.

Using EXCP or EXCPVR access methods:  If you use the EXCP or EXCPVR
access method, you must use CCW or CCW0, because EXCP and EXCPVR do
not support 31-bit data addresses in channel command words.

Figure 23. Channel Command Word, Format 0

Byte Bits Usage

0 0-7 Command code

1-3 8-31 Address of data to operate upon

4 32-37 Flags

38-39 Must be specified as zeros

5 40-47 Set to zeros by assembler

6-7 48-63 Byte count or length of data

104 HLASM V1R3 Language Reference  



  CCW1 Instruction
 

Specifying RMODE:  Use RMODE 24 with CCW or CCW0 to ensure that valid
data addresses are generated. If you use RMODE ANY with CCW or CCW0, an
invalid data address in the channel command word can result at execution time.

 CCW1 Instruction
The CCW1 instruction defines and generates an 8-byte format-1 channel command
word for input/output operations. A format-1 channel command word allows 31-bit
data addresses. A format-0 channel command word generated by a CCW or CCW0
instruction allows only a 24-bit data address.

 

��──symbol──CCW1─ ──command_code,data_address,flags,data_count ──────��

symbol
is one of the following:

� An ordinary symbol

� A variable symbol that has been assigned a character string with a value
that is valid for an ordinary symbol

� A sequence symbol

command_code
is an absolute expression that specifies the command code. This expression's
value is right-justified in byte 0 of the generated channel command word.

data_address
is a relocatable or absolute expression that specifies the address of the data to
operate upon. This value is treated as a 4-byte, A-type address constant. The
value of this expression is right-justified in bytes 4 to 7 of the generated
channel command word.

flags
is an absolute expression that specifies the flags for bits 8 to 15 of the
generated channel command word. The value of this expression is
right-justified in byte 1 of the generated channel command word.

data_count
is an absolute expression that specifies the byte count or length of data. The
value of this expression is right-justified in bytes 2 and 3 of the generated
channel command word.

The generated channel command word is aligned at a doubleword boundary. Any
skipped bytes are set to zero.

The internal machine format of a channel command word is shown in Figure 24.

Figure 24 (Page 1 of 2). Channel Command Word, Format 1

Byte Bits Usage

0 0-7 Command code

1 8-15 Flags

2-3 16-31 Count

  Chapter 5. Assembler Instruction Statements 105



 CEJECT Instruction  
 

The expression for the data address should be such that the address is within the
range 0 to 2b]−1, inclusive, after possible relocation. This is the case if the
expression refers to a location within one of the control sections that are link-edited
together. An expression such as D−1KKKKKKKKK yields an acceptable value only
when the value of the location counter (*) is 1000000000 or higher at assembly
time.

If symbol is an ordinary symbol or a variable symbol that has been assigned an
ordinary symbol, the ordinary symbol is assigned the value of the address of the
first byte of the generated channel command word. The length attribute value of
the symbol is 8.

The following is an example of a CCW1 statement:

A CCW1 X'KC',BUF1,X'KK',L'BUF1

The object code generated (in hexadecimal) for the above examples is:

KC KK yyyy xxxxxxxx

where yyyy is the length of BUF1 and xxxxxxxx is the address of BUF1. BUF1 can
reside anywhere in virtual storage.

Figure 24 (Page 2 of 2). Channel Command Word, Format 1

Byte Bits Usage

4 32 Must be zero

4-7 33-63 Data address

 CEJECT Instruction
The CEJECT instruction conditionally stops the printing of the assembler listing on
the current page, and continues the printing on the next page.

 

��─ ──┬ ┬───────────────── ─CEJECT─ ──┬ ┬───────────────── ──────────────��
 └ ┘ ─sequence_symbol─ └ ┘ ─number_of_lines─

sequence_symbol
is a sequence symbol.

number_of_lines
is an absolute value that specifies the minimum number of lines that must be
remaining on the current page to prevent a page eject. If the number of lines
remaining on the current page is less than the value specified by
number_of_lines, the next line of the assembler listing is printed at the top of a
new page.

You may use any absolute expression to specify number_of_lines.

If omitted, the CEJECT instruction behaves as an EJECT instruction.

If zero, a page is ejected unless the current line is at the top of a page.

If the line before the CEJECT statement appears at the bottom of a page, the
CEJECT statement has no effect. A CEJECT instruction without an operand

106 HLASM V1R3 Language Reference  



  CNOP Instruction
 

immediately following another CEJECT instruction or an EJECT instruction is
ignored.

Notes:

1. The CEJECT statement itself is not printed in the listing unless a variable
symbol is specified as a point of substitution in the statement, in which case the
statement is printed before substitution occurs.

2. The PRINT DATA and PRINT NODATA instructions can alter the effect of the
CEJECT instruction, depending on the number of assembler listing lines that
are required to print the generated object code for each instruction.

 CNOP Instruction
The CNOP instruction aligns any instruction or other data on a specific halfword
boundary. This ensures an unbroken flow of executable instructions, since the
CNOP instruction generates no-operation instructions to fill the bytes skipped to
achieve specified alignment.

 

��─ ──┬ ┬──────── ─CNOP─ ──byte,word ───────────────────────────────────��
 └ ┘ ─symbol─

symbol
is one of the following:

� An ordinary symbol

� A variable symbol that has been assigned a character string with a value
that is valid for an ordinary symbol

� A sequence symbol

byte
is an absolute expression that specifies at which even-numbered byte in a
fullword or doubleword the location counter is set. The value of the expression
must be 0, 2, 4, or 6.

word
is an absolute expression that specifies the byte specified by byte is in a
fullword or a doubleword. A value of 4 indicates the byte is in a fullword. A
value of 8 indicates the byte is in a doubleword.

Figure 25 shows valid pairs of byte and word.

Figure 25. Valid CNOP Values

Values Specify

0,4 Beginning of a word

2,4 Middle of a word

0,8 Beginning of a doubleword

2,8 Second halfword of a doubleword

4,8 Middle (third halfword) of a doubleword

6,8 Fourth halfword of a doubleword

  Chapter 5. Assembler Instruction Statements 107



 COM Instruction  
 

Figure 26 on page 108 shows the position in a doubleword that each of these
pairs specifies. Note that both 0,4 and 2,4 specify two locations in a doubleword.

┌────────────────────────────────────────────────────────────────────┐
│ Doubleword │
├─────────────────────────────────┬──────────────────────────────────┤
│ Fullword │ Fullword │
├───────────────┬─────────────────┼────────────────┬─────────────────┤
│ Halfword │ Halfword │ Halfword │ Halfword │
├───────┬───────┼────────┬────────┼────────┬───────┼────────┬────────┤
│ Byte │ Byte │ Byte │ Byte │ Byte │ Byte │ Byte │ Byte │
├───────┴───────┴────────┴────────┴────────┴───────┴────────┴────────┤
│K,4 2,4 K,4 2,4 │
│K,8 2,8 4,8 6,8 │
└────────────────────────────────────────────────────────────────────┘

Figure 26. CNOP Alignment

Use the CNOP instruction, for example, when you code the linkage to a subroutine,
and you want to pass parameters to the subroutine in fields immediately following
the branch and link instructions. These parameters—for example, channel
command words—can require alignment on a specific boundary. The subroutine
can then address the parameters you pass through the register with the return
address, as in the following example:

 CNOP 6,8
LINK BALR 2,1K
 CCW 1,DATADR,X'48',X'5K'

Assume that the location counter is aligned at a doubleword boundary. Then the
CNOP instruction causes three no-operations to be generated, thus aligning the
BALR instruction at the last halfword in a doubleword as follows:

 BCR K,K
 BCR K,K
 BCR K,K
 BALR 2,1K
LINK CCW 1,DATADR,X'48',X'5K'

After the BALR instruction is generated, the location counter is at a doubleword
boundary, thereby ensuring that the CCW instruction immediately follows the
branch and link instruction.

The CNOP instruction forces the alignment of the location counter to a halfword,
fullword, or doubleword boundary. It does not affect the location counter if the
counter is already correctly aligned. If the specified alignment requires the location
counter to be incremented, one-to-three no-operation instructions (BCR 0,0
occupying two bytes each) are generated to fill the skipped bytes. Any single byte
skipped to achieve alignment to the first no-operation instruction is filled with zeros.

 COM Instruction
The COM instruction identifies the beginning or continuation of a common control
section.

 

��─ ──┬ ┬────── ─COM──────────────────────────────────────────────────��
 └ ┘ ─name─

108 HLASM V1R3 Language Reference  



  COM Instruction
 

name
is one of the following:

� An ordinary symbol

� A variable symbol that has been assigned a character string with a value
that is valid for an ordinary symbol

� A sequence symbol

The COM instruction can be used anywhere in a source module after the ICTL
instruction.

If name denotes an ordinary symbol, the ordinary symbol identifies the common
control section. If several COM instructions within a source module have the same
symbol in the name field, the first occurrence initiates the common section and the
rest indicate the continuation of the common section. The ordinary symbol denoted
by name represents the address of the first byte in the common section, and has a
length attribute value of 1.

If name is not specified, or if name is a sequence symbol, the COM instruction
initiates, or indicates the continuation of, the unnamed common section.

The location counter for a common section is always set to an initial value of 0.
However, when an interrupted common control section is continued using the COM
instruction, the location counter last specified in that control section is continued.

If a common section with the same name (or unnamed) is specified in two or more
source modules, the amount of storage reserved for this common section is equal
to that required by the longest common section specified.

The source statements that follow a COM instruction belong to the common section
identified by that COM instruction.

Notes:

1. The assembler language statements that appear in a common control section
are not assembled into object code.

2. When establishing the addressability of a common section, the symbol in the
name field of the COM instruction, or any symbol defined in the common
section, can be specified in a USING instruction.

In the following example, addressability to the common area of storage is
established relative to the named statement XYZ.

 .
 .
 L 1,=A(XYZ)
 USING XYZ,1
 MVC PDQ(16),=4C'ABCD'
 .
 .
 COM
XYZ DS 16F
PDQ DS 16C
 .
 .

  Chapter 5. Assembler Instruction Statements 109



 COPY Instruction  
 

A common control section may include any assembler language instructions, but no
object code is generated by the assembly of instructions or constants appearing in
a common control section. Data can only be placed in a common control section
through execution of the program.

If the common storage is assigned in the same manner by each independent
assembly, reference to a location in common by any assembly results in the same
location being referenced.

 COPY Instruction
Use the COPY instruction to obtain source statements from a source language
library and include them in the program being assembled. You can thereby avoid
writing the same, often-used sequence of code over and over.

 

��─ ──┬ ┬───────────────── ─COPY──member──────────────────────────────��
 └ ┘ ─sequence_symbol─

sequence_symbol
is a sequence symbol. Refer to page 28 for a description of sequence
symbols.

member
is an ordinary symbol that identifies a source language library member to be
copied from either a system macro library or a user macro library. In open
code it can also be a variable symbol that has been assigned a valid ordinary
symbol.

The source statements that are copied into a source module:

� Are inserted immediately after the COPY instruction.

� Are inserted and processed according to the standard instruction statement
coding format, even if an ICTL instruction has been specified.

� Must not contain either an ICTL or ISEQ instruction.

� Can contain other COPY statements. There are no restrictions on the number
of levels of nested copy instructions. However, the COPY nesting must not be
recursive. For example, assume that the source program contains the
statement:

 COPY A

and library member A contains the statement:

 COPY B

In this case, the library member B must not contain a COPY A or COPY B
statement.

� Can contain macro definitions. Note, however, that if a source macro definition
is copied into a source module, both the MACRO and MEND statements that
delimit the definition must be contained in the same level of copied code.

110 HLASM V1R3 Language Reference  



  CSECT Instruction
 

Notes:

1. The COPY instruction can also be used to copy statements into source macro
definitions.

2. The rules that govern the occurrence of assembler language statements in a
source module also govern the statements copied into the source module.

3. Whenever the assembler processes a COPY statement, whether it is in open
code or in a macro definition, the assembler attempts to read the source
language library member specified in the COPY statement. This means that all
source language library members specified by COPY statements in a source
program, including those specified in macro definitions, must be available
during the assembly. The High Level Assembler Programmer's Guide
describes how to specify the libraries when you run the assembler.

4. If an END instruction is encountered in a member during COPY processing, the
assembly is ended. Any remaining statements in the COPY member are
discarded.

 CSECT Instruction
The CSECT instruction initiates an executable control section or indicates the
continuation of an executable control section.

 

��─ ──┬ ┬────── ─CSECT────────────────────────────────────────────────��
 └ ┘ ─name─

name
is one of the following:

� An ordinary symbol

� A variable symbol that has been assigned a character string with a value
that is valid for an ordinary symbol

� A sequence symbol

The CSECT instruction can be used anywhere in a source module after any ICTL
or *PROCESS statements. If it is used to initiate the first executable control
section, it must not be preceded by any instruction that affects the location counter
and thereby cause the first control section to be initiated.

If name denotes an ordinary symbol, the ordinary symbol identifies the control
section. If several CSECT instructions within a source module have the same
symbol in the name field, the first occurrence initiates the control section and the
rest indicate the continuation of the control section. The ordinary symbol denoted
by name represents the address of the first byte in the control section, and has a
length attribute value of 1.

If name is not specified, or if name is a sequence symbol, the CSECT instruction
initiates, or indicates the continuation of the unnamed control section.

If the first control section is initiated by a START instruction, name must be used to
indicate any continuation of the first control section.

  Chapter 5. Assembler Instruction Statements 111



 CXD Instruction  
 

The beginning of a control section is aligned on a doubleword boundary. However,
when an interrupted control section is continued using the CSECT instruction, the
location counter last specified in that control section is continued. Consider the
coding in Figure 27 on page 112:

ALPHA START ┐ ┌───────────────────────┐
 BALR 12,K ├───────────────────────────�│ ALPHA │
 USING │ ┌────────────────────────�│ │
 . │ │ │ │
 . ┘ │ │ │
NEWCSECT CSECT ┐ │ ├ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┤
 . ├──┼────────────────────────�│ NEWCSECT │
 . │ │ │ │
 . ┘ │ │ │
ALPHA CSECT ┐ │ │ │
 . ├──┘ │ │
 . │ │ │
 . ┘ │ │

Figure 27. How the Location Counter Works

The source statements following a CSECT instruction that either initiate or indicate
the continuation of a control section are assembled into the object code of the
control section identified by that CSECT instruction.

The end of a control section or portion of a control section is marked by:

� Any instruction that defines a new or continued control section
� The END instruction

 CXD Instruction
The CXD instruction reserves a fullword area in storage. The linker or loader
inserts into this area the total length of all external dummy sections specified in the
source modules that are assembled and linked into one program.

 

��─ ──┬ ┬────── ─CXD──────────────────────────────────────────────────��
 └ ┘ ─name─

name
is one of the following:

� An ordinary symbol

� A variable symbol that has been assigned a character string with a value
that is valid for an ordinary symbol

� A sequence symbol

The linker or loader inserts into the fullword-aligned fullword area reserved by the
CXD instruction the total length of storage required for all the external dummy

| sections specified in a program. If the XOBJECT assembler option is specified,
| CXD returns the length of the B_PRV class. If name denotes an ordinary symbol,

the ordinary symbol represents the address of the fullword area. The ordinary
symbol denoted by name has a length attribute value of 4.

The following examples shows how external dummy sections may be used:

112 HLASM V1R3 Language Reference  



  DC Instruction
 

ROUTINE A

ALPHA DXD 2DL8
BETA DXD 4FL4
OMEGA CXD
 .
 .
 DC Q(ALPHA)
 DC Q(BETA)
 .
 .

ROUTINE B

GAMMA DXD 5D
DELTA DXD 1KF
 .
 .
 DC Q(GAMMA)
 DC Q(DELTA)
 .
 .

ROUTINE C

EPSILON DXD 4H
 .
 .
 DC Q(EPSILON)
 .
 .

Each of the three routines is requesting an amount of work area. Routine A wants
2 doublewords and 4 fullwords; Routine B wants 5 doublewords and 10 fullwords;
Routine C wants 4 halfwords. At the time these routines are brought into storage,
the sum of the individual lengths is placed in the location of the CXD instruction
labeled OMEGA. Routine A can then allocate the amount of storage that is
specified in the CXD location.

 DC Instruction
You specify the DC instruction to define the data constants you need for program
execution. The DC instruction causes the assembler to generate the binary
representation of the data constant you specify into a particular location in the
assembled source module; this is done at assembly time.

The DC instruction can generate the following types of constants:

Figure 28 (Page 1 of 2). Types of Data Constants

Type of
Constant Function Example

Address Defines address mainly
for the use of fixed-point
and other instructions

 L 5,ADCON
ADCON DC A(SOMWHERE)

Binary Defines bit patterns FLAG DC B'KKK1KKKK'

  Chapter 5. Assembler Instruction Statements 113



 DC Instruction  
 

 

 ┌ ┐─,───────
��─ ──┬ ┬──────── ─DC─ ───+ ┴─operand─ ───────────────────────────────────��
 └ ┘ ─symbol─

symbol
is one of the following:

� An ordinary symbol

� A variable symbol that has been assigned a character string with a value
that is valid for an ordinary symbol

� A sequence symbol

If symbol denotes an ordinary symbol, the ordinary symbol represents the
address of the first byte of the assembled constant. If several operands are
specified, the first constant defined is addressable by the ordinary symbol. The
other constants can be reached by relative addressing.

operands
An operand of four subfields. The first three subfields describe the constant.
The fourth subfield provides the nominal values for the constants.

A DC operand has this format:

 

��─ ── ──┬ ┬──────────────────── type ──┬ ┬────────── nominal_value ───────��
 └ ┘ ─duplication_factor─ └ ┘ ─modifier─

duplication_factor
causes the nominal_value to be generated the number of
 times indicated by this factor. See “Subfield 1: Duplication Factor” on
page 119.

Figure 28 (Page 2 of 2). Types of Data Constants

Type of
Constant Function Example

Character Defines character strings
or messages

CHAR DC C'string of characters'

Decimal Used by decimal
instructions

 AP AREA,PCON
PCON DC P'1KK'
AREA DS P

Fixed-point Used by the fixed-point
and other instructions

 L 3,FCON
FCON DC F'1KK'

Floating-point Used by floating-point
instructions

 LE 2,ECON
ECON DC E'1KK.5K'

Graphic Defines character strings
or messages that contain
pure double-byte data

DBCS DC G'<.D.B.C.S. .S.T.R.I.N.G>'

Hexadecimal Defines large bit patterns PATTERN DC X'FFKKFFKK'

114 HLASM V1R3 Language Reference  



  DC Instruction
 

type
determines the type of constant the nominal_value represents. See “Subfield
2: Type” on page 120.

modifier
describes the length, the scaling, and the exponent of the nominal_value. See
“Subfield 3: Modifier” on page 121.

nominal_value
defines the value of the constant. See “Subfield 4: Nominal Value” on
page 124.

For example, in:

1KXL2'FA'

the four subfields are:

� Duplication factor is 1K
� Type is X
� Modifier is L2
� Nominal value is FA

If all subfields are specified, the order given above is required. The first and third
subfields can be omitted, but the second and fourth must be specified in that order.

Rules for DC Operand
1. The type subfield and the nominal value must always be specified.

2. The duplication factor and modifier subfields are optional.

3. When multiple operands are specified, they can be of different types.

4. When multiple nominal values are specified in the fourth subfield, they must be
separated by commas and be of the same type. Multiple nominal values are
not allowed for character constants.

5. The descriptive subfields apply to all the nominal values. Separate constants
are generated for each separate operand and nominal value specified.

6. No blanks are allowed:

 � Between subfields

� Between multiple operands

� Within any subfields, unless they occur as part of the nominal value of a
character or graphic constant, or as part of a character or graphic
self-defining term in a modifier expression, or in the duplication factor
subfield

General Information About Constants
Constants defined by the DC instruction are assembled into an object module at
the location at which the instruction is specified. However, the type of constant
being defined, and the presence or absence of a length modifier, determines
whether the constant is to be aligned on a particular storage boundary or not (see
“Alignment of Constants” on page 116).

  Chapter 5. Assembler Instruction Statements 115



 DC Instruction  
 

Symbolic Addresses of Constants:  The value of the symbol that names the DC
instruction is the address of the first byte (after alignment) of the first or only
constant.

Length Attribute Value of Symbols Naming Constants
The length attribute value assigned to the symbols in the name field of the
constants is equal to:

� The implicit length (see “Implicit Length” in Figure 29) of the constant when no
explicit length is specified in the operand of the constant, or

� The explicit length (see “Value of Length Attribute” in Figure 29) of the
constant.

If more than one operand is present, the length attribute value of the symbol is the
length in bytes of the first constant specified, according to its implicit or explicit
length.

Alignment of Constants
The assembler aligns constants on different boundaries according to the following:

� On boundaries implicit to the type of constant (see “Implicit Boundary
Alignment” in Figure 30 on page 117) when no length is specified.

� On byte boundaries (see “Boundary Alignment” in Figure 30) when an explicit
length is specified.

Bytes that are skipped to align a constant at the correct boundary are not
considered part of the constant. They are filled with zeros.

Notes:

1. The automatic alignment of constants and areas does not occur if the
NOALIGN assembler option has been specified.

2. Alignment can be forced to any boundary by a preceding DS (or DC) instruction
with a zero duplication factor. This occurs whether or not the ALIGN option is
set.

Figure 29 (Page 1 of 2). Length Attribute Value of Symbol Naming Constants

Type of
constant

Implicit
Length Examples

Value of
Length
Attribute3

B as needed DC B'1KK1KKKK' 1

C as needed DC C'WOW'
DC CL8'WOW'

3
8

G as needed DC G'<DaDb>'
DC GL8'<DaDb>'

4
8

X as needed DC X'FFEEKK'
DC XL2'FFEE'

3
2

H
F

2
4

DC H'32'
DC FL3'32'

2
3

116 HLASM V1R3 Language Reference  



  DC Instruction
 

Figure 29 (Page 2 of 2). Length Attribute Value of Symbol Naming Constants

Type of
constant

Implicit
Length Examples

Value of
Length
Attribute3

P
Z

as needed
as needed

DC P'123'
DC PL4'123'
DC Z'123'
DC ZL1K'123'

2
4
3
10

E
D
L

4
8
16

DC E'565.4K'
DC DL6'565.4K'
DC LL12'565.4K'

4
6
12

Y
A

2
4

DC Y(HERE)
DC AL1(THERE)

2
1

S
V

| J
Q

2
4
4
4

DC S(THERE)
DC VL3(OTHER)
DC J(CLASS)
DC QL1(LITTLE)

2
3
4
1

Note: 

1. Depends on whether or not an explicit length is specified in constant.

Padding and Truncation of Values
The nominal values specified for constants are assembled into storage. The
amount of space available for the nominal value of a constant is determined:

� By the explicit length specified in the second operand subfield, or

� If no explicit length is specified, by the implicit length according to the type of
constant defined (see Appendix B, “Summary of Constants” on page 359).

Figure 30 (Page 1 of 2). Alignment of Constants

Type of
constant

Implicit
Boundary
Alignment Examples

Boundary
Alignment3

B byte DC B'1K11' byte

C byte DC C'Character string' byte

G byte DC G'<.D.B.C.S .S.T.R.I.N.G> byte

X byte DC X'2K2K2K212K2K2K' byte

H
F

halfword
fullword

DC H'25'
DC HL3'25'
DC F'225'
DC FL7'225'

halfword
byte
fullword
byte

P
Z

byte
byte

DC P'2934'
DC Z'1235'
DC ZL2'1235'

byte
byte
byte

E
D
L

fullword
doubleword
doubleword

DC E'1.25'
DC EL5'1.25'
DC 8D'95'
DC 8DL7'95'
DC L'2.57E65'

fullword
byte
doubleword
byte
doubleword

  Chapter 5. Assembler Instruction Statements 117



 DC Instruction  
 

Figure 30 (Page 2 of 2). Alignment of Constants

Type of
constant

Implicit
Boundary
Alignment Examples

Boundary
Alignment3

Y
A
S

V

| J
Q

halfword
fullword
halfword

fullword

fullword
fullword

DC Y(HERE)
DC AL1(THERE)
DC S(LABEL)
DC SL2(LABEL)
DC V(EXTERNAL)
DC VL3(EXTERNAL)
DC J(CLASS)
DC QL1(DUMMY)

halfword
byte
halfword
byte
fullword
byte
fullword
byte

Note: 

1. Depends on whether or not an explicit length is specified in constant.

 Padding
If more space is specified than is needed to accommodate the binary
representation of the nominal value, the extra space is padded:

� With binary zeros on the left for the binary (B), hexadecimal (X), fixed-point
| (H,F), packed decimal (P), and all address (A,Y,S,V,J,Q) constants

� With EBCDIC zeros on the left (X'F0') for the zoned decimal (Z) constants

� With EBCDIC blanks on the right (X'40') for the character (C) constants

� With double-byte blanks on the right (X'4040') for the graphic (G) constants

Notes:

1. In floating-point constants (E,D,L), the fraction is extended to fill the extra space
available.

2. Padding is on the left for all constants except the character constant and the
graphic constant.

 Truncation
If less space is available than is needed to accommodate the nominal value, the
nominal value is truncated and part of the constant is lost. Truncation of the
nominal value is:

� On the left for the binary (B), hexadecimal (X), fixed-point (H and F), decimal (P
and Z), and address (A and Y) constants

� On the right for the character (C) constant and the graphic (G) constant

Notes:

1. If significant bits are lost in the truncation of fixed-point constants, error
diagnostic message ASMAK72E Data item too large is issued.

2. Floating-point constants (E, D, L) are not truncated. They are rounded to fit the
space available.

3. The above rules for padding and truncation also apply when using the
bit-length specification (see “Subfield 3: Modifier” below).

118 HLASM V1R3 Language Reference  



  DC Instruction
 

4. Double-byte data in C-type constants cannot be truncated because truncation
creates incorrect double-byte data. Error ASMA2K8E Truncation into
double-byte data is not permitted is issued if such truncation is attempted.

5. Truncation of double-byte data in G-type constants is permitted because the
length modifier restrictions (see “Subfield 3: Modifier” on page 121) ensure that
incorrect double-byte data cannot be created by truncation.

Subfield 1: Duplication Factor
The syntax for coding the duplication factor is shown in the subfield format on page
114.

You may omit the duplication factor. If specified, it causes the nominal value or
multiple nominal values specified in a constant to be generated the number of times
indicated by the factor. It is applied after the nominal value or values are
assembled into the constant. Symbols used in subfield 1 need not be previously
defined. This does not apply to literals.

The duplication factor can be specified by an unsigned decimal self-defining term or
by an absolute expression enclosed in parentheses.

The expression must have a positive value or be equal to zero.

Notes:

1. The value of a location counter reference in a duplication factor is the value
before any alignment to boundaries is done, according to the type of constant
specified.

2. A duplication factor of zero is permitted with the following results:

� No value is assembled.

� Alignment is forced according to the type of constant specified, if no length
attribute is present (see “Alignment of Constants” on page 116).

� The length attribute of the symbol naming the constant is established
according to the implicitly or explicitly specified length.

| When the duplication factor is zero, the nominal value may be omitted. The
| alignment is forced, even if the NOALIGN option is specified.

3. If duplication is specified for an address constant whose nominal value contains
a location counter reference, the value of the location counter reference is
incremented by the length of the constant before each duplication is done (see
“Address Constants—A and Y” on page 136).

However, if duplication is specified for an address-type literal constant
containing a location counter reference, the value of the location counter
reference is not incremented by the length of the literal before each duplication
is done. The value of the location counter reference is the location of the first
byte of the literal in the literal pool, and is the same for each duplication.

4. The maximum value for the duplication factor is 224−1, or X'FFFFFF' bytes. If
the maximum value for the duplication factor is exceeded, the assembler issues
message ASMAK67S Illegal duplication factor.

  Chapter 5. Assembler Instruction Statements 119



 DC Instruction  
 

Subfield 2: Type
The syntax for coding the type is shown in the subfield format on page 114.

You must specify the type subfield. From the type specification, the assembler
determines how to interpret the constant and translate it into the correct machine
format. The type is specified by a single-letter code as shown in Figure 31.

Further information about these constants is provided in the discussion of the
constants themselves under “Subfield 4: Nominal Value” on page 124.

The type specification indicates to the assembler:

1. How to assemble the nominal value(s) specified in subfield 4; that is, which
binary representation or machine format the object code of the constant must
have.

2. At what boundary the assembler aligns the constant, if no length specification is
present.

3. How much storage the constant occupies, according to the implicit length of the
constant, if no explicit length specification is present (for details, see “Padding
and Truncation of Values” on page 117).

| A type extension has been created to define hexadecimal floating-point constants
| (see “Hexadecimal Floating-Point Constants—E, EH, D, DH, L, LH” on page 141).
| It also allows you to define binary floating-point constants (see “Binary

Figure 31. Type Codes for Constants

Code Constant Type Machine Format

C Character 8-bit code for each character

G Graphic 16-bit code for each character

X Hexadecimal 4-bit code for each hexadecimal digit

B Binary Binary format

F Fixed-point Signed, fixed-point binary format; normally a fullword

H Fixed-point Signed, fixed-point binary format; normally a halfword

E Floating-point Short floating-point format; normally a fullword

D Floating-point Long floating-point format; normally a doubleword

L Floating-point Extended floating-point format; normally two doublewords

P Decimal Packed decimal format

Z Decimal Zoned decimal format

A Address Value of address; normally a fullword

Y Address Value of address; normally a halfword

S Address Base register and displacement value; a halfword

V Address Space reserved for external symbol addresses; each
address normally a fullword

| J Address Space reserved for length of class or DXD; normally a
fullword

Q Address Space reserved for external dummy section offset

120 HLASM V1R3 Language Reference  



  DC Instruction
 

| Floating-Point Constants—EB, DB, LB” on page 146) using the new, more
| accurate, conversion routines.

Subfield 3: Modifier
The syntax for coding the modifier is shown in the subfield format on page 114.

You may omit the modifier subfield. Modifiers describe the length in bytes you
want for a constant (in contrast to an implied length), and the scaling and exponent
for the constant.

The three modifiers are:

� The length modifier (L), that explicitly defines the length in bytes you want for a
constant. For example:

LENGTH DC XL1K'FF'

� The scale modifier (S), that is only used with the fixed-point or floating-point
constants (for details, see “Scale Modifier” on page 123). For example:

SCALE DC FS8'35.92'

� The exponent modifier (E), that is only used with fixed-point or floating-point
constants, and indicates the power of 10 by which the constant is to be
multiplied before conversion to its internal binary format. For example:

EXPON DC EE3'3.414'

If multiple modifiers are used, they must appear in this sequence: length, scale,
exponent. For example:

ALL3 DC DL7S3E5K'2.7182'

Symbols used in subfield 3 need not be previously defined, except in literals. For
example:

SYM DC FS(X)'35.92'
X EQU 7

 Length Modifier
The length modifier indicates the number of bytes of storage into which the
constant is to be assembled. It is written as Ln, where n is either a decimal
self-defining term or an absolute expression enclosed by parentheses. It must
have a positive value.

When the length modifier is specified:

� Its value determines the number of bytes of storage allocated to a constant. It
therefore determines whether the nominal value of a constant must be padded
or truncated to fit into the space allocated (see “Padding and Truncation of
Values” on page 117).

� No boundary alignment, according to constant type, is provided (see “Alignment
of Constants” on page 116).

� Its value must not exceed the maximum length allowed for the various types of
constant defined.

� The length modifier must not truncate double-byte data in a C-type constant.

� The length modifier must be a multiple of 2 in a G-type constant.

  Chapter 5. Assembler Instruction Statements 121



 DC Instruction  
 

When no length is specified, for character and graphic constants (C and G),
hexadecimal constants (X), binary constants (B), and decimal constants (P and Z),
the whole constant is assembled into its implicit length.

Bit-Length Specification:  The length modifier can be specified to indicate the
number of bits into which a constant is to be assembled. The bit-length
specification is written as L.n where n is either a decimal self-defining term, or an
absolute expression enclosed in parentheses. It must have a positive value.

The value of n must lie between 1 and the number of bits (a multiple of 8) that are
required to make up the maximum number of bytes allowed in the type of constant
being defined. The bit-length specification cannot be used with the G-, S-, V-, and
Q-type constants.

When only one operand and one nominal value are specified in a DC instruction,
the following rules apply:

1. The bit-length specification allocates a field into which a constant is to be
assembled. The field starts at a byte boundary and can run over one or more
byte boundaries, if the bit length is greater than 8.

If the field does not end at a byte boundary and if the bit length is not a
multiple of 8, the remainder of the last byte is filled with binary zeros.

2. The nominal value of the constant is assembled into the field:

a. Starting at the high order end for the C-, E-, D-, and L-type constants

b. Starting at the low-order end for the remaining types of constants that allow
bit-length specification

3. The nominal value is padded or truncated to fit the field (see “Padding and
Truncation of Values” on page 117).

Character constants are padded with hexadecimal blanks, X'40'; other
constant types are padded with zeros.

The length attribute value of the symbol naming a DC instruction with a specified bit
length is equal to the minimum number of integral bytes needed to contain the bit
length specified for the constant. Consider the following example:

TRUNCF DC FL.12'276'

L'TRUNCF is equal to 2. Thus, a reference to TRUNCF addresses both the two bytes
that are assembled.

When more than one operand is specified in a DC instruction, or more than one
nominal value in a DC operand, the above rules about bit-length specifications also
apply, except:

1. The first field allocated starts at a byte boundary, but the succeeding fields start
at the next available bit.

2. After all the constants have been assembled into their respective fields, the bits
remaining to make up the last byte are filled with zeros.

If duplication is specified, filling with zeros occurs once at the end of all the
fields occupied by the duplicated constants.

122 HLASM V1R3 Language Reference  



  DC Instruction
 

3. The length attribute value of the symbol naming the DC instruction is equal to
the number of integral bytes needed to contain the bit length specified for the
first constant to be assembled.

For double-byte data in C-type constants If bit-lengths are specified, with a
duplication factor greater than 1, and a bit-length which is not a multiple of 8, then
the double-byte data is no longer valid for devices capable of presenting DBCS
characters. No error message is issued.

Storage Requirement for Constants:  The total amount of storage required to
assemble a DC instruction is the sum of:

1. The requirements for the individual DC operands specified in the instruction.
The requirement of a DC operand is the product of:

� The sum of the lengths (implicit or explicit) of each nominal value
� The duplication factor, if specified

2. The number of bytes skipped for the boundary alignment between different
operands

 Scale Modifier
The scale modifier specifies the amount of internal scaling that you want for:

� Binary digits for fixed-point constants (H, F)
� Hexadecimal digits for floating-point constants (E, D, L)

| The scale modifier can be used only with the above types of constants. It cannot
| be used with EB, DB, and LB floating point constants.

The range for each type of constant is:

Fixed-point constant H −187 to 15
Fixed-point constant F −187 to 30
Floating-point constant E 0 to 5
Floating-point constant D 0 to 13
Floating-point constant L 0 to 27

The scale modifier is written as Sn, where n is either a decimal self-defining term,
or an absolute expression enclosed in parentheses.

Both types of specification can be preceded by a sign; if no sign is present, a plus
sign is assumed.

Scale Modifier for Fixed-Point Constants:  The scale modifier for fixed-point
constants specifies the power of two by which the fixed-point constant must be
multiplied after its nominal value has been converted to its binary representation,
but before it is assembled in its final scaled form. Scaling causes the binary point
to move from its assumed fixed position at the right of the extreme right bit position.

Notes:

1. When the scale modifier has a positive value, it indicates the number of binary
positions occupied by the fractional portion of the binary number.

2. When the scale modifier has a negative value, it indicates the number of binary
positions deleted from the integer portion of the binary number.

3. When low-order positions are lost because of scaling (or lack of scaling),

  Chapter 5. Assembler Instruction Statements 123



 DC Instruction  
 

rounding occurs in the extreme left bit of the lost portion. The rounding is
reflected in the extreme right position saved.

| Scale Modifier for Hexadecimal Floating-Point Constants:  The scale modifier
| for hexadecimal floating-point constants must have a positive value. It specifies the

number of hexadecimal positions that the fractional portion of the binary
representation of a floating-point constant is shifted to the right. The hexadecimal
point is assumed to be fixed at the left of the extreme left position in the fractional
field. When scaling is specified, it causes an unnormalized hexadecimal fraction to
be assembled (unnormalized means the leftmost positions of the fraction contain
hexadecimal zeros). The magnitude of the constant is retained, because the
exponent in the characteristic portion of the constant is adjusted upward
accordingly. When non-zero hexadecimal positions are lost, rounding occurs in the
extreme left hexadecimal position of the lost portion. The rounding is reflected in
the extreme right position saved.

 Exponent Modifier
The exponent modifier specifies the power of 10 by which the nominal value of a
constant is to be multiplied before it is converted to its internal binary
representation. It can only be used with the fixed-point (H and F) and floating-point
(E, D, and L) constants. The exponent modifier is written as En, where n can be
either a decimal self-defining term, or an absolute expression enclosed in
parentheses.

The decimal self-defining term or the expression can be preceded by a sign: If no
sign is present, a plus sign is assumed. The range for the exponent modifier is −85

| to +75. If using the type extension to define a floating-point constant, the exponent
| modifier can be in the range −2b] to 2b]−1. If the nominal value cannot be
| represented exactly, a warning message is issued.

Notes:

1. Don't confuse the exponent modifier with the exponent that can be specified in
the nominal value subfield of fixed-point and floating-point constants.

The exponent modifier affects each nominal value specified in the operand,
whereas the exponent written as part of the nominal value subfield only affects
the nominal value it follows. If both types of exponent are specified in a DC
operand, their values are added together before the nominal value is converted
to binary form. However, this sum must lie within the permissible range of −85
to +75.

2. The value of the constant, after any exponents have been applied, must be
contained in the implicitly or explicitly specified length of the constant to be
assembled.

Subfield 4: Nominal Value
The syntax for coding the nominal value is shown in the subfield format on page
114.

You must specify the nominal value subfield. It defines the value of the constant
(or constants) described and affected by the subfields that precede it. It is this
value that is assembled into the internal binary representation of the constant.
Figure 32 shows the formats for specifying constants.

124 HLASM V1R3 Language Reference  



  DC Instruction
 

As the above list shows:

| � A data constant value (any type except A, Y, S, Q, J, and V) is enclosed by
single quotation marks.

| � An address constant value (type A, Y, S, V) or an offset constant (type Q) or a
| length constant (type J) is enclosed by parentheses.

� To specify two or more values in the subfield, the values must be separated by
commas, and the whole sequence of values must be enclosed by the correct
delimiters; that is, single quotation marks or parentheses.

� Multiple values are not permitted for character constants.

| Blanks are allowed and ignored in nominal values for all quoted constant types
except C (BDEFHLPXZ).

How nominal values are specified and interpreted by the assembler is explained in
each of the subsections that follow. There is a subsection for each of the following
types of constant:

 Binary
 Character
 Graphic
 Hexadecimal
 Fixed-Point
 Decimal
 Packed Decimal
 Zoned Decimal
 Address
 Floating-Point

Literal constants are described on page 150 

Figure 32. Specifying Constant Values

Constant
Type

Single
Nominal Value

Multiple
Nominal Value

Page No.

C 'value' not allowed 127 

G '<.v.a.l.u.e>' not allowed 129 

B
X
H
F
P
Z
E
D
L

'value' 'value,value,...value' 126 
130 
131 
131 
134 
134 
141, 146 
141, 146 
141, 146 

A
Y
S
V

(value) (value,value,...value) 136 
136 
136 
136 

| Q| (value)| (value,value,...value)| 150 

| J| (value)| (value,value,...value)| 151 

  Chapter 5. Assembler Instruction Statements 125



 DC Instruction—Binary Constant  
 

 Binary Constant—B
The binary constant specifies the precise bit pattern assembled into storage. Each
binary constant is assembled into the integral number of bytes (see �1� in
Figure 33) required to contain the bits specified, unless a bit-length modifier is
specified.

The following example shows the coding used to designate a binary constant. BCON
has a length attribute of 1.

BCON DC B'11K111K1'
BTRUNC DC BL1'1KK1KKK11'
BPAD DC BL1'1K1'

BTRUNC assembles with the extreme left bit truncated, as follows:

KK1KKK11

BPAD assembles with five zeros as padding, as follows:

KKKKK1K1

 display.

Figure 33. Binary Constants

Subfield Value Example Result

1. Duplication factor Allowed

2. Type B

3. Modifiers
 Implicit length:
 (length modifier
 not present)

 
As needed

 
B DC B'1K1K1111'
C DC B'1K1'

 
L'B = 1 �1�
L'C = 1 �1�

 Alignment: Byte

Range for length: 1 to 256
(byte length)
 
.1 to .2048
(bit length)

Range for scale Not allowed

Range for exponent Not allowed

4. Nominal value
 Represented by:

 
Binary digits
(0 or 1)

 Enclosed by: Single quotation
marks

 Exponent allowed: No

Number of values
 per operand:

Multiple

 Padding: With zeros at left

 Truncation of
 assembled value:

At left

126 HLASM V1R3 Language Reference  



  DC Instruction—Character Constant
 

 Character Constant—C
The character constant specifies character strings, such as error messages,
identifiers, or other text, that the assembler converts into binary (EBCDIC)
representations.

Any of the 256 characters from the EBCDIC character set may be designated in a
character constant. Each character specified in the nominal value subfield is
assembled into one byte (see �1� in Figure 34).

Multiple nominal values are not allowed because if a comma is specified in the
nominal value subfield, the assembler considers the comma a valid character (see
�2� in Figure 34) and, therefore, assembles it into its binary (EBCDIC)
representation (see Appendix D, “Standard Character Set Code Table” on
page 372). For example:

 DC C'A,B'

is assembled as A,B with object code C16BC2.

Give special consideration to representing single quotation marks and ampersands
as characters. Each single quotation mark or ampersand you want as a character
in the constant must be represented by a pair of single quotation marks or
ampersands. Each pair of single quotation marks is assembled as one single
quotation mark, and each pair of ampersands is assembled as one ampersand (see
�3� in Figure 34). display.

Figure 34 (Page 1 of 2). Character Constants

Subfield Value Example Result

1. Duplication factor Allowed

2. Type C

3. Modifiers
 Implicit length:
 (length modifier
 not present)

 
As needed

 
C DC C'LENGTH'

 
L'C = 6 �1�

 Alignment: Byte

Range for length: 1 to 256
(byte length)
 
.1 to .2048
(bit length)

Range for scale Not allowed

Range for exponent Not allowed

4. Nominal value
 Represented by:

 
Characters
(all 256 8-bit
combinations)

 
DC C'A''B'
DC C'A&&B'

Object code
X'C17DC2' �3�
X'C150C2' �3�

 Enclosed by: Single quotation
marks

 Exponent allowed: No (would be
interpreted as
character data)

  Chapter 5. Assembler Instruction Statements 127



 DC Instruction—Character Constant  
 

In the following example, the length attribute of FIELD is 12:

FIELD DC C'TOTAL IS 11K'

However, in this next example, the length attribute is 15, and three blanks appear
in storage to the right of the zero:

FIELD DC CL15'TOTAL IS 11K'

In the next example, the length attribute of FIELD is 12, although 13 characters
appear in the operand. The two ampersands count as only one byte.

FIELD DC C'TOTAL IS &&1K'

In the next example, a length of 4 has been specified, but there are five characters
in the constant.

FIELD DC 3CL4'ABCDE'

The generated constant would be:

ABCDABCDABCD

On the other hand, if the length had been specified as 6 instead of 4, the generated
constant would have been:

ABCDE ABCDE ABCDE

The same constant could be specified as a literal.

 MVC AREA(12),=3CL4'ABCDE'

Double-byte data in character constants:  When the DBCS assembler option is
specified, double-byte data may be used in a character constant. The start of
double-byte data is delimited by SO, and the end by SI. All characters between SO
and SI must be valid double-byte characters. No single-byte meaning is drawn
from the double-byte data. Hence, special characters such as the single quotation
mark and ampersand are not recognized between SO and SI. The SO and SI are
included in the assembled representation of a character constant containing
double-byte data.

If a duplication factor is used, SI/SO pairs at the duplication points are not
removed. For example, the statement:

DBCS DC 3C'<D1>'

results in the assembled character string value of:

<D1><D1><D1>

Figure 34 (Page 2 of 2). Character Constants

Subfield Value Example Result

Number of values
 per operand:

One DC C'A,B' Object code
X'C16BC2' �2�

 Padding: With blanks at right
(X'40')

 Truncation of
 assembled value:

At right

128 HLASM V1R3 Language Reference  



  DC Instruction—Graphic Constant
 

Null double-byte data (SO followed immediately by SI) is acceptable and is
assembled into the constant value.

The following examples of character constants contain double-byte data:

DBCS1 DC C'<.D.B.C.S>'
DBCS2 DC C'abc<.A.B.C>'
DBCS3 DC C'abc<.A.B.C>def'

The length attribute includes the SO and SI. For example, the length attribute of
DBCS2 is 11. No truncation of double-byte character strings within C-type constants
is allowed, since incorrect double-byte data would be created.

 Graphic Constant—G
When the DBCS assembler option is specified, the graphic (G-type) constant is
supported. This constant type allows the assembly of pure double-byte data. The
graphic constant differs from a character constant containing only double-byte data
in that the SO and SI delimiting the start and end of double-byte data are not
present in the assembled value of the graphic constant. Because SO and SI are
not assembled, if a duplication factor is used, no redundant SI/SO characters are
created. For example, the statement:

DBCS DC 3G'<D1>'

results in the assembled character string value of:

D1D1D1

Examples of graphic constants are:

DBCS1 DC G'<.A.B.C>'
DBCS2 DC GL1K'<.A.B.C>'
DBCS3 DC GL4'<.A.B.C>'

Because the length attribute does not include the SO and SI, the length attribute of
DBCS1 is 6. The length modifier of 10 for DBCS2 causes padding of 2 double-byte
blanks at the right of the nominal value. The length modifier of 4 for DBCS3 causes
truncation after the first 2 double-byte characters. The length attribute of a graphic
constant must be a multiple of 2.

Type Attribute of G-Type Constant:  Don't confuse the G-type constant character
with the type (data) attribute of a graphic constant. The type attribute of a graphic
constant is @, not G. See the general discussion about data attributes on page
292, and “Type Attribute (T')” on page 296.

Figure 35 (Page 1 of 2). Graphic Constants

Subfield Value Example Result

1. Duplication factor Allowed DC 3G'<.A>' Object code
X'42C142C142C1'

2. Type G

3. Modifiers
 Implicit length:
 (length modifier
 not present)

 
As needed
(twice the number
of DBCS
characters)

 
GC DC G'<.A.B>'

 
L'GC = 4

 Alignment: Byte

  Chapter 5. Assembler Instruction Statements 129



 DC Instruction—Hexadecimal Constant  
 

Figure 35 (Page 2 of 2). Graphic Constants

Subfield Value Example Result

Range for length: 2 to 256, must be
multiple of 2
(byte length)
bit length not
allowed

4. Nominal value
 Represented by:

 
DBCS characters
delimited by SO
and SI

 
DC G'<.&.'>'
DC G'<.A><.B>'

Object code
X'4250427D'
X'42C142C2'

 Enclosed by: Single quotation
marks

Number of values
 per operand:

One  
DC G'<.A.,.B>'

Object code
X'42C1426B42C2'

 Padding: With DBCS blanks
at right (X'4040')

 
DC GL6'<.A>'

Object code
X'42C140404040'

 Truncation of
 assembled value:

At right  
DC GL2'<.A.B>'

Object code
X'42C1'

 Hexadecimal Constant—X
Hexadecimal constants generate large bit patterns more conveniently than binary
constants. Also, the hexadecimal values you specify in a source module let you
compare them directly with the hexadecimal values generated for the object code
and address locations printed in the program listing.

Each hexadecimal digit (see �1� in Figure 36 on page 131) specified in the
nominal value subfield is assembled into four bits (their binary patterns can be
found in “Self-Defining Terms” on page 31). The implicit length in bytes of a
hexadecimal constant is then half the number of hexadecimal digits specified
(assuming that a high-order hexadecimal zero is added to an odd number of digits).
See �2� and �3� in Figure 36.

An 8-digit hexadecimal constant provides a convenient way to set the bit pattern of
a full binary word. The constant in the following example sets the first and third
bytes of a word with all 1 bits.

 DS KF
TEST DC X'FFKKFFKK'

The DS instruction sets the location counter to a fullword boundary. (See “DS
Instruction” on page 154.)

The next example uses a hexadecimal constant as a literal and inserts a byte of all
1 bits into bits 24 to 31 of register 5.

 IC 5,=X'FF'

In the following example, the digit A is dropped, because 5 hexadecimal digits are
specified for a length of 2 bytes:

ALPHACON DC 3XL2'A6F4E' Generates 6F4E 3 times

130 HLASM V1R3 Language Reference  



  DC Instruction—Fixed-Point Constants
 

The resulting constant is 6F4E, which occupies the specified 2 bytes. It is
duplicated three times, as requested by the duplication factor. If it had been
specified as:

ALPHACON DC 3X'A6F4E' Generates KA6F4E 3 times

the resulting constant would have a hexadecimal zero in the extreme left position.

KA6F4EKA6F4EKA6F4E

Figure 36. Hexadecimal Constants

Subfield Value Example Result

1. Duplication factor Allowed

2. Type X

3. Modifiers
 Implicit length:
 (length modifier
 not present)

 
As needed

 
X DC X'FFKKA2'
Y DC X'FKKA2'

 
L'X = 3 �2�
L'Y = 3 �2�

 Alignment: Byte

Range for length: 1 to 256
(byte length)
 
.1 to .2048
(bit length)

Range for scale Not allowed

Range for exponent Not allowed

4. Nominal value
 Represented by:

 
Hexadecimal
digits
(0 to 9 and
A to F)

 
DC X'1F'
DC X'91F'

Object code
X'1F' �1�
X'091F' �3�

 Enclosed by: Single quotation
marks

 Exponent allowed: No

Number of values
 per operand:

Multiple

 Padding: With zeros at left

 Truncation of
 assembled value:

At left

Fixed-Point Constants—F and H
Fixed-point constants let you introduce data that is in a form suitable for the
arithmetic operations of the fixed-point machine instructions. The constants you
define can also be automatically aligned to the correct fullword or halfword
boundary for the instructions that refer to addresses on these boundaries (unless
the NOALIGN option has been specified; see “General Information About
Constants” on page 115). You can do algebraic operations using this type of
constant because they can have positive or negative values.

A fixed-point constant is written as a decimal number, which can be followed by a
decimal exponent. The format of the constant is as follows:

  Chapter 5. Assembler Instruction Statements 131



 DC Instruction—Fixed-Point Constants  
 

1. The nominal value can be a signed (see �1� in Figure 37 on page 132)
integer, fraction, or mixed number (see �2� Figure 37) followed by a signed
exponent (see �3� in Figure 37). If a sign is not specified for either the number
or exponent, + is assumed.

2. The exponent must lie within the permissible range (see �4� in Figure 37). If
an exponent modifier is also specified, the algebraic sum (see �5� in Figure 37)
of the exponent and the exponent modifier must lie within the permissible
range.

Some examples of the range of values that can be assembled into fixed-point
constants are given below:

The range of values depends on the implicitly or explicitly specified length (if
scaling is disregarded). If the value specified for a particular constant does not lie
within the allowable range for a given length, the constant is not assembled, but
flagged as an error.

A fixed-point constant is assembled as follows:

1. The specified number, multiplied by any exponents, is converted to a binary
number.

2. Scaling is done, if specified. If a scale modifier is not provided, the fractional
portion of the number is lost.

3. The binary value is rounded, if necessary. The resulting number does not differ
from the exact number specified by more than one in the least significant bit
position at the right.

4. A negative number is carried in two's-complement form.

5. Duplication is applied after the constant has been assembled.

The statement below generates 3 fullwords of data. The location attribute of CONWRD
is the address of the first byte of the first word, and the length attribute is 4, the
implied length for a fullword fixed-point constant. The expression CONWRD+4 could
be used to address the second constant (second word) in the field.

CONWRD DC 3F'658474'

Length
Range of values that can
be assembled

8 −2jb to 2jb−1
4 −2b] to 2b]−1
2 −2]k to 2]k−1
1 −2l to 2l−1

Figure 37 (Page 1 of 2). Fixed-Point Constants

Subfield Value Example Result

1. Duplication factor Allowed

2. Type F and H

3. Modifiers
 Implicit length:
 (length modifier
 not present)

 
Fullword: 4 bytes
Halfword: 2 bytes

132 HLASM V1R3 Language Reference  



  DC Instruction—Fixed-Point Constants
 

In the following example, the DC statement generates a 2-byte field containing a
negative constant. Scaling has been specified in order to reserve 6 bits for the
fractional portion of the constant.

HALFCON DC HS6'–25.46'

In the following example, the constant (3.50) is multiplied by 10 to the power −2
before being converted to its binary format. The scale modifier reserves 12 bits for
the fractional portion.

FULLCON DC HS12'3.5KE–2'

The same constant could be specified as a literal:

 AH 7,=HS12'3.5KE–2'

Figure 37 (Page 2 of 2). Fixed-Point Constants

Subfield Value Example Result

 Alignment:
 (Length modifier
 not present)

Fullword or
halfword

Range for length: 1 to 8
(byte length)
 
.1 to .64
(bit length)

Range for scale F: −187 to +30
H: −187 to +15

Range for exponent −85 to +75 �4� DC HE+75'2E−73' �5� value=2x10^

4. Nominal value
 Represented by:

 
Decimal
digits
(0 to 9)

 
Fullword:
DC F'−2KK' �1�
DC FS4'2.25' �2�
 
Halfword:
DC H'+2KK'
DC HS4'.25'

 Enclosed by: Single quotation
marks

 Exponent allowed: Yes Fullword:
DC F'2E6' �3�
 
Halfword:
DC H'2E−6'

Number of values
 per operand:

Multiple

 Padding: With sign bits at
left

 Truncation of
 assembled value:

At left
(error message
issued)

  Chapter 5. Assembler Instruction Statements 133



 DC Instruction—Decimal Constants  
 

The final example specifies three constants. The scale modifier requests 4 bits for
the fractional portion of each constant. The 4 bits are provided whether or not the
fraction exists.

THREECON DC FS4'1K,25.3,1KK'

Decimal Constants—P and Z
The decimal constants let you introduce data in a form suitable for the operations of
the decimal feature machine instructions. The packed decimal constants (P-type)
are used for processing by the decimal instructions. The zoned decimal constants
(Z-type) are in the form (EBCDIC representation) you can use as a print image,
except for the digits in the extreme right byte.

The nominal value can be a signed (plus is assumed if the number is unsigned)
decimal number. A decimal point may be written anywhere in the number, or it
may be omitted. The placement of a decimal point in the definition does not affect
the assembly of the constant in any way, because the decimal point is not
assembled into the constant; it only affects the integer and scale attributes of the
symbol that names the constant.

The specified digits are assumed to constitute an integer (see �1� in Figure 38).
You may determine correct decimal point alignment either by defining data so that
the point is aligned or by selecting machine instructions that operate on the data
correctly (that is, shift it for purposes of alignment).

Decimal constants are assembled as follows:

Packed Decimal Constants:  Each digit is converted into its 4-bit binary coded
decimal equivalent (see �2� in Figure 38). The sign indicator (see �3� in
Figure 38) is assembled into the extreme right four bits of the constant.

Zoned Decimal Constants:  Each digit is converted into its 8-bit EBCDIC
representation (see �4� in Figure 38). The sign indicator (see �5� in Figure 38)
replaces the first four bits of the low-order byte of the constant.

The range of values that can be assembled into a decimal constant is shown
below:

For both packed and zoned decimals, a plus sign is translated into the hexadecimal
digit C, a minus sign into the digit D. The packed decimal constants (P-type) are
used for processing by the decimal instructions.

If, in a constant with an implicit length, an even number of packed decimal digits is
specified, one digit is left unpaired because the extreme right digit is paired with the
sign. Therefore, in the extreme left byte, the extreme left four bits are set to zeros
and the extreme right four bits contain the odd (first) digit.

Type
of Range of values
decimal
constantthat can be specified
Packed 10b]−1 to −10b]
Zoned 10]j−1 to −10]j

134 HLASM V1R3 Language Reference  



  DC Instruction—Decimal Constants
 

In the following example, the DC statement specifies both packed and zoned
decimal constants. The length modifier applies to each constant in the first
operand (that is, to each packed decimal constant). A literal could not specify both
operands.

 Cont.

DECIMALS DC PL8'+25.8,–3874, X
 +2.3',Z'+8K,–3.72'

Figure 38. Decimal Constants

Subfield Value Example Result

1. Duplication factor Allowed

2. Type P and Z

3. Modifiers
 Implicit length:
 (length modifier
 not present)

 
As needed

 
Packed:
P DC P'+593'
 
Zoned:
Z DC Z'−593'

 
 
L'P = 2
 
 
L'Z= 3

 Alignment: Byte

Range for length: 1 to 16
(byte length)
 
.1 to .128
(bit length)

Range for scale Not allowed

Range for exponent Not allowed

4. Nominal value
 Represented by:

 
Decimal
digits
(0 to 9)

 
Packed:
DC P'5.5' �1�
DC P'55' �1�
DC P'+555' �2�
 
Zoned:
DC Z'−555' �4�

 
Object code
X'055C'
X'055C'
X'555C' �3�
 
Object code
X'F5F5D5' �5�

 Enclosed by: Single quotation
marks

 Exponent allowed: No

Number of values
 per operand:

Multiple

 Padding: Packed:
with binary
zeros at left
 
Zoned:
with EBCDIC
zeros (X'F0')
at left

 Truncation of
 assembled value:

At left

  Chapter 5. Assembler Instruction Statements 135



 DC Instruction—Address Constants  
 

The last example shows the use of a packed decimal literal.

 UNPK OUTAREA,=PL2'+25'

 Address Constants
An address constant is an absolute or relocatable expression, such as a storage
address, that is translated into a constant. Address constants can be used for
initializing base registers to facilitate the addressing of storage. Furthermore, they
provide a means of communicating between control sections of a multisection
program. However, storage addressing and control section communication also
depends on the USING assembler instruction and the loading of registers. See
“USING Instruction” on page 192.

The nominal value of an address constant, unlike other types of constants, is
enclosed in parentheses. If two or more address constants are specified in an
operand, they are separated by commas, and the whole sequence is enclosed by
parentheses. There are four types of address constants: A, Y, S, and V. A
relocatable address constant may not be specified with bit lengths.

Complex Relocatable Expressions:  A complex relocatable expression can only
specify an A-or Y-type address constant. These expressions contain two or more
unpaired relocatable terms, or two or more negative relocatable terms in addition to
any absolute or paired relocatable terms. A complex relocatable expression might
consist of external symbols and designate an address in an independent assembly
that is to be linked and loaded with the assembly containing the address constant.

| The following example shows how, and why, a complex relocatable expression
| could be used for an A or Y address constant:

|  EXTRN X
| DC A((X-D)/2) Offset to X in halfwords

Address Constants—A and Y:  The following sections describe how the different
types of address constants are assembled from expressions that usually represent
storage addresses, and how the constants are used for addressing within and
between source modules.

In the A-type and Y-type address constants, you can specify any of the three
following types of assembly-time expressions whose values the assembler then
computes and assembles into object code. Use this expression computation as
follows:

� Relocatable expressions for addressing

� Absolute expressions for addressing and value computation

� Complex relocatable expressions to relate addresses in different source
modules

Notes:

1. No bit-length specification (see �1� in Figure 39 on page 137) is allowed when
a relocatable or complex relocatable expression (see �2� in Figure 39) is
specified. The only explicit lengths that can be specified with relocatable or
complex relocatable address constants are:

� 2, 3, or 4 bytes for A-type constants
� 2 bytes for Y-type constants

136 HLASM V1R3 Language Reference  



  DC Instruction—Address Constants
 

2. The value of the location counter reference (*) when specified in an address
constant varies from constant to constant, if any of the following, or a
combination of the following, are specified:

 � Multiple operands
� Multiple nominal values (see �3� in Figure 39)
� A duplication factor (see �4� in Figure 39)

The location counter is incremented with the length of the previously assembled
constant.

3. When the location counter reference occurs in a literal address constant, the
value of the location counter is the address of the first byte of the instruction.

Figure 39 (Page 1 of 2). A and Y Address Constants

Subfield Value Example Result

1. Duplication factor Allowed A DC 5AL1(D−A) �4� Object code
X'0001020304'

2. Type A and Y

3. Modifiers
 Implicit length:
 (length modifier
 not present)

 
A-type: 4 bytes
Y-type: 2 bytes

 Alignment:
 (Length modifier
 not present)

A-type: fullword
Y-type: halfword

Range for length: A-type:
1 to 4 �1�
(byte length)
.1 to .32
(bit length)
 
Y-type:
1 to 2
(byte length)
.1 to .16
(bit length)

Range for scale Not allowed

Range for exponent Not allowed

3. Nominal value
 Represented by:

 
Absolute,
relocatable,
or complex
relocatable
expressions �2�

 
A-type:
DC A(ABSOL+1K)
 
Y-type:
 DC Y(RELOC+32)
A DC Y(D−A,D+4) �3�

 
 
 
 
 
 
values=0,A+6

 Enclosed by: Parentheses

 Exponent allowed: No

Number of values
 per operand:

Multiple

 Padding: With zeros at
left

  Chapter 5. Assembler Instruction Statements 137



 DC Instruction—Address Constants  
 

Take care when using Y-type address constants and 2-byte A-type address
constants for relocatable addresses, as they can only address a maximum of
65,536 bytes of storage. Using these types of address constants for relocatable
addresses results in message ASMA066 being issued unless the assembler option
RA2 is specified.

The A-type and Y-type address constants are processed as follows: If the nominal
value is an absolute expression, it is computed to its 32-bit value and then
truncated on the left to fit the implicit or explicit length of the constant. If the
nominal value is a relocatable or complex relocatable expression, it is not
completely evaluated until linkage edit time when the object modules are
transformed into load modules. The relocated address values are then placed in
the fields set aside for them at assembly time by the A-type and Y-type constants.

In the following examples, the field generated from the statement named ACON
contains four constants, each of which occupies four bytes. The statement
containing the LM instruction shows the same set of constants specified as literals
(that is, address constant literals).

ACON DC A(1K8,LOP,END–STRT,D+4K96)
 LM 4,7,=A(1K8,LOP,END–STRT,D+4K96)

A location counter reference (D) appears in the fourth constant (D+4K96). The value
of the location counter is the address of the first byte of the fourth constant. When
the location counter reference occurs in a literal, as in the LM instruction, the value
of the location counter is the address of the first byte of the instruction.

Address Constant—S:  Use the S-type address constant to assemble an explicit
address, that is, an address in base-displacement form. You can specify the
explicit address yourself or let the assembler compute it from an implicit address,
using the current base register and address in its computation.

The nominal values can be specified in two ways:

1. As one absolute or relocatable expression (see �1� in Figure 40 on page 139)
representing an implicit address.

2. As two absolute expressions (see �2� in Figure 40) the first of which
represents the displacement and the second, enclosed in parentheses,
represents the base register.

The address value represented by the expression in �1� in Figure 40, is converted
by the assembler into the correct base register and displacement value. An S-type
constant is assembled as a halfword and aligned on a halfword boundary. The
extreme left four bits of the assembled constant represent the base register
designation; the remaining 12 bits, the displacement value.

Figure 39 (Page 2 of 2). A and Y Address Constants

Subfield Value Example Result

 Truncation of
 assembled value:

At left

138 HLASM V1R3 Language Reference  



  DC Instruction—Address Constants
 

Notes:

1. The value of the location counter (*) when specified in an S-type address
constant varies from constant to constant if one or more the following is
specified:

 � Multiple operands
� Multiple nominal values
� A duplication factor

In each case the location counter is incremented with the length of the
previously assembled constant.

2. If a length specification is used, only 2 bytes may be specified.

| 3. S-type address constants can be specified as literals. The USING instructions
used to resolve them are those in effect at the place where the literal pool is
assembled, and not where the literal is used.

Address Constant—V:  The V-type constant reserves storage for the address of a
location in a control section that lies in another source module. Use the V-type

| address constant only to branch to an external address, because link-time
| processing may cause the branch to be indirect (for example, an assisted linkage in

Figure 40. S Address Constants

Subfield Value Example Result

1. Duplication factor Allowed

2. Type S

3. Modifiers
 Implicit length:
 (length modifier
 not present)

 
2 bytes

 Alignment:
 (Length modifier
 not present)

Halfword

Range for length: 2 only (no bit length)

Range for scale Not allowed

 Range for
exponent

Not allowed

4. Nominal value
 Represented by:

 
Absolute or
relocatable
expression �1�
 
Two absolute
expressions �2�

 
DC S(RELOC)
DC S(1K24)
 
 
DC S(512(12))

Base Disp
X YYY
0 400
  
  
C 200

 Enclosed by: Parentheses

 Exponent allowed: No

Number of values
 per operand:

Multiple

 Padding: Not applicable

 Truncation of
 assembled value:

Not applicable

  Chapter 5. Assembler Instruction Statements 139



 DC Instruction—Hexadecimal Floating-Point Constants  
 

| an overlay module). That is, the resolved address in a V-type address constant
| might not contain the address of the referenced symbol. In contrast, to refer to

external data you should use an A-type address constant whose nominal value
specifies an external symbol identified by an EXTRN instruction.

Because you specify a symbol in a V-type address constant, the assembler
assumes that it is an external symbol. A value of zero is assembled into the space
reserved for the V-type constant; the correct relocated value of the address is
inserted into this space by the linkage editor before your object program is loaded.

The symbol specified (see �1� in Figure 41) in the nominal value subfield does not
constitute a definition of the symbol for the source module in which the V-type
address constant appears.

The symbol specified in a V-type constant must not represent external data in an
overlay program.

In the following example, 12 bytes are reserved, because there are three symbols.
The value of each assembled constant is zero until the program is link-edited.

VCONST DC V(SORT,MERGE,CALC)

Figure 41. V Address Constants

Subfield Value Example Result

1. Duplication factor Allowed

2. Type V

3. Modifiers
 Implicit length:
 (length modifier
 not present)

 
4 bytes

 Alignment:
 (Length modifier
 not present)

Fullword

Range for length: 4 or 3 only (no bit length)

Range for scale Not allowed

 Range for
exponent

Not allowed

4. Nominal value
 Represented by:

 
A single external
symbol

 
DC V(MODA) �1�
DC V(EXTADR) �1�

 Enclosed by: Parentheses

 Exponent allowed: No

Number of values
 per operand:

Multiple

 Padding: With zeros at left

 Truncation of
 assembled value:

Not applicable

140 HLASM V1R3 Language Reference  



  DC Instruction—Hexadecimal Floating-Point Constants
 

| Hexadecimal Floating-Point Constants—E, EH, D, DH, L, LH
Floating-point constants let you introduce data that is in the form suitable for the
operations of the floating-point feature instructions. These constants have the
following advantages over fixed-point constants:

� You do not have to consider the fractional portion of a value you specify, nor
worry about the position of the decimal point when algebraic operations are to
be done.

� You can specify both much larger and much smaller values.

� You retain greater processing precision; that is, your values are carried in more
significant figures.

The nominal value can be a signed (see �1� in Figure 43) integer, fraction, or
mixed number (see �2� Figure 43) followed by a signed exponent (see �3� in
Figure 43). If a sign is not specified for either the number or exponent, a plus sign

| is assumed. If you specify the 'H' type extension you can also specify a rounding
| mode that is used when the nominal value is converted from decimal to its
| hexadecimal form. The syntax for nominal values (including the binary
| floating-point constants) is shown in Figure 45 on page 147. The valid rounding
| mode values are:

| 1 Round by adding one in the first lost bit position
| 4 Unbiased round to nearest, with tie-breaking rule
| 5 Round towards zero (that is, truncate)
| 6 Round up towards the maximum positive value
| 7 Round down towards the minimum negative value

| Figure 42. Rounding Mode Values

| See �4� in Figure 43.

The exponent must lie within the permissible range. If an exponent modifier is also
specified, the algebraic sum of the exponent and the exponent modifier must lie
within the permissible range.

Figure 43 (Page 1 of 3). Hexadecimal Floating-Point Constants

Subfield Value Example

1. Duplication factor Allowed

| 2. Type
|  Extension
| E, D, and L
| omitted or H

3. Modifiers
 Implicit length:
 (length modifier
 not present)

 
E-type: 4 bytes
D-type: 8 bytes
L-type: 16 bytes

 Alignment:
 (Length modifier
 not present)

E-type: Fullword
D-type: Doubleword
L-type: Doubleword

  Chapter 5. Assembler Instruction Statements 141



 DC Instruction—Hexadecimal Floating-Point Constants  
 

Figure 43 (Page 2 of 3). Hexadecimal Floating-Point Constants

Subfield Value Example

Range for length: E-type:
1 to 8 (byte length)
.1 to .64 (bit length)

| EH-type:
| .12 to .64 (bit length)

 
D-type:
1 to 8 (byte length)
.1 to .64 (bit length)

| DH-type:
| .12 to .64 (bit length)

 
L-type:
1 to 16 (byte length)
.1 to .128 (bit length)

| LH-type:
| .12 to .128 (bit length)

 

Range for scale E-type: 0 to 5
D-type: 0 to 13
L-type: 0 to 27

Range for exponent −85 to +75

4. Nominal value
 Represented by:

 
Decimal digits
(0 to 9)

 
E-type:
DC E'+525' �1�
DC E'5.25' �2�
 
D-type:
DC D'−525' �1�
DC D'+.KK1' �2�
 
L-type:
DC L'525'
DC L'3.414' �2�

 Enclosed by: Single quotation marks

 Exponent allowed: Yes E-type:
DC E'1E+6K' �3�
 
D-type:
DC D'−2.5E1K' �3�
 
L-type:
DC L'3.712E−3' �3�

Rounding mode allowed: Yes (see Figure 42 for
values)

E-type:
DC EH'1E+6KR1' �4�
 
D-type:
DC DH'−2.5E1KR4' �4�
 
L-type:
DC LH'3.712E−3R5' �4�

142 HLASM V1R3 Language Reference  



  DC Instruction—Hexadecimal Floating-Point Constants
 

The format of the constant is shown in Figure 44 on page 144.

The value of the constant is represented by two parts:

� An exponent portion (see �1� in Figure 44 on page 144), followed by
� A fractional portion (see �2� in Figure 44)

A sign bit (see �3� in Figure 44) indicates whether a positive or negative number
has been specified. The number specified must first be converted into a
hexadecimal fraction before it can be assembled into the correct internal format.
The quantity expressed is the product of the fraction (see �4� in Figure 44) and the
number 16 raised to a power (see �5� in Figure 44). Figure 44 shows the
external format of the three types of floating-point constants.

Here is the range of values that can be assembled into hexadecimal floating-point
constants:

If the value specified for a particular constant does not lie within these ranges, the
constant is not assembled, but is flagged as an error.

Figure 43 (Page 3 of 3). Hexadecimal Floating-Point Constants

Subfield Value Example

Number of values
 per operand:

Multiple

 Padding: Correct fraction is
extended to the right and
rounded

 Truncation of
 assembled value:

Not applicable
(values are rounded)

Type of
Constant

Range of Magnitude (M) of Values
(Positive and Negative)

E 16−65 ≤ M ≤ (1−16−6) x 1663

D 16−65 ≤ M ≤ (1−16−14) x 1663

L 16−65 ≤ M ≤ (1−16−28) x 1663

E, D, L 5.4 x 10−79 ≤ M ≤ 7.2 x 1075 (approximate)

  Chapter 5. Assembler Instruction Statements 143



 DC Instruction—Hexadecimal Floating-Point Constants  
 

Type │ Called │ Format
─────┼────────────┼────────────────────────────────────────────────────────────────
E │ Short │ �1� 7-bit Characteristic �2� 24-bit Fraction
EH │ Floating- │ �3� + ┌──────────┴──────────┐ ┌────────────┴────────────┐

│ Point │ │ ┌───┬─────────────────────┐ ┌───────────/ /───────────┐
│ Number │ └� └───┴─────────────────────┘ └───────────/ /───────────┘

 │ │ –
│ │ Bits K 1 7 8 31

 │ │
 │ │
 │ │
D │ Long │ 7-bit Characteristic 56-bit Fraction
DH │ Floating- │ + ┌──────────┴──────────┐ ┌────────────┴────────────┐

│ Point │ ┌───┬─────────────────────┐ ┌───────────/ /───────────┐
 │ Number │ └───┴─────────────────────┘ └───────────/ /───────────┘
 │ │ –

│ │ Bits K 1 7 8 63
 │ │
 │ │
 │ │

│ │ High-order 56 bits
L │ Extended │ 7-bit Characteristic of 112-bit Fraction
LH │ Floating- │ + ┌──────────┴──────────┐ ┌────────────┴────────────┐

│ Point │ ┌───┬─────────────────────┐ ┌───────────/ /───────────┐
 │ Number │ └───┴─────────────────────┘ └───────────/ /───────────┘───┐
 │ │ – │

│ │ Bits K 1 7 8 63 │
 │ │ │
 │ │ ┌─────────────────────────────┘
 │ │ │

│ │ │ Low-order 56 bits
│ │ 7-bit Characteristic + of 112-bit Fraction
│ │ + ┌──────────┴──────────┐ ┌────────────┴────────────┐
│ │ ┌───┬─────────────────────┐ ┌───────────/ /───────────┐
│ │ └───┴─────────────────────┘ └───────────/ /───────────┘

 │ │ – <
│ │ Bits K 1 │ 7 8 63

 │ │ │
│ │ Set in second half
│ │ of L-type constant

Characteristic │ Hexadecimal Fraction
──────────────────┼──────────────────────────────────
 │ �4�
 │ a b c
�5� 16E X [ ─── + ─── + ─── + ... ]

│ 16 162 163

 │

where a,b,c ... are hexadecimal digits, and E is an exponent that has a positive or negative
value indicated by the characteristic

Figure 44. Hexadecimal Floating-Point External Formats

Representation of Hexadecimal Floating Point:  The assembler assembles a
floating-point constant into its binary representation as follows: The specified
number, multiplied by any exponents, is converted to the required two-part format.
The value is translated into:

� A fractional portion represented by hexadecimal digits and the sign indicator.
The fraction is then entered into the extreme left part of the fraction field of the
constant (after rounding).

� An exponent portion represented by the excess-64 binary notation, which is
then entered into the characteristic field of the constant.

144 HLASM V1R3 Language Reference  



  DC Instruction—Binary Floating-Point Constants
 

The excess-64 binary notation is obtained by adding +64 to the value of the
exponent (which lies between −64 and +63) to yield the characteristic (which lies
between 0 and 127).

Notes:

1. The L-type floating-point constant resembles two contiguous D-type constants.
The sign of the second doubleword is assumed to be the same as the sign of
the first.

The characteristic for the second doubleword is equal to the characteristic for
the first minus 14 (the number of hexadecimal digits in the fractional portion of
the first doubleword). No indication is given if the characteristic of the second
doubleword is zero.

2. If scaling has been specified, hexadecimal zeros are added to the left of the
normalized fraction (causing it to become unnormalized), and the exponent in
the characteristic field is adjusted accordingly. (For further details on scaling,
see “Subfield 3: Modifier” on page 121.)

3. The fraction is rounded according to the implied or explicit length of the
constant. The resulting number does not differ from the exact value specified
by more than one in the last place.

| Note:  You can control rounding by using the 'H' type extension and
| specifying the rounding mode.

4. Negative fractions are carried in true representation, not in the
two's-complement form.

5. Duplication is applied after the constant has been assembled.

6. An implied length of 4 bytes is assumed for a short (E) constant and 8 bytes for
a long (D) constant. An implied length of 16 bytes is assumed for an extended
(L) constant. The constant is aligned at the correct word (E) or doubleword (D
and L) boundary if a length is not specified. However, any length up to and
including 8 bytes (E and D) or 16 bytes (L) can be specified by a length
modifier. In this case, no boundary alignment occurs.

Any of the following statements can be used to specify 46.415 as a positive,
fullword, floating-point constant; the last is a machine instruction statement with a
literal operand. Note that each of the last two constants contains an exponent
modifier.

 DC E'46.415'
 DC E'46415E–3'
 DC E'+464.15E–1'
 DC E'+.46415E+2'
 DC EE2'.46415'
 AE 6,=EE2'.46415'

The following would generate 3 doubleword floating-point constants.

FLOAT DC DE+4'+46,–3.729,+473'

  Chapter 5. Assembler Instruction Statements 145



 DC Instruction—Binary Floating-Point Constants  
 

Binary Floating-Point Constants—EB, DB, LB
| Binary floating-point numbers may be represented in any of three formats: short,
| long or extended. The short format is 4 bytes with a sign of one bit, an exponent of
| 8 bits and a fraction of 23 bits. The long format is 8 bytes with a sign of one bit, an
| exponent of 11 bits and a fraction of 52 bits. The extended format is 16 bytes with
| a sign of one bit, an exponent of 15 bits and a fraction of 112 bits.

| There are five classes of binary floating-point data, including numeric and related
| nonnumeric entities. Each data item consists of a sign, an exponent and a
| significand. The exponent is biased such that all exponents are nonnegative
| unsigned numbers, and the minimum biased exponent is zero. The significand
| consists of an explicit fraction and an implicit unit bit to the left of the binary point.
| The sign bit is zero for plus and one for minus values.

| All finite nonzero numbers within the range permitted by a given format are
| normalized and have a unique representation. There are no unnormalized
| numbers, which might allow multiple representations for the same values, and there
| are no unnormalized arithmetic operations. Tiny numbers of a magnitude below the
| minimum normalized number in a given format are represented as denormalized
| numbers, because they imply a leading zero bit, but those values are also
| represented uniquely.

| The classes are:

| 1. Zeros have a biased exponent of zero, a zero fraction and a sign. The implied
| unit bit is zero.

| 2. Denormalized numbers have a biased exponent of zero and a nonzero fraction.
| The implied unit bit is zero.

| 3. Normalized numbers have a biased exponent greater than zero but less than
| all ones. The implied unit bit is one and the fraction may have any value.

| 4. An infinity is represented by a biased exponent of all ones and a zero fraction.

| 5. A NaN (Not-a-Number) entity is represented by a biased exponent of all ones
| and a nonzero fraction. NaNs are produced in place of a numeric result after
| an invalid operation when there is no interruption. NaNs may also be used by
| the program to flag special operands, such as the contents of an uninitialized
| storage area. There are two types of NaNs, signaling and quiet. A signaling
| NaN (SNaN) is distinguished from the corresponding quiet NaN (QNaN) by the
| leftmost fraction bit: zero for the SNaN and one for QNaN. A special QNaN is
| supplied as the default result for an invalid-operation condition; it has a plus
| sign and a leftmost fraction bit of one, with the remaining fraction bits being set
| to zeros. Normally, QNaNs are just propagated during computations, so that
| they remain visible at the end. An SNaN operand causes an invalid operation
| exception.

| To accommodate the definition of both hexadecimal and binary floating-point
| constants the syntax for coding a DC instruction is:

146 HLASM V1R3 Language Reference  



  DC Instruction—Binary Floating-Point Constants
 

|  

| ��──DC─ ──┬ ┬──────────── ─┤ type ├─ ──┬ ┬────────── ─┤ nominal_value ├──────────��
|  └ ┘─dup_factor─ └ ┘─modifier─

| type:
|  ┌ ┐─null─
| ├─ ──┬ ┬─D─ ──┼ ┼─H──── ─────────────────────────────────────────────────────────┤
|  ├ ┤─E─ └ ┘─B────
|  └ ┘─L─

| nominal_value (type extension B):
| ┌ ┐─ + ─ ┌ ┐─R4───────
| ├──'─ ──┼ ┼───── ─value─ ──┬ ┬────────── ──┼ ┼────────── ─'─────────────────────────┤
| └ ┘─ - ─ └ ┘─exponent─ └ ┘──R ──┬ ┬─1─
|  ├ ┤─4─
|  ├ ┤─5─
|  ├ ┤─6─
|  └ ┘─7─

| nominal_value (type extension H):
| ┌ ┐─ + ─ ┌ ┐─R1───────
| ├──'─ ──┼ ┼───── ─value─ ──┬ ┬────────── ──┼ ┼────────── ─'─────────────────────────┤
| └ ┘─ - ─ └ ┘─exponent─ └ ┘──R ──┬ ┬─1─
|  ├ ┤─4─
|  ├ ┤─5─
|  ├ ┤─6─
|  └ ┘─7─

| nominal_value (no type extension):
| ┌ ┐─ + ─
| ├──'─ ──┼ ┼───── ─value─ ──┬ ┬────────── ─'───────────────────────────────────────┤
| └ ┘─ - ─ └ ┘─exponent─

| Figure 45. DC Instruction Syntax

| dup_factor
| causes the constant to be generated the number of times indicated by the
| factor.

| type
| determines the type of floating-point constant the nominal_value represents.
| The first character of the type determines that the constant is either short, long
| or extended floating point. The second character determines the type of
| conversion required to assemble the constant. Valid values are:

| null Hexadecimal floating-point constant which is converted using the
| Assembler H and HLASM Release 1 and Release 2 conversion logic

| B Binary floating-point constant which is converted using the new
| floating-point conversion routine

| H Hexadecimal floating-point constant which is converted using the new
| floating-point conversion routine

| modifier
| describes the length, the scaling and the exponent of the nominal_value. The
| minimum length of the 'H' hexadecimal constant is 12 bits. The minimum
| length in bits of the binary constant is:

| 9 Short floating-point constant

| 12 Long floating-point constant

| 16 Extended floating-point constant

  Chapter 5. Assembler Instruction Statements 147



 DC Instruction—Binary Floating-Point Special Values  
 

| This minimum length allows for the sign, exponent, the implied unit bit which is
| considered to be one for normalized numbers and zero for zeros and
| denormalized numbers.

| The exponent modifier can be in the range from −231 to 231−1

| nominal_value
| defines the value of the constant and can include the integer, fraction or mixed
| number followed by an optional signed exponent and an optional explicit
| rounding mode.

| The assembler imposes no limits on the exponent values that may be specified.
| The BFP architecture limits the actual values that can be represented; a
| warning message is issued whenever a specified value can not be represented
| exactly.

| The rounding mode identifies the rounding required when defining a
| floating-point constant. The valid values are:

| 1 Round by adding one in the first lost bit position
| 4 Unbiased round to nearest, with tie-breaking rule
| 5 Round towards zero (that is, truncate)
| 6 Round up towards the maximum positive value
| 7 Round down towards the minimum negative value

| Note:  As binary floating-point does not support scaling, the scale modifier is
| ignored and a warning message issued if the scaling modifier is specified when
| defining a binary floating-point constant.

| Conversion to Binary Floating-Point

| For decimal to binary floating-point conversion, the assembler conforms to
| ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic,
| dated August 12, 1985, with the following differences: exception status flags are
| not provided and traps are not supported.

| Conversion of values outside the represented range is as follows. If the
| resultant value before rounding is larger in magnitude than MAX (the maximum
| allowed value) as represented in the specified length, then, depending on the
| rounding mode, either MAX or infinity is generated, along with a warning
| message. If the resultant nonzero value is less than Nmin (the minimum
| allowed value) as represented in the specified length, then, depending on the
| rounding mode, either Nmin or zero is generated, along with a warning
| message.

| Floating-Point Special Values
| For special values, the syntax of the DC statement is:

148 HLASM V1R3 Language Reference  



  DC Instruction—Binary Floating-Point Special Values
 

|  

| ��──DC─ ──┬ ┬──────────── ─┤ type ├─ ──┬ ┬───────────────── ──────────────�
|  └ ┘─dup_factor─ └ ┘─length_modifier─

| �──┤ nominal_value ├───────────────────────────────────────────────��

| type:
| ├─ ──┬ ┬─D─ ──┬ ┬─H─ ────────────────────────────────────────────────────┤
|   ├ ┤─E─ └ ┘─B─
|   └ ┘─L─

| nominal_value (type extension B):
| ┌ ┐─ + ─
| ├──'─ ──┼ ┼───── ──┬ ┬─(SNAN)─ ─'────────────────────────────────────────┤
| └ ┘─ - ─ ├ ┤─(QNAN)─
|  ├ ┤─(NAN)──
|  ├ ┤─(INF)──
|  ├ ┤─(MAX)──
|  └ ┘─(MIN)──

| nominal_value (type extension H):
| ┌ ┐─ + ─
| ├──'─ ──┼ ┼───── ──┬ ┬─(MAX)─ ─'─────────────────────────────────────────┤
| └ ┘─ - ─ └ ┘─(MIN)─

| dup_factor
| causes the constant to be generated the number of times indicated by the
| factor.

| type
| determines the type of floating-point constant the nominal_value represents.

| length_modifier
| describes the length in bytes or bits into which the constant is to be assembled.
| For NANs and INF the minimum length in bits of the constant is:

| 11 Short floating-point constant

| 14 Long floating-point constant

| 18 Extended floating-point constant

| This minimum length allows for the sign, exponent and two fraction bits.

| nominal_value
| defines the special value to be generated.

| Notes:

| 1. The nominal value can be in mixed case.

| 2. SNAN assembles with an exponent of ones and 01 in the high order fraction
| bits with the remainder of the fraction containing zeros.

| 3. QNAN assembles with an exponent of ones and 11 in the high order fraction
| bits with the remainder of the fraction containing zeros.

| 4. NAN assembles as a QNAN.

| 5. MIN assembles as a normalized minimum value, that is an exponent of one
| and a fraction of zeroes.

| 6. INF assembles with an exponent of ones and a fraction of zeros.

  Chapter 5. Assembler Instruction Statements 149



 DC Instruction—Offset Constant  
 

| 7. MAX assembles with an exponent of ones except for the low order bit and a
| fraction of ones.

 Literal Constants
Literal constants let you define and refer to data directly in machine instruction
operands. You do not need to define a constant separately in another part of your
source module. The differences between a literal, a data constant, and a
self-defining term are described in “Literals” on page 38.

A literal constant is specified in the same way as the operand of a DC instruction.
The general rules for the operand subfields of a DC instruction also apply to the
subfield of a literal constant. Moreover, the rules that apply to the individual types
of constants apply to literal constants as well.

However, literal constants differ from DC operands in the following ways:

� Literals must be preceded by an equal sign.

� Multiple operands are not allowed.

� The duplication factor must not be zero.

� Symbols used in the duplication factor or length modifier must be previously
defined.

� If an address-type literal constant specifies a duplication factor greater than one
and a nominal value containing the location counter reference, the value of the
location counter reference is not incremented, but remains the same for each
duplication.

� The assembler groups literals together by size. If you use a literal constant,
the alignment of the constant can be different than might be the case for an
explicit constant. See “Literal Pool” on page 41.

 Offset Constant—Q
| Use this constant to reserve storage for the offset into a storage area of an external
| dummy section, or the offset to a label in a class. The offset is entered into this

space by the linker. When the offset is added to the address of an overall block of
storage set aside for external dummy sections, it addresses the applicable section.

For a description of the use of the Q-type offset constant in combination with an
external dummy section, see “External Dummy Sections” on page 54. See also
Figure 46 for details.

In the following example, to access the external dummy section named VALUE, the
value of A is added to the base address of the block of storage allocated for
external dummy sections. Q-type offset constants may not be specified in literals.

A DC Q(VALUE)

The DXD or DSECT names referenced in the Q-type offset constant need not be
previously defined.

Figure 46 (Page 1 of 2). Q Offset Constants

Subfield Value Example Result

1. Duplication factor Allowed

150 HLASM V1R3 Language Reference  



  DC Instruction—Length Constant
 

Figure 46 (Page 2 of 2). Q Offset Constants

Subfield Value Example Result

2. Type Q

3. Modifiers
 Implicit length:
 (length modifier
 not present)

 
4 bytes

 Alignment:
 (Length modifier
 not present)

Fullword

Range for length: 1 to 4 bytes (no bit length)

Range for scale Not allowed

 Range for
exponent

Not allowed

4. Nominal value
 Represented by:

 
A single external
dummy symbol

 
DC Q(DUMMYEXT)
DC Q(DXDEXT)

 Enclosed by: Parentheses

 Exponent allowed: No

Number of values
 per operand:

Multiple

 Padding: With zeros at left

 Truncation of
 assembled value:

At left

|  Length Constant—J
| Use this constant to reserve storage for the length of a DXD, class or DSECT. The
| length is entered into this space by the binder.

| This constant is only available if the XOBJECT option is specified. The offset is
| entered into this space by the linker. When the offset is added to the address of an
| overall block of storage set aside for external dummy sections, it addresses the
| applicable section.

| In the following example, to access the external dummy section named VALUE, the
| value of A is added to the base address of the block of storage allocated for class
| label sections. J-type length constants may not be specified in literals.

| A DC J(CLASS)

| The DXD, class, or DSECT names referenced in the J-type length constant need
| not be previously defined.

| Figure 47 (Page 1 of 2). J Length Constants

| Subfield| Value| Example| Result

| 1. Duplication factor| Allowed

| 2. Type| J

  Chapter 5. Assembler Instruction Statements 151



 DROP Instruction  
 

| Figure 47 (Page 2 of 2). J Length Constants

| Subfield| Value| Example| Result

| 3. Modifiers
|  Implicit length:
|  (length modifier
|  not present)

|  
| 4 bytes

|  Alignment:
|  (Length modifier
|  not present)

| Fullword

| Range for length:| 2 to 4 bytes (no bit length)

| Range for scale| Not allowed

|  Range for
| exponent
| Not allowed

| 4. Nominal value
|  Represented by:
|  
| A single DXD, class, or DSECT name
|  
| DC J(CLASS)

|  Enclosed by:| Parentheses

|  Exponent allowed:| No

| Number of values
|  per operand:
| Multiple

|  Padding:| With zeros at left

|  Truncation of
|  assembled value:
| At left

 DROP Instruction
The DROP instruction ends the domain of a USING instruction. This:

� Frees base registers previously assigned by the USING instruction for other
programming purposes

� Ensures that the assembler uses the base register you want in a particular
coding situation, for example, when two USING ranges overlap or coincide

 

��─ ──┬ ┬───────────────── ─DROP─ ──┬ ┬───────────────────── ────────────��
 └ ┘ ─sequence_symbol─ │ │┌ ┐─,───────────────
 └ ┘ ───+ ┴┬ ┬─base_register─
 └ ┘─label─────────

sequence_symbol
is a sequence symbol.

base_register
is an absolute expression whose value represents one of the general registers
0 through 15. The expression in base_register indicates a general register,
previously specified in the operand of an ordinary USING statement, that is no
longer to be used for base addressing.

label
is one of the following:

� An ordinary symbol

152 HLASM V1R3 Language Reference  



  DROP Instruction
 

� A variable symbol that has been assigned a character string with a value
that is valid for an ordinary symbol

The ordinary symbol denoted by label must be a symbol previously used in the
name field of a labeled USING statement or a labeled dependent USING
statement.

If neither base_register nor label is specified in the operand of a DROP instruction,
all active base registers assigned by ordinary, labeled, and labeled dependent
USING instructions are dropped.

After a DROP instruction:

� The assembler does not use the register or registers specified in the DROP
instruction as base registers. A register made unavailable as a base register
by a DROP instruction can be reassigned as a base register by a subsequent
USING instruction.

� The label or labels specified in the DROP instruction are no longer available as
symbol qualifiers. A label made unavailable as a symbol qualifier by a DROP
instruction can be reassigned as a symbol qualifier by a subsequent labeled
USING instruction.

The following statements, for example, stop the assembler using registers 7 and 11
as base registers, and the label FIRST as a symbol qualifier:

 DROP 7,11
 DROP FIRST

Labeled USING:  You cannot end the domain of a labeled USING instruction by
coding a DROP instruction which specifies the same registers as were specified in
the labeled USING instruction. If you want to end the domain of a labeled USING
instruction, you must code a DROP instruction with an operand that specifies the
label of the labeled USING instruction.

Dependent USING:  To end the domain of a dependent USING instruction, you
must end the domain of the corresponding ordinary USING instruction. In the
following example, the DROP instruction prevents the assembler from using register
12 as a base register. The DROP instruction causes the assembler to end the
domain of the ordinary USING instruction and the domains of the two dependent
USING instructions. The storage areas represented by INREC and OUTREC are both
within the range of the ordinary USING instruction (register 12).

 USING D,12
 USING RECMAP,INREC
 USING RECMAP,OUTREC
 .
 .
 DROP 12
 .
 .
INREC DS CL156
OUTREC DS CL156

To end the domain of a labeled dependent USING instruction, you can code a
DROP instruction with the USING label in the operand. The following example
shows this:

  Chapter 5. Assembler Instruction Statements 153



 DS Instruction  
 

 USING D,12
PRIOR USING RECMAP,INREC
POST USING RECMAP,OUTREC
 .
 .
 DROP PRIOR,POST
 .
 .
INREC DS CL156
OUTREC DS CL156

In the above example, the DROP instruction makes the labels PRIOR and POST
unavailable as symbol qualifiers.

When a labeled dependent USING domain is dropped, none of any subordinate
USING domains are dropped. In the following example the labeled dependent
USING BLBL1 is not dropped, even though it is dependent on the USING ALBL2 that
is dropped:

 USING DSECTA,14
ALBL1 USING DSECTA,14
 USING DSECTB,ALBL1.A
 .
 .
ALBL2 USING DSECTA,ALBL1.A
 .
BLBL1 USING DSECTA,ALBL2
 .
 DROP ALBL2
 .
DSECTA DSECT
A DS A
DSECTB DSECT
B DS A

A DROP instruction is not needed:

� If the base address is being changed by a new ordinary USING instruction, and
the same base register is assigned. However, the new base address must be
loaded into the base register by an appropriate sequence of instructions.

� If the base address is being changed by a new labeled USING instruction or a
new labeled dependent USING instruction, and the same USING label is
assigned; however, the correct base address must be loaded into the base
register specified in the USING instruction by an appropriate sequence of
instructions.

� At the end of a source module

 DS Instruction
The DS instruction to:

� Reserves areas of storage
� Provides labels for these areas
� Uses these areas by referring to the symbols defined as labels

154 HLASM V1R3 Language Reference  



  DS Instruction
 

 

 ┌ ┐─,───────
��─ ──┬ ┬──────── ─DS─ ───+ ┴─operand─ ───────────────────────────────────��
 └ ┘ ─symbol─

symbol
is one of the following:

� An ordinary symbol

� A variable symbol that has been assigned a character string with a value
that is valid for an ordinary symbol

� A sequence symbol

If symbol denotes an ordinary symbol, the ordinary symbol represents the
address of the first byte of the storage area reserved. If several operands are
specified, the first storage area defined is addressable by the ordinary symbol.
The other storage areas can be reached by relative addressing.

operand
is an operand of four subfields. The first three subfields describe the attributes
of the symbol. The fourth subfield provides the nominal values that determine
the implicit lengths; however no constants are generated.

A DS operand has this format:

 

��─ ── ──┬ ┬──────────────────── type ──┬ ┬────────── nominal_value ───────��
 └ ┘ ─duplication_factor─ └ ┘ ─modifier─

The format of the DS operand is identical to that of the DC operand; exactly the
same subfields are used and are written in exactly the same sequence as they are
in the DC operand. For more information about the subfields of the DC instruction,
see “DC Instruction” on page 113.

Unlike the DC instruction, the DS instruction causes no data to be assembled.
Therefore, you do not have to specify the nominal value (fourth subfield) of a DS
instruction operand. The DS instruction is the best way of symbolically defining
storage for work areas, input/output buffers, etc.

Although the formats are identical, there are two differences in the specification of
subfields. They are:

� The nominal value subfield is optional in a DS operand, but it is mandatory in a
DC operand. If a nominal value is specified in a DS operand, it must be valid.

� The maximum length that can be specified for the character (C) and
hexadecimal (X) type areas is 65,535 bytes rather than 256 bytes for the same
DC operands. The maximum length for the graphic (G) type is 65,534 bytes.

If symbol denotes an ordinary symbol, the ordinary symbol, as with the DC
instruction:

� Has an address value of the first byte of the area reserved, after any boundary
alignment is done

  Chapter 5. Assembler Instruction Statements 155



 DS Instruction  
 

� Has a length attribute value, depending on the implicit or explicit length of the
type of area reserved

If the DS instruction is specified with more than one operand or more than one
nominal value in the operand, the label addresses the area reserved for the field
that corresponds to the first nominal value of the first operand. The length attribute
value is equal to the length explicitly specified or implicit in the first operand.

Bytes Skipped for Alignment:  Unlike the DC instruction, bytes skipped for
alignment are not set to zero. Also, nothing is assembled into the storage area
reserved by a DS instruction. No assumption should be made as to the contents of
the skipped bytes or the reserved area.

The size of a storage area that can be reserved by a DS instruction is limited only
by the size of virtual storage or by the maximum value of the location counter,
whichever is smaller.

How to Use the DS Instruction
Use the DS instruction to:

 � Reserve storage

� Force alignment of the location counter so that the data that follows is on a
particular storage boundary

� Name fields in a storage area.

To Reserve Storage:  If you want to take advantage of automatic boundary
alignment (if the ALIGN option is specified) and implicit length calculation, you
should not supply a length modifier in your operand specifications. Instead, specify
a type subfield that corresponds to the type of area you need for your instructions.

Using a length modifier can give you the advantage of explicitly specifying the
length attribute value assigned to the label naming the area reserved. However,
your areas are not aligned automatically according to their type. If you omit the
nominal value in the operand, you should use a length modifier for the binary (B),
character (C), graphic (G), hexadecimal (X), and decimal (P and Z) type areas;
otherwise, their labels are given a length attribute value of 1 (2 for G-type).

When you need to reserve large areas, you can use a duplication factor. However,
in this case, you can only refer to the first area by its label. You can also use the
character (C) and hexadecimal (X) field types to specify large areas using the
length modifier. Duplication has no effect on implicit length.

Although the nominal value is optional for a DS instruction, you can put it to good
use by letting the assembler compute the length for areas of the B, C, G, X, and
decimal (P or Z) type areas. You achieve this by specifying the general format of
the nominal value that is placed in the area at execution time.

To Force Alignment:  Use the DS instruction to align the instruction or data that
follows, on a specific boundary. You can align the location counter to a
doubleword, a fullword, or a halfword boundary by using the correct constant type
(for example, D, F, or H) and a duplication factor of zero. No space is reserved for
such an instruction, yet the data that follows is aligned on the correct boundary.
For example, the following statements set the location counter to the next

156 HLASM V1R3 Language Reference  



  DS Instruction
 

doubleword boundary and reserve storage space for a 128-byte field (whose first
byte is on a doubleword boundary).

 DS KD
AREA DS CL128

Alignment is forced whether or not the ALIGN assembler option is set.

To Name Fields within an Area:  Using a duplication factor of zero in a DS
instruction also provides a label for an area of storage without actually reserving the
area. Use DS or DC instructions to reserve storage for, and assign labels to, fields
within the area. These fields can then be addressed symbolically. (Another way of
accomplishing this is described in “DSECT Instruction” on page 158.) The whole
area is addressable by its label. In addition, the symbolic label has the length
attribute value of the whole area. Within the area, each field is addressable by its
label.

For example, assume that 80-character records are to be read into an area for
processing and that each record has the following format:

Positions 5-10 Payroll Number
Positions 11-30 Employee Name
Positions 31-36 Date
Positions 47-54 Gross Wages
Positions 55-62 Withholding Tax

The following example shows how DS instructions might be used to assign a name
to the record area, then define the fields of the area and allocate storage for them.
The first statement names the whole area by defining the symbol RDAREA; this
statement gives RDAREA a length attribute of 80 bytes, but does not reserve any
storage. Similarly, the fifth statement names a 6-byte area by defining the symbol
DATE; the three subsequent statements actually define the fields of DATE and
allocate storage for them. The second, ninth, and last statements are used for
spacing purposes and, therefore, are not named.

RDAREA DS KCL8K
 DS CL4
PAYNO DS CL6
NAME DS CL2K
DATE DS KCL6
DAY DS CL2
MONTH DS CL2
YEAR DS CL2
 DS CL1K
GROSS DS CL8
FEDTAX DS CL8
 DS CL18

Additional examples of DS statements are shown below:

ONE DS CL8K One 8K-byte field, length attribute of 8K
TWO DS 8KC 8K 1-byte fields, length attribute of 1
THREE DS 6F 6 fullwords, length attribute of 4
FOUR DS D 1 doubleword, length attribute of 8
FIVE DS 4H 4 halfwords, length attribute of 2
SIX DS GL8K One 8K-byte field, length attribute of 8K
SEVEN DS 8KG 8K 2-byte fields, length attribute of 2

  Chapter 5. Assembler Instruction Statements 157



 DSECT Instruction  
 

To define four 10-byte fields and one 100-byte field, the respective DS statements
might be as follows:

FIELD DS 4CL1K
AREA DS CL1KK

Although FIELD might have been specified as one 40-byte field, the preceding
definition has the advantage of providing FIELD with a length attribute of 10. This
would be pertinent when using FIELD as an SS machine instruction operand.

 DSECT Instruction
The DSECT instruction identifies the beginning or continuation of a dummy control
section. One or more dummy sections can be defined in a source module.

 

��─ ──┬ ┬────── ─DSECT────────────────────────────────────────────────��
 └ ┘ ─name─

name
is one of the following:

� An ordinary symbol

� A variable symbol that has been assigned a character string with a value
that is valid for an ordinary symbol

� A sequence symbol

The DSECT instruction can be used anywhere in a source module after the ICTL
instruction.

If name denotes an ordinary symbol, the ordinary symbol identifies the dummy
section. If several DSECT instructions within a source module have the same
symbol in the name field, the first occurrence initiates the dummy section and the
rest indicate the continuation of the dummy section. The ordinary symbol denoted
by name represents the address of the first byte in the dummy section, and has a
length attribute value of 1.

If name is not specified, or if name is a sequence symbol, the DSECT instruction
initiates or indicates the continuation of the unnamed control section.

The location counter for a dummy section is always set to an initial value of 0.
However, when an interrupted dummy control section is continued using the
DSECT instruction, the location counter last specified in that control section is
continued.

The source statements that follow a DSECT instruction belong to the dummy
section identified by that DSECT instruction.

158 HLASM V1R3 Language Reference  



  DSECT Instruction
 

Notes:

1. The assembler language statements that appear in a dummy section are not
assembled into object code.

2. When establishing the addressability of a dummy section, the symbol in the
name field of the DSECT instruction, or any symbol defined in the dummy
section can be specified in a USING instruction.

3. A symbol defined in a dummy section can be specified in an address constant
only if the symbol is paired with another symbol from the same dummy section,
and if the symbols have the opposite sign.

To effect references to the storage area defined by a dummy section, do the
following:

 � Provide either:

– An ordinary or labeled USING statement that specifies both a general
register that the assembler can use as a base register for the dummy
section, and a value from the dummy section that the assembler may
assume the register contains, or

– A dependent or labeled dependent USING statement that specifies a
supporting base address (for which there is a corresponding ordinary
USING statement) that lets the assembler determine a base register and
displacement for the dummy section, and a value from the dummy section
that the assembler may assume is the same as the supporting base
address

� Ensure that the base register is loaded with either:

– The actual address of the storage area if an ordinary USING statement or a
labeled USING statement was specified, or

– The base address specified in the corresponding ordinary USING statement
if a dependent or labeled dependent USING statement was specified.

The values assigned to symbols defined in a dummy section are relative to the
initial statement of the section. Thus, all machine instructions that refer to names
defined in the dummy section will, at execution time, refer to storage locations
relative to the address loaded into the register.

Figure 48 on page 160 shows an example of how to code the DSECT instruction.
The sample code is referred to as “Assembly-2.”

Assume that two independent assemblies (Assembly-1 and Assembly-2) have been
loaded and are to be run as a single overall program. Assembly-1 is a routine that

1. Places a record in an area of storage
2. Places the address of the storage area in general register 3
3. Branches to Assembly-2 to process the record

The storage area from Assembly-1 is identified in Assembly-2 by the dummy
control section (DSECT) named INAREA. Parts of the storage area that you want
to work with are named INCODE, OUTPUTA, and OUTPUTB. The statement
USING INAREA,3 assigns general register 3 as the base register for the INAREA
DSECT. General register 3 contains the address of the storage area. Because the
symbols in the DSECT are defined relative to the beginning of the DSECT, the

  Chapter 5. Assembler Instruction Statements 159



 DXD Instruction  
 

address values they represent will, at the time of program execution, be the actual
storage locations of the storage area that general register 3 addresses.

ASEMBLY2 CSECT
 USING D,15
 USING INAREA,3
 CLI INCODE,C'A'
 BE ATYPE
 MVC OUTPUTA,DATA_B
 MVC OUTPUTB,DATA_A
 B FINISH
ATYPE DS KH
 MVC OUTPUTA,DATA_A
 MVC OUTPUTB,DATA_B
FINISH BR 14
DATA_A DC CL8'ADATA'
DATA_B DC CL8'BDATA'
INAREA DSECT
INCODE DS CL1
OUTPUTA DS CL8
OUTPUTB DS CL8
 END

Figure 48. Sample Code Using the DSECT Instruction (Assembly-2)

 DXD Instruction
The DXD instruction identifies and defines an external dummy section.

 

��──symbol──DXD─────────────────────────────────────────────────────�

�─ ── ──┬ ┬──────────────────── type ──┬ ┬─────────── nominal_value ───────��
 └ ┘ ─duplication_factor─ └ ┘ ─modifiers─

symbol
is one of the following:

� An ordinary symbol

� A variable symbol that has been assigned a character string with a value
that is valid for an ordinary symbol

duplication_factor
is the duplication factor subfield equivalent to the duplication factor subfield of
the DS instruction.

type
is the type subfield equivalent to the type subfield of the DS instruction.

modifiers
is the modifiers subfield equivalent to the modifiers subfield of the DS
instruction.

nominal_value
is the nominal-value subfield equivalent to the nominal-value subfield of the DS
instruction.

160 HLASM V1R3 Language Reference  



  EJECT Instruction
 

The DXD instruction can be used anywhere in a source module, after the ICTL
instruction.

In order to reference the storage defined by the external dummy section, the
ordinary symbol denoted by symbol must appear in the operand of a Q-type
constant. This symbol represents the address of the first byte of the external
dummy section defined, and has a length attribute value of 1.

The subfields in the operand field (duplication factor, type, modifier, and nominal
value) are specified in the same way as in a DS instruction. The assembler
computes the amount of storage and the alignment required for an external dummy
section from the area specified in the operand field. For more information about
how to specify the subfields, see “DS Instruction” on page 154.

The linker uses the information provided by the assembler to compute the total
length of storage required for all external dummy sections specified in a program.

Notes:

1. The DSECT instruction also defines an external dummy section, but only if the
symbol in the name field appears in a Q-type offset constant in the same
source module. Otherwise, a DSECT instruction defines a dummy section.

2. If two or more external dummy sections for different source modules have the
same name, the linker uses the most restrictive alignment, and the largest
section to compute the total length.

 EJECT Instruction
The EJECT instruction stops the printing of the assembler listing on the current
page, and continues the printing on the next page.

 

��─ ──┬ ┬───────────────── ─EJECT─────────────────────────────────────��
 └ ┘ ─sequence_symbol─

sequence_symbol
is a sequence symbol.

The EJECT instruction causes the next line of the assembler listing to be printed at
the top of a new page. If the line before the EJECT statement appears at the
bottom of a page, the EJECT statement has no effect.

An EJECT instruction immediately following another EJECT instruction is ignored.
A TITLE instruction immediately following an EJECT instruction causes the title to
change but no additional page eject is performed. (The TITLE instruction normally
forces a page eject.)

The EJECT instruction statement itself is not printed in the listing.

  Chapter 5. Assembler Instruction Statements 161



 END Instruction  
 

 END Instruction
Use the END instruction to end the assembly of a program. You can also supply
an address in the operand field to which control can be transferred after the
program is loaded. The END instruction must always be the last statement in the
source program.

|  

| ��─ ──┬ ┬───────────────── ─END─ ──┬ ┬──────────── ──┬ ┬────────── ────────��
|  └ ┘|  ─sequence_symbol─ └ ┘|  ─expression─ └ ┘|  ─language─

sequence_symbol
is a sequence symbol.

expression
specifies the point to which control can be transferred when loading of the
object program completes. This point is usually the address of the first
executable instruction in the program, as shown in the following sequence:

NAME CSECT
AREA DS 5KF
BEGIN BALR 2,K
 USING D,2
 .
 .
 .
 END BEGIN

If specified, expression may be generated by substitution into variable symbols.
However, after substitution, that is, at assembly time:

� It must be a simply relocatable expression representing an address in the
source module delimited by the END instruction, or

� If it contains an external symbol, the external symbol must be the only term
in the expression, or the remaining terms in the expression must reduce to
zero.

� It must not be a literal.

| language
| a marker for use by language translators that produce assembly code. The
| operand has three sub-operands. The values in this operand are copied into
| characters 53 to 71 of the End record in the object deck.

| The syntax of this operand is

| ,(char1K,char4,char5)

| where all three sub-operands, and the comma and parentheses are required.

| char1K is a one to ten character code. It is intended to be a language translator
| identifier. char4 must be exactly four characters long. It is intended to be a
| release code. char5 must be exactly five characters long, and should be a date
| in the format “YYDDD.” It is intended to be the compile date. For example:

|  END ENTRTPT,(MYCOMPILER,K1K1,983K3)

162 HLASM V1R3 Language Reference  



  EQU Instruction
 

Notes:

1. If the END instruction is omitted, one is generated by the assembler, and
message ASMA14K END record missing is issued.

2. Refer to the note on page 308 about lookahead processing, and the effect it
has on generated END statements.

 ENTRY Instruction
The ENTRY instruction identifies symbols defined in one source module so that
they can be referred to in another source module. These symbols are entry
symbols.

 

 ┌ ┐─,───────────
��─ ──┬ ┬───────────────── ─ENTRY─ ───+ ┴─entry_point─ ───────────────────��
 └ ┘ ─sequence_symbol─

sequence_symbol
is a sequence symbol.

entry_point
is a relocatable symbol that:

� Is a valid symbol

� Is defined in an executable control section

� Is not defined in a dummy control section, a common control section, or an
external control section

Up to 65535 individual control sections, external symbols, and external dummy
sections can be defined in a source module. However, the practical maximum
number depends on the amount of table storage available during link-editing.

The assembler lists each entry symbol of a source module in an external symbol
dictionary, along with entries for external symbols, common control sections, and
external control sections.

A symbol used as the name entry of a START or CSECT instruction is also
automatically considered an entry symbol, and does not have to be identified by an
ENTRY instruction.

The length attribute value of entry symbols is the same as the length attribute value
of the symbol at its point of definition.

 EQU Instruction
The EQU instruction assigns absolute or relocatable values to symbols. Use it to:

� Assign single absolute values to symbols.

� Assign the values of previously defined symbols or expressions to new
symbols, thus letting you use different mnemonics for different purposes.

  Chapter 5. Assembler Instruction Statements 163



 EQU Instruction  
 

� Compute expressions whose values are unknown at coding time or difficult to
calculate. The value of the expressions is then assigned to a symbol.

 

��──symbol──EQU──expression_1───────────────────────────────────────�

�─ ──┬ ┬────────────────────────────────── ───────────────────────────��
├ ┤──,expression_2 ──┬ ┬───────────────

  │ │└ ┘──,expression_3
└ ┘──,,expression_3 ──────────────────

symbol
is one of the following:

� An ordinary symbol

� A variable symbol that has been assigned a character string with a value
that is valid for an ordinary symbol

expression_1
represents a value that the assembler assigns to the symbol in the name field.
Expression_1 may have any value allowed for an assembly expression:
absolute (including negative), relocatable, or complexly relocatable. The
assembler carries this value as a signed 4-byte (32-bit) number; all four bytes
are printed in the program listings opposite the symbol.

Any symbols used in expression_1 need not be previously defined. However, if
any symbol is not previously defined, the value of expression_1 is not assigned
to the symbol in the name field until assembly time and therefore may not be
used during conditional assembly.

If expression_1 is a complexly relocatable expression, the whole expression,
rather than its value, is assigned to the symbol. During the evaluation of any
expression that includes a complexly relocatable symbol, that symbol is
replaced by its own defining expression. Consider the following example, in
which A1 and A2 are defined in one control section, and B1 and B2 in another:

X EQU A1+B1
Y EQU X–A2–B2

The first EQU statement assigns a complexly relocatable expression (A1+B1) to
X. During the evaluation of the expression in the second EQU statement, X is
replaced by its defining relocatable expression (A1+B1), and the assembler
evaluates the resulting expression (A1+B1-A2-B2) and assigns an absolute
value to Y, because the relocatable terms in the expression are paired.

expression_2
represents a value that the assembler assigns as a length attribute value to the
symbol in the name field. It is optional, but, if specified, must be an absolute
value in the range 0 to 65,535. This value overrides the normal length attribute
value implicitly assigned from expression_1.

All symbols appearing in expression_2 must have been previously defined.

If expression_2 is omitted, the assembler assigns a length attribute value to the
symbol in the name field according to the length attribute value of the extreme
left (or only) term of expression_1, as follows:

1. If the extreme left term of expression_1 is a location counter reference (*),
a self-defining term, or a symbol length attribute value reference, the length

164 HLASM V1R3 Language Reference  



  EQU Instruction
 

attribute is 1. This also applies if the extreme left term is a symbol that is
equated to any of these values.

2. If the extreme left term of expression_1 is a symbol that is used in the
name field of a DC or DS instruction, the length attribute value is equal to
the implicit or explicit length of the first (or only) constant specified in the
DC or DS operand field.

3. If the extreme left term is a symbol that is used in the name field of a
machine instruction, the length attribute value is equal to the length of the
assembled instruction.

4. Symbols that name assembler instructions, except the DC, DS, CCW,
CCW0, and CCW1 instructions, have a length attribute value of 1.
Symbols that name a CCW, CCW0, or CCW1 instruction have a length
attribute value of 8.

5. The length attribute value described in cases 2, 3, and 4 above is the
assembly-time value of the attribute. The length attribute value assigned
by the assembler during conditional assembly processing is always 1.

For more information about the length attribute value, see “Symbol Length
Attribute Reference” on page 36.

expression_3
represents a value that the assembler assigns as a type attribute value to the
symbol in the name field. It is optional, but, if specified, it must be an absolute
value in the range 0 to 255. This value overrides the normal type attribute
value implicitly assigned from expression_1.

All symbols appearing in expression_3 must have been previously defined.

If expression_3 is omitted, the assembler assigns a type attribute value of U to
| the symbol, which means the symbol in the name field has an undefined (or
| unknown or unassigned) type attribute. See the general discussion about data

attributes on page 292, and “Type Attribute (T')” on page 296.

The EQU instruction can be used anywhere in a source module after the ICTL
instruction. Note, however, that the EQU instruction can initiate an unnamed
control section (private code) if it is specified before the first control section
(initiated by a START, CSECT, or RSECT instruction).

Using Conditional Assembly Values
The following rules describe when you can use the value, length attribute value, or
type attribute value of an equated symbol in conditional assembly statements:

� If you want to use the value of the symbol in conditional assembly statements,
then:

– The EQU statement that defines the symbol must be processed by the
assembler before the conditional assembly statement that refers to the
symbol.

– The symbol in the name field of the EQU statement must be an ordinary
symbol.

– Expression_1 must be an absolute expression, and must contain only
self-defining terms or previously defined symbols.

� If only expression_1 is specified, the assembler assigns a value of 1 to the
length attribute, and a value of U to the type attribute of the symbol during

  Chapter 5. Assembler Instruction Statements 165



 EXITCTL Instruction  
 

conditional assembly. You can use these values in conditional assembly
statements, although references to the length attribute may be flagged.

If you specify expression_2 or expression_3 and you want to use the explicit
attribute value during conditional assembly processing, then:

– The symbol in the name field must be an ordinary symbol.
– The expression must contain only self-defining terms.

 EXITCTL Instruction
The EXITCTL instruction sets or modifies the contents of the four signed fullword
exit-control parameters that the assembler maintains for each type of exit.

 

��─ ──┬ ┬───────────────── ─EXITCTL────────────────────────────────────�
 └ ┘ ─sequence_symbol─

 ┌ ┐──────────────────────────
�─ ──exit_type ───+ ┴─,─ ──(1)──┬ ┬─────────────── ──────────────────────────��
 └ ┘ ─control_value─

Note:
1 From one to four values to be supplied.

sequence_symbol
is a sequence symbol.

exit_type
identifies the type of exit to which this EXITCTL instruction applies. Exit_type
must have one of the following values:

SOURCE Sets the exit-control parameters for the user-supplied exit module
specified in the INEXIT suboption of the EXIT assembler option.

LIBRARY Sets the exit-control parameters for the user-supplied exit module
specified in the LIBEXIT suboption of the EXIT assembler option.

LISTING Sets the exit-control parameters for the user-supplied exit module
specified in the PRTEXIT suboption of the EXIT assembler option.

PUNCH Sets the exit-control parameters for the user-supplied exit module
specified in the OBJEXIT suboption of the EXIT assembler option
when it is called to process the object module records generated
when the DECK assembler option is specified.

OBJECT (MVS and CMS Only) Sets the exit-control parameters for the
user-supplied exit module specified in the OBJEXIT suboption of the
EXIT assembler option when it is called to process the object module
records generated when the OBJECT or XOBJECT assembler option
is specified.

ADATA Sets the exit-control parameters for the user-supplied exit module
specified in the ADEXIT suboption of the EXIT assembler option.

TERM Sets the exit-control parameters for the user-supplied exit module
specified in the TRMEXIT suboption of the EXIT assembler option.

control_value
is the value to which the corresponding exit-control parameter should be set.
For each exit type, the assembler maintains four exit-control parameters known
as EXITCTL_1, EXITCTL_2, EXITCTL_3, and EXITCTL_4. Therefore, up to
four values may be specified. Which exit-control parameter is set is determined

166 HLASM V1R3 Language Reference  



  EXTRN Instruction
 

by the position of the value in the operand of the instruction. You must code a
comma in the operand for each omitted value. If specified, control_value must
be either:

� A decimal self-defining term with a value in the range −2b] to +2b]−1.

� An expression in the form D±n, where D is the current value of the
corresponding exit-control parameter to which n, a decimal self-defining
term, is added or from which n is subtracted. The value of the result of
adding n to or subtracting n from the current exit-control parameter value
must be in the range −2b] to +2b]−1.

If control_value is omitted, the corresponding exit-control parameter retains its
current value.

The following example shows how to set the exit-control parameters EXITCTL_1
and EXITCTL_3 for the LISTING exit without affecting the contents of the other
exit-control parameters:

 EXITCTL LISTING,256,,D+128

The assembler initializes all exit-control parameters to binary zeros.

 EXTRN Instruction
The EXTRN instruction identifies symbols referred to in a source module but
defined in another source module. These symbols are external symbols.

 

 ┌ ┐─,───────────────
��─ ──┬ ┬───────────────── ─EXTRN─ ───+ ┴─external_symbol─ ───────────────��
 └ ┘ ─sequence_symbol─

sequence_symbol
is a sequence symbol.

external_symbol
is a relocatable symbol that:

� Is a valid symbol

� Is not used as the name entry of a source statement in the source module
in which it is defined

� Is not paired in an expression

Up to 65535 individual control sections, external symbols, and external dummy
sections can be defined in a source module. However, the practical maximum
number depends on the amount of table storage available during link-editing.

The assembler lists each external symbol identified in a source module in the
external symbol dictionary, along with entries for entry symbols, common control
sections, and external control sections.

External symbols have a length attribute of 1.

  Chapter 5. Assembler Instruction Statements 167



 ISEQ Instruction  
 

 ICTL Instruction
The ICTL instruction changes the begin, end, and continue columns that establish
the coding format of the assembler language source statements.

 

��──ICTL─ ─begin─ ──┬ ┬───────────────────── ──────────────────────────��
└ ┘──,end ──┬ ┬───────────

└ ┘──,continue

begin
specifies the begin column of the source statement. It must be a decimal
self-defining term within the range of 1 to 40, inclusive.

end
specifies the end column of the source statement. When end is specified it
must be a decimal self-defining term within the range of 41 to 80, inclusive. It
must be not less than begin +5, and must be greater than continue. If end is
not specified, it is assumed to be 71.

continue
specifies the continue column of the source statement. When specified,
continue must be a decimal self-defining term within the range of 2 to 40, and it
must be greater than begin. If continue is not specified, or if column 80 is
specified as the end column, the assembler assumes that continuation lines are
not allowed.

Default
1,71,16

Use the ICTL instruction only once, at the very beginning of a source program. If
no ICTL statement is used in the source program, the assembler assumes that 1,
71, and 16 are the begin, end, and continue columns, respectively.

With the ICTL instruction, you can, for example, increase the number of columns to
be used for the identification or sequence checking of your source statements. By
changing the begin column, you can even create a field before the begin column to
contain identification or sequence numbers. For example, the following instruction
designates the begin column as 9 and the end column as 80. Since the end
column is specified as 80, no continuation records are recognized.

 ICTL 9,8K

COPY Instruction:  The ICTL instruction does not affect the format of statements
brought in by a COPY instruction or generated from a library macro definition. The
assembler processes these statements according to the standard begin, end, and
continue columns described in “Field Boundaries” on page 13.

 ISEQ Instruction
The ISEQ instruction forces the assembler to check if the statements in a source
module are in sequential order. In the ISEQ instruction, you specify the columns
between which the assembler is to check for sequence numbers.

168 HLASM V1R3 Language Reference  



  LOCTR Instruction
 

 

��─ ──┬ ┬───────────────── ─ISEQ─ ──┬ ┬──────────── ─────────────────────��
 └ ┘─sequence_symbol─ └ ┘──left,right

sequence_symbol
is a sequence symbol.

left
specifies the first column of the field to be sequence-checked. If specified, left
must be a decimal self-defining term in the range 1 to 80, inclusive.

right
specifies the extreme right column of the field to be sequence checked. If
specified, right must be a decimal self-defining term in the range 1 to 80,
inclusive, and must be greater than or equal to left.

If left and right are omitted, sequence checking is ended. Sequence checking can
be restarted with another ISEQ statement. An ISEQ statement that is used to end
sequence checking is itself sequence-checked.

The assembler begins sequence checking with the first statement line following the
ISEQ instruction. The assembler also checks continuation lines.

Sequence numbers on adjacent statements or lines are compared according to the
8-bit internal EBCDIC collating sequence. When the sequence number on one line
is not greater than the sequence number on the preceding line, a sequence error is
flagged, and a warning message is issued, but the assembly is not ended.

If the sequence field in the preceding line is blank, the assembler uses the last
preceding line with a nonblank sequence field to make its comparison.

The assembler checks only those statements that are specified in the coding of a
source module. This includes any COPY instruction statement or macro instruction.
The assembler does not check:

� Statements inserted by a COPY instruction

� Statements generated from model statements inside macro definitions or from
model statements in open code (statement generation is discussed in detail in
Chapter 7, “How to Specify Macro Definitions” on page 213)

� Statements in library macro definitions

 LOCTR Instruction
The LOCTR instruction specifies multiple location counters within a control section.
The assembler assigns consecutive addresses to the segments of code using one
location counter before it assigns addresses to segments of coding using the next
location counter.

 

��──symbol──LOCTR──────────────────────────────────────────────────��

  Chapter 5. Assembler Instruction Statements 169



 LOCTR Instruction  
 

symbol
is one of the following:

� An ordinary symbol

� A variable symbol that has been assigned a character string with a value
that is valid for an ordinary symbol

By using the LOCTR instruction, you can code your control section in a logical
order. For example, you can code work areas and data constants within the
section of code, using them without having to branch around them:

A CSECT See note 1
 LR 12,15
 USING A,12
 .
B LOCTR See note 2
 .
C LOCTR
 .
B LOCTR See note 3
 .
A LOCTR See note 4
 .
DUM DSECT See note 1
C LOCTR See note 5
 .
 END

Notes:

1. The first location counter of a control section is defined by the name of the
START, CSECT, DSECT, or COM instruction defining the section.

2. The LOCTR instruction defines a location counter.

3. The LOCTR continues a previously defined location counter. A location
counter remains in use until it is interrupted by a LOCTR, CSECT, DSECT, or
COM instruction.

4. A LOCTR instruction with the same name as a control section continues the
first location counter of that section.

5. A LOCTR instruction with the same name as a LOCTR instruction in a previous
control section causes that control section to be continued using the location
counter specified.

A control section cannot have the same name as a previous LOCTR instruction. A
LOCTR instruction placed before the first control section definition initiates an
unnamed control section before the LOCTR instruction is processed.

The length attribute of a LOCTR name is 1.

LOCTR instructions do not force alignment; code assembled under a location
counter other than the first location counter of a control section is assembled
starting at the next available byte after the previous segment.

170 HLASM V1R3 Language Reference  



  LTORG Instruction
 

 LTORG Instruction
Use the LTORG instruction so that the assembler can collect and assemble literals
into a literal pool. A literal pool contains the literals you specify in a source module
either after the preceding LTORG instruction, or after the beginning of the source
module.

 

��─ ──┬ ┬──────── ─LTORG──────────────────────────────────────────────��
 └ ┘ ─symbol─

symbol
is one of the following:

� An ordinary symbol

� A variable symbol that has been assigned a character string with a value
that is valid for an ordinary symbol

� A sequence symbol

If symbol is an ordinary symbol or a variable symbol that has been assigned an
ordinary symbol, the ordinary symbol is assigned the value of the address of the
first byte of the literal pool. This symbol is aligned on a doubleword boundary and
has a length attribute of 1. If bytes are skipped after the end of a literal pool to
achieve alignment for the next instruction, constant, or area, the bytes are not filled
with zeros.

The assembler ignores the borders between control sections when it collects literals
into pools. Therefore, you must be careful to include the literal pools in the control
sections to which they belong (for details, see “Addressing Considerations” on
page 172).

The creation of a literal pool gives the following advantages:

� Automatic organization of the literal data into sections that are correctly aligned
and arranged so that minimal space is wasted.

� Assembling of duplicate data into the same area.

� Because all literals are cross-referenced, you can find the literal constant in the
pool into which it has been assembled.

 Literal Pool
| A literal pool is created under the following conditions:

| � Immediately after a LTORG instruction.

| � If no LTORG instruction is specified, and no LOCTRs are used in the first
| control section, a literal pool generated after the END statement is created at
| the end of the first control section, and appears in the listing after the END
| statement.

| � If no LTORG instruction is specified, and LOCTRs are used in the first control
| section, a literal pool generated after the END statement is created at the end
| of the most recent LOCTR segment of the first section, and appears in the
| listing after the END statement.

  Chapter 5. Assembler Instruction Statements 171



 LTORG Instruction  
 

| � To force the literal pool to the end of the control section when using LOCTRs,
| you must resume the last LOCTR of the CSECT before the LTORG statement
| (or before the END statement if no LTORG statement is specified).

Each literal pool has four segments into which the literals are stored (a) in the order
that the literals are specified, and (b) according to their assembled lengths, which,
for each literal, is the total explicit or implied length, as described below.

� The first segment contains all literal constants whose assembled lengths are a
multiple of 8.

� The second segment contains those whose assembled lengths are a multiple of
4, but not of 8.

� The third segment contains those whose assembled lengths are even, but not a
multiple of 4.

� The fourth segment contains all the remaining literal constants whose
assembled lengths are odd.

Since each literal pool is aligned on a doubleword boundary, this guarantees that
all literals in the first segment are doubleword aligned; in the second segment,
fullword aligned; and, in the third, halfword aligned. No space is wasted except,
possibly, at the origin of the pool, and in aligning to the start of the statement
following the literal pool.

Literals from the following statements are in the pool, in the segments indicated by
the parenthesized numbers:

FIRST START K
 .
 MVC TO,=3F'9' (2)
 AD 2,=D'7' (1)
 IC 2,=XL1'8' (4)
 MVC MTH,=CL3'JAN' (4)
 LM 4,5,=2F'1,2' (1)
 AH 5,=H'33' (3)
 L 2,=A(ADDR) (2)
 MVC FIVES,=XL8'K5' (1)

 Addressing Considerations
If you specify literals in source modules with multiple control sections, you should:

� Write a LTORG instruction at the end of each control section, so that all the
literals specified in the section are assembled into the one literal pool for that
section. If a control section is divided and interspersed among other control
sections, you should write a LTORG instruction at the end of each segment of
the interspersed control section.

� When establishing the addressability of each control section, make sure (a) that
all of the literal pool for that section is also addressable, by including it within a
USING range, and (b) that the literal specifications are within the corresponding
USING domain. The USING range and domain are described in “USING
Instruction” on page 192.

All the literals specified after the last LTORG instruction, or, if no LTORG instruction
is specified, all the literals in a source module are assembled into a literal pool at
the end of the first control section. You must then make this literal pool

172 HLASM V1R3 Language Reference  



  OPSYN Instruction
 

addressable, along with the addresses in the first control section. This literal pool
is printed in the program listing after the END instruction.

 Duplicate Literals
If you specify duplicate literals within the part of the source module that is
controlled by a LTORG instruction, only one literal constant is assembled into the
pertinent literal pool. This also applies to literals assembled into the literal pool at
the end of the first or only control section of a source module that contains no
LTORG instructions.

Literals are duplicates only if their specifications are identical, not if the object code
assembled happens to be identical.

| When two literals specifying identical A-type, Y-type or S-type address constants
contain a reference to the value of the location counter (*), both literals are

| assembled into the literal pool. This is because the value of the location counter
| may be different in the two literals. Even if the location counter value is the same
| for both, they are still both assembled into the literal pool.

The following examples show how the assembler stores pairs of literals, if the
placement of each pair is controlled by the same LTORG statement.

=X'FK' Both are
=C'K' stored

=XL3'K' Both are
=HL3'K' stored

=A(D+4) Both are
=A(D+4) stored

=X'FFFF' Identical,
=X'FFFF' the first is stored

 OPSYN Instruction
The OPSYN instruction defines or deletes symbolic operation codes.

The OPSYN instruction has two formats. The first format defines a new operation
code to represent an existing operation code, or to redefine an existing operation
code for:

� Machine and extended mnemonic branch instructions
� Assembler instructions, including conditional assembly instructions

 � Macro instructions

Define Operation Code 

��─ ──┬ ┬─symbol─────────── ─OPSYN──operation_code_2──────────────────��
 └ ┘─operation_code_1─

The second format deletes an existing operation code for:

� Machine and extended mnemonic branch instructions
� Assembler instructions, including conditional assembly instructions

 � Macro instructions

  Chapter 5. Assembler Instruction Statements 173



 OPSYN Instruction  
 

Delete Operation Code 

��──operation_code_1──OPSYN────────────────────────────────────────��

symbol
is one of the following:

� An ordinary symbol that is not the same as an existing operation code

� A variable symbol that has been assigned a character string with a value
that is valid for an ordinary symbol and is not the same as an existing
operation code

operation_code_1
is one of the following:

� An operation code described in this chapter, or in Chapter 4, “Machine
Instruction Statements,” or Chapter 9, “How to Write Conditional Assembly
Instructions” on page 287 , respectively

� The operation code defined by a previous OPSYN instruction

operation_code_2
is one of the following:

� An operation code described in this chapter, or in Chapter 4, “Machine
Instruction Statements,” or Chapter 9, “How to Write Conditional Assembly
Instructions” on page 287 , respectively

� The operation code defined by a previous OPSYN instruction

In the first format, the OPSYN instruction assigns the properties of the operation
code denoted by operation_code_2 to the ordinary symbol denoted by symbol or
the operation code denoted by operation_code_1.

In the second format, the OPSYN instruction causes the operation code specified in
operation_code_1 to lose its properties as an operation code.

The OPSYN instruction can be coded anywhere in the program to redefine an
operation code.

The symbol in the name field can represent a valid operation code. It loses its
current properties as if it had been defined in an OPSYN instruction with a blank
operand field. In the following example, L and LR both possess the properties of
the LR machine instruction operation code:

L OPSYN LR

When the same symbol appears in the name field of two OPSYN instructions, the
latest definition takes precedence. In the example below, STORE now represents the
STH machine operation:

STORE OPSYN ST
STORE OPSYN STH

| Note:  OPSYN is not processed during lookahead mode (see “Lookahead” on
| page 307). Therefore it cannot be used during lookahead to replace an opcode that
| must be processed during lookahead, such as COPY. For example, assuming

174 HLASM V1R3 Language Reference  



  ORG Instruction
 

| AFTER is defined in COPYBOOK, the following code gives an ASMA042E error
| (Length attribute of symbol is unavailable):

| AIF (L'AFTER LT 2).BEYOND
|  OPCOPY OPSYN COPY OPSYN not processed during look ahead
|  OPCOPY COPYBOOK OPCOPY fails
|  .BEYOND ANOP ,

Redefining Conditional Assembly Instructions
A redefinition of a conditional assembly instruction only comes into effect in macro
definitions occurring after the OPSYN instruction. The original definition is always
used when a macro instruction calls a macro that was defined and edited before
the OPSYN instruction.

An OPSYN instruction that redefines the operation code of an assembler or
machine instruction generated from a macro instruction is, however, effective
immediately, even if the definition of the macro was made prior to the OPSYN
instruction. Consider the following example:

 MACRO Macro header
 MAC ... Macro prototype
 AIF ...
 MVC ...
 .
 MEND Macro trailer
 .
 AIF OPSYN AGO Assign AGO properties to AIF
 MVC OPSYN MVI Assign MVI properties to MVC
 .
 MAC ... Macro call

(AIF interpreted as AIF instruct-
ion; generated AIFs not printed)

+ MVC ... Interpreted as MVI instruction
 .

. Open code started at this point
AIF ... Interpreted as AGO instruction
MVC ... Interpreted as MVI instruction

In this example, AIF and MVC instructions are used in a macro definition. AIF is a
conditional assembly instruction, and MVC is a machine instruction. OPSYN
instructions are used to assign the properties of AGO to AIF and to assign the
properties of MVI to MVC. In subsequent calls of the macro MAC, AIF is still
defined, and used, as an AIF operation, but the generated MVC is treated as an
MVI operation. In open code following the macro call, the operations of both
instructions are derived from their new definitions assigned by the OPSYN
instructions. If the macro is redefined (by another macro definition), the new
definitions of AIF and MVC (that is, AGO and MVI) are used for further generations.

 ORG Instruction
The ORG instruction alters the setting of the location counter and thus controls the
structure of the current control section. This redefines portions of a control section.

 

��─ ──┬ ┬──────── ─ORG─ ──┬ ┬──────────── ───────────────────────────────��
|  └ ┘|  ─symbol─ └ ┘|  ─expression─

  Chapter 5. Assembler Instruction Statements 175



 ORG Instruction  
 

| symbol
| is one of the following:

| � An ordinary symbol

| � A variable symbol that has been assigned a character string with a value
| that is valid for an ordinary symbol

| � A sequence symbol

| If symbol denotes an ordinary symbol, the ordinary symbol is defined with the
| value that the location counter had before the ORG statement is processed.

expression
is a relocatable expression, the value of which is used to set the location
counter. If expression is omitted, the location counter is set to the next
available location for the current control section.

In general, symbols used in expression need not have been previously defined.
However, the relocatable component of expression (that is, the unpaired relocatable
term) must have been previously defined in the same control section in which the
ORG statement appears, or be equated to a previously defined value.

An ORG statement cannot be used to specify a location below the beginning of the
control section in which it appears. For example, the following statement is not
correct if it appears less than 500 bytes from the beginning of the current control
section.

 ORG D–5KK

This is because the expression specified is negative, and sets the location counter
to a value larger than the assembler can process. The location counter wraps
around (the location counter is discussed in detail in “Location Counter Reference”
on page 34).

With the ORG statement, you can give two instructions the same location counter
values. In such a case, the second instruction does not always eliminate the
effects of the first instruction. Consider the following example:

ADDR DC A(ADDR)
 ORG D–4
B DC C'BETA'

In this example, the value of B ('BETA') is destroyed by the relocation of ADDR
during linkage editing.

Using Figure 49 on page 177 as an example, to build a translate table (for
example, to convert EBCDIC character code into some other internal code):

1. Define the table (see �1� in Figure 49) as being filled with zeros.

2. Use the ORG instruction to alter the location counter so that its counter value
indicates a specific location (see �2� in Figure 49) within the table.

3. Redefine the data (see �3� in Figure 49) to be assembled into that location.

4. After repeating the first three steps (see �4� in Figure 49) until your translate
table is complete, use an ORG instruction with a null operand field to alter the
location counter. The counter value then indicates the next available location

176 HLASM V1R3 Language Reference  



  ORG Instruction
 

(see �5� in Figure 49) in the current control section (after the end of the
translate table).

Both the assembled object code for the whole table filled with zeros, and the object
code for the portions of the table you redefined, are printed in the program listings.
However, the data defined later is loaded over the previously defined zeros and
becomes part of your object program, instead of the zeros.

In other words, the ORG instruction can cause the location counter to point to any
part of a control section, even the middle of an instruction, into which you can
assemble data. It can also cause the location counter to point to the next available
location so that your program can be assembled sequentially.

 Source Module │ Object Code
─────────────────────────────────────────────────────┼────────────────────────
 │
 FIRST START K │
 . │
 . │
�1� TABLE DC XL256'K' │ TABLE (in Hex)
�2� ORG TABLE+K │ +K ┌────┐

┌ DC C'K' �3� │ │ FK │
│ DC C'1' │ │ F1 │

 │ . │ │ . │
 │ . │ │ . │
 │ ORG TABLE+13 │ +13 │ . │

│ DC C'D' │ │ C4 │
│ DC C'E' │ │ C5 │

 │ . │ │ . │
 │ . │ │ . │
�4� ─┤ ORG TABLE+C'D' │ │ . │

│ DC AL1(13) │ +196 │ 13 │
│ DC AL1(14) │ │ 14 │

 │ . │ │ . │
 │ . │ │ . │
 │ ORG TABLE+C'K' │ +24K │ . │

│ DC AL1(K) │ │ KK │
│ DC AL1(1) │ │ K1 │

 │ . │ │ │
 └ . │ +255 └────┘
 ORG │
�5� GOON DS KH │
< . │
TABLE+256 . │
 TR INPUT,TABLE │
 . │
 . │

INPUT DS CL2K │
 . │
 . │
 END │

Figure 49. Building a Translate Table

Restriction on ORG when the LOCTR Instruction is Used:  If you specify
multiple location counters with the LOCTR instruction, the ORG instruction can alter
only the location counter in use when the instruction appears. Thus, you cannot
control the structure of the whole control section using ORG, but only the part that
is controlled by the current location counter.

  Chapter 5. Assembler Instruction Statements 177



 PRINT Instruction  
 

 POP Instruction
| The POP instruction restores the PRINT, USING or ACONTROL status saved by

the most recent PUSH instruction.

 

 ┌ ┐─,──────────────
��─ ──┬ ┬───────────────── ─POP─ ───+ ┴──(1)──┬ ┬─PRINT──── ──┬ ┬────────── ────��
 └ ┘─sequence_symbol─ ├ ┤─USING──── └ ┘ ─,NOPRINT─
 └ ┘─ACONTROL─

Note:
1 Each keyword from this group may be selected only once.

sequence_symbol
is a sequence symbol.

PRINT
instructs the assembler to restore the PRINT status to the status saved by the
most recent PUSH instruction.

USING
instructs the assembler to restore the USING status to the status saved by the
most recent PUSH instruction.

| ACONTROL
| instructs the assembler to restore the ACONTROL status to the status saved
| by the most recent PUSH instruction.

NOPRINT
instructs the assembler to suppress the printing of the POP statement in which
it is specified.

| The POP instruction causes the status of the current PRINT, USING or
| ACONTROL instruction to be overridden by the PRINT, USING or ACONTROL

status saved by the last PUSH instruction. For example:

PRINT GEN Printed macro generated code
DCMAC X,27 Call macro to generate DC

+ DC X'27' ... Generated statement
PUSH PRINT Save PRINT status
PRINT NOGEN Suppress macro generated code
DCMAC X,33 Call macro to generate DC
POP PRINT Restore PRINT status
DCMAC X,42 Call macro to generate DC

+ DC X'42' ... Generated statement

 PRINT Instruction
The PRINT instruction controls the amount of detail printed in the listing of
programs.

 

 ┌ ┐─,───────
��─ ──┬ ┬───────────────── ─PRINT─ ───+ ┴─operand─ ───────────────────────��
 └ ┘ ─sequence_symbol─

178 HLASM V1R3 Language Reference  



  PRINT Instruction
 

sequence_symbol
is a sequence symbol.

operand
is an operand from one of the groups of operands described below. The
operands are listed in hierarchic order. The effect, if any, of one operand on
other operands is also described.

 

��─ ──┬ ┬─ON── ─────────────────────────��
 └ ┘─OFF─

ON
instructs the assembler to print, or resume
printing, the source and object section of the
assembler listing. Initial value.

OFF
instructs the assembler to stop printing the
source and object section of the assembler
listing. A subsequent PRINT ON instruction
resumes printing.

When this operand is specified the printing
actions requested by the GEN, DATA,
MCALL, and MSOURCE operands do not
apply.

  Chapter 5. Assembler Instruction Statements 179



 PRINT Instruction  
 

 

��─ ──┬ ┬─GEN─── ───────────────────────��
 └ ┘─NOGEN─

GEN
instructs the assembler to print all statements
generated by the processing of a macro. This
operand does not apply if PRINT OFF has
been specified. Initial value.

NOGEN
instructs the assembler not to print statements
generated by the processing of a macro. This
applies to all levels of macro nesting; no
generated code is displayed while PRINT
NOGEN is in effect. If this operand is
specified, the DATA operand does not apply
to constants that are generated during macro
processing. Also, if this operand is specified,
the MSOURCE operand does not apply.
When the PRINT NOGEN instruction is in
effect, the assembler prints one of the
following on the same line as the macro call
or model statement:

� The object code for the first instruction
generated. The object code includes the
data that is shown under the ADDR1 and
ADDR2 columns of the assembler listing.

� The first 8 bytes of generated data from a
DC instruction

When the assembler forces alignment of an
instruction or data constant, it generates zeros
in the object code and prints the generated
object code in the listing. When you use the
PRINT NOGEN instruction the generated
zeros are not printed.

Note:  If the next line to print after macro call
or model statement is a diagnostic message,
the object code or generated data is not
shown in the assembler listing.

The MNOTE instruction always causes a
message to be printed.

180 HLASM V1R3 Language Reference  



  PRINT Instruction
 

 

��─ ──┬ ┬─NODATA─ ──────────────────────��
 └ ┘─DATA───

NODATA
instructs the assembler to print only the first 8
bytes of the object code of constants. This
operand does not apply if PRINT OFF has
been specified. If PRINT NOGEN has been
specified, this operand does not apply to
constants generated during macro processing.
Initial value.

DATA
instructs the assembler to print the object
code of all constants in full. This operand
does not apply if PRINT OFF has been
specified. If PRINT NOGEN has been
specified, this operand does not apply to
constants generated during macro processing.

 

��─ ──┬ ┬─NOMCALL─ ─────────────────────��
 └ ┘─MCALL───

NOMCALL
instructs the assembler to suppress the
printing of nested macro call instructions.
Initial value.

MCALL
instructs the assembler to print nested macro
call instructions, including the name of the
macro definition to be processed and the
operands and values passed to the macro
definition. The assembler only prints the
operands and comments up to the size of its
internal processing buffer. If this size is
exceeded the macro call instruction is
truncated, and the characters ... MORE are
added to the end of the printed macro call.
This does not affect the processing of the
macro call.

This operand does not apply if either PRINT
OFF or PRINT NOGEN has been specified.

  Chapter 5. Assembler Instruction Statements 181



 PRINT Instruction  
 

 

��─ ──┬ ┬─MSOURCE─── ───────────────────��
 └ ┘─NOMSOURCE─

MSOURCE
instructs the assembler to print the source
statements generated during macro
processing, as well as the assembled
addresses and generated object code of the
statements. This operand does not apply if
either PRINT OFF or PRINT NOGEN has
been specified. Initial value.

NOMSOURCE
instructs the assembler to suppress the
printing of source statements generated during
macro processing, without suppressing the
printing of the assembled addresses and
generated object code of the statements. This
operand does not apply if either PRINT OFF
or PRINT NOGEN has been specified.

 

��─ ──┬ ┬─UHEAD─── ─────────────────────��
 └ ┘─NOUHEAD─

UHEAD
instructs the assembler to print a summary of
active USINGs following the TITLE line on
each page of the source and object program
section of the assembler listing. This operand
does not apply if PRINT OFF has been
specified. initial value.

NOUHEAD
instructs the assembler not to print a summary
of active USINGs.

 

��─ ──┬ ┬───────── ─────────────────────��
 └ ┘ ─NOPRINT─

NOPRINT
instructs the assembler to suppress the
printing of the PRINT statement in which it is
specified. The NOPRINT operand may only
be specified in conjunction with one or more
other operands.

The PRINT instruction can be specified any number of times in a source module,
but only those operands actually specified in the instruction change the current print
status.

PRINT options can be generated by macro processing during conditional assembly.
However, at assembly time, all options are in force until the assembler encounters
a new and opposite option in a PRINT instruction.

The PUSH and POP instructions, described in “PUSH Instruction” on page 184 and
“POP Instruction” on page 178, also influence the PRINT options by saving and
restoring the PRINT status.

You can override the effect of the operands of the PRINT instruction using the
PCONTROL assembler option. For more information about this option, see the
High Level Assembler Programmer's Guide.

182 HLASM V1R3 Language Reference  



  PUNCH Instruction
 

Unless the NOPRINT operand is specified, or the assembler listing is suppressed
by the NOLIST assembler option, the PRINT instruction itself is printed.

 Process Statement
The process statement is described under “*PROCESS Statement” on page 91.

 PUNCH Instruction
The PUNCH instruction creates a record containing a source or other statement, or
an object record.

 

��─ ──┬ ┬───────────────── ─PUNCH──string─────────────────────────────��
 └ ┘ ─sequence_symbol─

sequence_symbol
is a sequence symbol.

string
is a character string of up to 80 characters, enclosed in single quotation marks.
All 256 characters in the EBCDIC character set are allowed in the character
string. Variable symbols are also allowed.

Double-byte data is permissible in the operand field when the DBCS assembler
option is specified. However, the following rules apply to double-byte data:

� The DBCS ampersand and the single quotation mark are not recognized as
delimiters.

� A double-byte character that contains the value of an EBCDIC ampersand
or a single quotation mark in either byte is not recognized as a delimiter
when enclosed by SO and SI.

The position of each character specified in the PUNCH statement corresponds
to a column in the record to be punched. However, the following rules apply to
ampersands and single quotation marks:

� A single ampersand initiates an attempt to identify a variable symbol and to
substitute its current value.

� A pair of ampersands is punched as one ampersand.

� A pair of single quotation marks is punched as one single quotation mark.

� An unpaired single quotation mark followed by one or more blanks simply
ends the string of characters punched. If a nonblank character follows an
unpaired single quotation mark, an error message is issued and nothing is
punched.

Only the characters punched, including blanks, count toward the maximum of
80 allowed.

The PUNCH instruction causes the data in its operand to be punched into a record.
One PUNCH instruction produces one record, but as many PUNCH instructions as
necessary can be used.

  Chapter 5. Assembler Instruction Statements 183



 PUSH Instruction  
 

You can code PUNCH statements in:

� A source module to produce control statements for the linker. The linker uses
these control statements to process the object module.

� Macro definitions to produce, for example, source statements in other computer
languages or for other processing phases.

The assembler writes the record produced by a PUNCH statement when it writes
the object deck. The ordering of this record in the object deck is determined by the
order in which the PUNCH statement is processed by the assembler. The record
appears after any object deck records produced by previous statements, and before
any other object deck records produced by subsequent statements.

The PUNCH instruction statement can appear anywhere in a source module. If a
PUNCH instruction occurs before the first control section, the resultant record
punched precedes all other records in the object deck.

The record punched as a result of a PUNCH instruction is not a logical part of the
object deck, even though it can be physically interspersed in the object deck.

Notes:

1. The identification and sequence number field generated as part of other object
deck records is not generated for the record punched by the PUNCH
instruction.

| 2. If the NODECK and NOOBJECT assembler options are specified, no records
| are punched for the PUNCH instruction.

 PUSH Instruction
| The PUSH instruction saves the current PRINT, USING or ACONTROL status in
| push-down storage on a last-in, first-out basis. You restore this PRINT, USING or
| ACONTROL status later, also on a last-in, first-out basis, by using a POP

instruction.

 

 ┌ ┐─,──────────────
��─ ──┬ ┬───────────────── ─PUSH─ ───+ ┴──(1)──┬ ┬─PRINT──── ──┬ ┬────────── ───��
 └ ┘ ─sequence_symbol─ ├ ┤─USING──── └ ┘ ─,NOPRINT─

|  └ ┘─ACONTROL─

Note:
1 Each keyword from this group may be selected only once.

sequence_symbol
is a sequence symbol.

PRINT
instructs the assembler to save the PRINT status in a push-down stack.

USING
instructs the assembler to save the USING status in a push-down stack.

| ACONTROL
| instructs the assembler to save the ACONTROL status in a push-down stack.

184 HLASM V1R3 Language Reference  



  RMODE Instruction
 

NOPRINT
instructs the assembler to suppress the printing of the PUSH statement in
which it is specified.

| The PUSH instruction only causes the status of the current PRINT, USING or
| ACONTROL instructions to be saved. The PUSH instruction does not:

| � Change the status of the current PRINT or ACONTROL instructions

� Imply a DROP instruction, or change the status of the current USING
instructions

 REPRO Instruction
The REPRO instruction causes the data specified in the statement that follows to
be punched into a record.

 

��─ ──┬ ┬───────────────── ─REPRO─────────────────────────────────────��
 └ ┘ ─sequence_symbol─

sequence_symbol
is a sequence symbol.

The REPRO instruction can appear anywhere in a source module. One REPRO
instruction produces one punched record. The punched records are not part of the
object deck, even though they can be physically interspersed in the object deck.

The statement to be reproduced can contain any of the 256 characters in the
EBCDIC character set, including blanks, ampersands, and single quotation marks.
Unlike the PUNCH instruction, the REPRO instruction does not allow values to be
substituted into variable symbols before the record is punched.

Notes:

1. The identification and sequence numbers generated as part of other object
deck records is not generated for records punched by the REPRO instruction.

2. If the NODECK and NOOBJECT assembler options are specified, no records
are punched for the REPRO instruction, or for the object deck of the assembly.

3. Since the text of the line following a REPRO statement is not validated or
changed in any way, it can contain double-byte data, but this data is not
validated.

 RMODE Instruction
The RMODE instruction specifies the residence mode to be associated with control
sections in the object deck.

 

��─ ──┬ ┬────── ─RMODE─ ──┬ ┬─24── ──────────────────────────────────────��
 └ ┘ ─name─ └ ┘─ANY─

  Chapter 5. Assembler Instruction Statements 185



 RSECT Instruction  
 

name
is the name field that associates the residence mode with a control section. If
there is a symbol in the name field, it must also appear in the name field of a
START, CSECT, RSECT, or COM instruction in this assembly. If the name
field is blank, there must be an unnamed control section in this assembly. If
the name field contains a sequence symbol (see “Symbols” on page 27 for
details), it is treated as a blank name field.

24 specifies that a residence mode of 24 is to be associated with the control
section; that is, the control section must be resident below 16 megabytes.

ANY
specifies that a residence mode of either 24 or 31 is to be associated with the
control section; that is, the control section can be resident above or below 16
megabytes.

Any field of this instruction may be generated by a macro, or by substitution in open
code.

Notes:

1. RMODE can be specified anywhere in the assembly. It does not initiate an
unnamed control section.

2. An assembly can have multiple RMODE instructions; however, two RMODE
instructions cannot have the same name field.

3. Specification of AMODE 24 and RMODE ANY for the same name field is not
permitted. All other combinations are permitted.

4. AMODE or RMODE cannot be specified for an unnamed common control
section.

5. The defaults when AMODE and RMODE are not both specified for a name field
are as follows:

Specified Defaulted

Neither AMODE 24, RMODE 24

AMODE 24 RMODE 24

AMODE 31 RMODE 24

AMODE ANY RMODE 24

RMODE 24 AMODE 24

RMODE ANY AMODE 31

 RSECT Instruction
The RSECT instruction initiates a read-only executable control section or indicates
the continuation of a read-only executable control section.

 

��─ ──┬ ┬────── ─RSECT────────────────────────────────────────────────��
 └ ┘ ─name─

186 HLASM V1R3 Language Reference  



  SPACE Instruction
 

name
is one of the following:

� An ordinary symbol

� A variable symbol that has been assigned a character string with a value
that is valid for an ordinary symbol

� A sequence symbol

When an executable control section is initiated by the RSECT instruction, the
assembler automatically checks the control section for possible coding violations of
program reenterability, regardless of the setting of the RENT assembler option. As
the assembler cannot check program logic, the checking is not exhaustive.
Non-reentrant code is diagnosed by a warning message.

The RSECT instruction can be used anywhere in a source module after the ICTL
instruction. If it is used to initiate the first executable control section, it must not be
preceded by any instruction that affects the location counter and thereby cause the
first control section to be initiated.

If name denotes an ordinary symbol, the ordinary symbol identifies the control
section. If several RSECT instructions within a source module have the same
symbol in the name field, the first occurrence initiates the control section and the
rest indicate the continuation of the control section. The ordinary symbol denoted
by name represents the address of the first byte in the control section, and has a
length attribute value of 1.

If name is not specified, or if name is a sequence symbol, the RSECT instruction
initiates or indicates the continuation of the unnamed control section.

The beginning of a control section is aligned on a doubleword boundary. However,
when an interrupted control section is continued using the RSECT instruction, the
location counter last specified in that control section is continued.

The source statements following a RSECT instruction that either initiate or indicate
the continuation of a control section are assembled into the object code of the
control section identified by that RSECT instruction.

Notes:

1. The assembler indicates that a control section is read-only by setting the
read-only attribute in the object module.

2. The end of a control section or portion of a control section is marked by (a) any
instruction that defines a new or continued control section, or (b) the END
instruction.

 SPACE Instruction
The SPACE instruction inserts one or more blank lines in the listing of a source
module. This separates sections of code on the listing page.

 

��─ ──┬ ┬───────────────── ─SPACE─ ──┬ ┬───────────────── ───────────────��
 └ ┘ ─sequence_symbol─ └ ┘ ─number_of_lines─

  Chapter 5. Assembler Instruction Statements 187



 START Instruction  
 

sequence_symbol
is a sequence symbol.

number_of_lines
is an absolute value that specifies the number of lines to be left blank. You
may use any absolute expression to specify number_of_lines. If
number_of_lines is omitted, one line is left blank. If number_of_lines has a
value greater than the number of lines remaining on the listing page, the
instruction has the same effect as an EJECT statement.

The SPACE statement itself is not printed in the listing unless a variable symbol is
specified as a point of substitution in the statement, in which case the statement is
printed before substitution occurs.

 START Instruction
The START instruction can be used to initiate the first or only control section of a
source module, and optionally to set an initial location counter value.

 

��─ ──┬ ┬────── ─START─ ──┬ ┬──────────── ───────────────────────────────��
 └ ┘ ─name─ └ ┘ ─expression─

name
is one of the following:

� An ordinary symbol

� A variable symbol that has been assigned a character string with a value
that is valid for an ordinary symbol

� A sequence symbol

expression
is an absolute expression, the value of which the assembler uses to set the
location counter to an initial value for the source module.

Any symbols referenced in expression must have been previously defined.

The START instruction must be the first instruction of the first executable control
section of a source module. It must not be preceded by any instruction that affects
the location counter, and thereby causes the first control section to be initiated.

Use the START instruction to initiate the first or only control section of a source
module, because it:

� Determines exactly where the first control section is to begin, thus avoiding the
accidental initiation of the first control section by some other instruction.

� Gives a symbolic name to the first control section, which can then be
distinguished from the other control sections listed in the external symbol
dictionary.

� Specifies the initial setting of the location counter for the first or only control
section.

If name denotes an ordinary symbol, the ordinary symbol identifies the first control
section. It must be used in the name field of any CSECT instruction that indicates

188 HLASM V1R3 Language Reference  



  TITLE Instruction
 

the continuation of the first control section. The ordinary symbol denoted by name
represents the address of the first byte in the control section, and has a length
attribute value of 1.

If name is not specified, or if name is a sequence symbol, the START instruction
initiates an unnamed control section.

The assembler uses the value expression in the operand field, if specified, to set
the location counter to an initial value for the source module. All control sections
are aligned on a doubleword boundary. Therefore, if the value specified in
expression is not divisible by 8, the assembler sets the initial value of the location
counter to the next higher doubleword boundary. If expression is omitted, the
assembler sets the initial value to 0.

The source statements that follow the START instruction are assembled into the
first control section. If a CSECT instruction indicates the continuation of the first
control section, the source statements that follow this CSECT instruction are also
assembled into the first control section.

Any instruction that defines a new or continued control section marks the end of the
preceding control section. The END instruction marks the end of the control
section in effect.

 TITLE Instruction
The TITLE instruction:

� Provides headings for each page of the source and object section of the
assembler listing. If the first statement in your source program is an ICTL
instruction or a *PROCESS statement then the title is not printed on the first
page of the Source and Object section, because each of these instructions
must precede all other instructions.

� Identifies the assembly output records of your object modules. You can specify
up to 8 identification characters that the assembler includes as a deck ID in all
object records, beginning at byte 73. If the deck ID is less than 8 characters,
the assembler puts sequence numbers in the remaining bytes up to byte 80.

 

��─ ──┬ ┬────── ─TITLE──title_string──────────────────────────────────��
 └ ┘─name─

name
| You can specify name only once in the source module. It is one of the
| following:

| � A string of printable characters

| � A variable symbol that has been assigned a string of printable characters

� A combination of the above

� A sequence symbol

Except when the name is a sequence symbol, the assembler uses the first 8
characters you specify, and discards the remaining characters without warning.

  Chapter 5. Assembler Instruction Statements 189



 TITLE Instruction  
 

title_string
is a string of 1 to 100 characters enclosed in single quotation marks

If two or more TITLE instructions are together, the title provided by the last
instruction is printed as the heading.

Deck ID in Object Records
| When you specify the name, and it is not a sequence symbol, it has a special
| significance. The assembler uses the name value to generate the deck ID in object

records. The deck ID is placed in the object records starting at byte 73. It is not
| generated for records produced by the PUNCH and REPRO instructions. The
| name value does not need to be on the first TITLE instruction.

The name value is not defined as a symbol, so it can be used in the name entry of
any other statement in the same source module, provided it is a valid ordinary
symbol.

XOBJECT Assembler Option (MVS and CMS Only):  When you specify the
XOBJECT assembler option the deck ID is not generated.

Printing the Heading
The character string denoted by title_string is printed as a heading at the top of
each page of the source and object section of the assembler listing. The heading
is printed beginning on the page in the listing that follows the page on which the
TITLE instruction is specified. A new heading is printed each time a new TITLE
instruction occurs in the source module. If the TITLE instruction is the first
instruction in the source module the heading is printed on the first page of the
listing.

When a TITLE instruction immediately follows an EJECT instruction, the assembler
changes the title but does not perform an additional page-eject.

Printing the TITLE Statement
| The TITLE statement is printed in the listing when you specify a variable symbol in
| the name, or in the title_string, in which case the statement is printed before
| substitution occurs.

Sample Program Using the TITLE Instruction
The following example shows three TITLE instructions:

PGM1 TITLE 'The First Heading'
PGM1 CSECT

USING PGM1,12 Assign the base register
TITLE 'The Next Heading'
LR 12,15 Load the base address

&VARSYM SETC 'Value from Variable Symbol'
TITLE 'The &VARSYM'

 BR 14 Return
 END

After the program is assembled, the characters PGM1 are placed in bytes 73 to 76 of
all object records, and the heading appears at the top of each page in the listing as
shown in Figure 50 on page 191. The TITLE instruction at statement 7 is printed
because it contains a variable symbol.

190 HLASM V1R3 Language Reference  



  TITLE Instruction
 

PGM1 The First Heading Page 3
Active Usings: None

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.K 1998/K9/25 11.38
KKKKKK KKKKK KKKK4 2 PGM1 CSECT LRMKKK2K

R:C KKKKK 3 USING PGM1,12 Assign the base register
PGM1 The Next Heading Page 4
Active Usings: PGM1(X'1KKK'),R12

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.K 1998/K9/25 11.38
KKKKKK 18CF 5 LR 12,15 Load the base address

6 &VARSYM SETC 'Value from Variable Symbol'
7 TITLE 'The &VARSYM'

PGM1 The Value from Variable Symbol Page 5
Active Usings: PGM1(X'1KKK'),R12

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.K 1998/K9/25 11.38
KKKKK2 K7FE 8 BR 14 Return
 9 END LRMKKK9K

Figure 50. Sample Program Using TITLE Instruction

 Page Ejects
Each inline TITLE statement causes the listing to be advanced to a new page
before the heading is printed unless it is preceded immediately by one of the
following:

� A CEJECT instruction

� An EJECT instruction

� A SPACE instruction that positions the current print line at the start of a new
page

� A TITLE instruction

If the TITLE statement appears in a macro or contains a variable symbol and
PRINT NOGEN is specified, the listing is not advanced to a new page.

 Valid Characters
Any printable character specified appears in the heading, including blanks.
Double-byte data can be used when the DBCS assembler option is specified. The
double-byte data must be valid. Variable symbols are allowed. However, the
following rules apply to ampersands and single quotation marks:

� The DBCS ampersand and single quotation mark are not recognized as
delimiters.

� A double-byte character that contains the value of an EBCDIC ampersand or
single quotation mark in either byte is not recognized as a delimiter when
enclosed by SO and SI.

� A single ampersand initiates an attempt to identify a variable symbol and to
substitute its current value.

� A pair of ampersands is printed as one ampersand.

� A pair of single quotation marks is printed as one single quotation mark.

� An unpaired single quotation mark followed by one or more blanks simply ends
the string of characters printed. If a nonblank character follows an unpaired
single quotation mark, the assembler issues an error message and prints no
heading.

Only the characters printed in the heading count toward the maximum of 100
characters allowed. If the count of characters to be printed exceeds 100, the
heading that is printed is truncated and error diagnostic message

ASMAK62E Illegal operand format

  Chapter 5. Assembler Instruction Statements 191



 USING Instruction  
 

is issued.

 USING Instruction
| The USING instruction specifies a base address and range and assigns one or

more base registers. If you also load the base register with the base address, you
have established addressability in a control section.

To use the USING instruction correctly, you should know:

� Which locations in a control section are made addressable by the USING
instruction

� Where in a source module you can use implicit addresses in instruction
operands to refer to these addressable locations

Base Address:  The term base address is used throughout this manual to mean
the location counter value within a control section from which the assembler can
compute displacements to locations, or addresses, within the control section. Don't
confuse this with the storage address of a control section when it is loaded into
storage at execution time.

The USING instruction has three formats:

| � The first format specifies a base address, an optional range, and one or more
base registers. This format of the USING instruction is called an ordinary
USING instruction, and is described under “Ordinary USING Instruction” on
page 194.

| � The second format specifies a base address, an optional range, one or more
base registers, and a USING label which may be used as a symbol qualifier.
This format of the USING instruction is called a labeled USING instruction, and
is described under “Labeled USING Instruction” on page 197.

| � The third format specifies a base address, an optional range, and a relocatable
expression instead of one or more base registers. This format of a USING
instruction is called a dependent USING instruction, and is described under
“Dependent USING Instruction” on page 199. If a USING label is also
specified, this format of the USING instruction is called a labeled dependent
USING instruction.

| Note:  The assembler identifies and warns about statements where the implied
| alignment of an operand does not match the requirements of the instruction.
| However, if the base for a USING is not aligned on the required boundary, the
| assembler cannot diagnose a problem. For example:

| DS1 DSECT
|  DS H
| CHAR8 DS CL8 Halfword alignment
| DS2 DSECT
| DOUBLEWD DS CL8 Doubleword alignment
|  CSECT
|  ...
|  USING DS1,R1 Ordinary USING
|  USING DS2,CHAR8 Dependent USING
| CVD R2,CHAR8 CHAR8 is not a double word
| CVD R2,DOUBLEWD but DOUBLEWD is implicitly aligned

192 HLASM V1R3 Language Reference  



  USING Instruction
 

| The first CVD instruction is diagnosed as an alignment error. The second CVD
| instruction is not, even though the same storage location is implied by the code.

| You must take care to ensure base addresses match the the alignment
| requirements of storage mapped by a USING. For a description of the alignment
| requirements of instructions, see the relevant Principles of Operation.

How to Use the USING Instruction
Specify the USING instruction so that:

� All the required implicit addresses in each control section lie within a USING
range.

� All the references for these addresses lie within the corresponding USING
domain.

You could, therefore, place all ordinary USING instructions at the beginning of the
control section and specify a base address in each USING instruction that lies at
the beginning of each control section.

For Executable Control Sections:  To establish the addressability of an
executable control section defined by a START or CSECT instruction, specify a
base address and assign a base register in the USING instruction. At execution
time, the base register must be loaded with the correct base address.

If a control section is longer than 4096 bytes, you must assign more than one base
register. This establishes the addressability of the entire control section with one
USING instruction.

For Reference Control Sections:  A dummy section is a reference control section
defined by the DSECT instructions. To establish the addressability of a dummy
section, specify the address of the first byte of the dummy section as the base
address, so that all its addresses lie within the pertinent USING range. The
address you load into the base register must be the address of the storage area
being described by the dummy section.

The assembler assumes that you are referring to the symbolic addresses of the
dummy section, and it computes displacements accordingly. However, at execution
time, the assembled addresses refer to the location of real data in the storage area.

Base Registers for Absolute Addresses
Absolute addresses used in a source module must also be made addressable.
Absolute addresses require a base register other than the base register assigned to
relocatable addresses (as described above).

However, the assembler does not need a USING instruction to convert absolute
implicit addresses in the range 0 through 4095 to their explicit form. The assembler
uses register 0 as a base register. Displacements are computed from the base
address 0, because the assembler assumes that a base or index of 0 implies that a
zero quantity is to be used in forming the address, regardless of the contents of
register 0. The USING domain for this automatic base register assignment is the
entire source module.

For absolute implicit addresses greater than 4095, a USING instruction must be
specified according to the following:

  Chapter 5. Assembler Instruction Statements 193



 USING Instruction  
 

� With a base address representing an absolute expression

� With a base register that has not been assigned by a USING instruction in
which a relocatable base address is specified

This base register must be loaded with the base address specified.

Ordinary USING Instruction
The ordinary USING instruction format specifies a base address and one or more
base registers.

 Ordinary USING 

��─ ──┬ ┬───────────────── ─USING─ ──┬ ┬─base───────────── ───────────────�
 └ ┘─sequence_symbol─ └ ┘──(base ──┬ ┬────── )

| └ ┘──,end

  ┌ ┐────────────────
�─ ───+ ┴,base_register ───────────────────────────────────────────────��

sequence_symbol
is a sequence symbol.

base
specifies a base address, which can be a relocatable or an absolute

| expression. The value of the expression must lie between 0 and 2b]−1.

| end
| specifies the end address, which can be a relocatable or an absolute
| expression. The value of the expression must lie between 0 and 2b]−1. The
| end address may exceed the (base address + default range) without error. The
| end address must be greater than the base and must have the same
| relocatability attributes.

base_register
is an absolute expression whose value represents general registers 0 through
15.

The default range is 4096 per base register.

The assembler assumes that the base register denoted by the first base_register
operand contains the base address base at execution time. If present, the
subsequent base_register operands represent registers that the assembler
assumes contain the address values base+4096, base+8192, and so forth.

For example:

 USING BASE,9,1K,11

has the logical equivalent of:

 USING BASE,9
 USING BASE+4K96,1K
 USING BASE+8192,11

In another example, the following statement:

 USING D,12,13

194 HLASM V1R3 Language Reference  



  USING Instruction
 

tells the assembler to assume that the current value of the location counter is in
general register 12 at execution time, and that the current value of the location
counter, incremented by 4096, is in general register 13 at execution time.

Computing Displacement:  If you change the value in a base register being used,
and want the assembler to compute displacement from this value, you must tell the
assembler the new value by means of another USING statement. In the following
sequence, the assembler first assumes that the value of ALPHA is in register 9.
The second statement then causes the assembler to assume that ALPHA+1KKK is the
value in register 9.

 USING ALPHA,9
 .
 .
 USING ALPHA+1KKK,9

Using General Register Zero:  You can refer to the first 4096 bytes of storage
using general register 0, subject to the following conditions:

� The value of operand base must be either absolute or relocatable zero or
simply relocatable.

� Register 0 must be specified as the first base_register operand.

The assembler assumes that register 0 contains zero. Therefore, regardless of the
value of operand base, it calculates displacements as if operand base were
absolute or relocatable zero. The assembler also assumes that subsequent
registers specified in the same USING statement contain 4096, 8192, etc.

| If register 0 is used as a base register, the referenced control section (or dummy
| section) is not relocatable, despite the fact that operand base may be relocatable.
| The control section can be made relocatable by:

� Replacing register 0 in the USING statement
� Loading the new register with a relocatable value
� Reassembling the program

Range of an Ordinary USING Instruction
The range of an ordinary USING instruction (called the ordinary USING range, or
simply the USING range) is the 4096 bytes beginning at the base address specified

| in the USING instruction, or the range as specified by the range end, whichever is
| the lesser. Addresses that lie within the USING range can be converted from their

implicit to their explicit form using the designated base registers; those outside the
USING range cannot be converted.

The USING range does not depend upon the position of the USING instruction in
the source module; rather, it depends upon the location of the base address
specified in the USING instruction.

The USING range is the range of addresses in a control section that is associated
with the base register specified in the USING instruction. If the USING instruction
assigns more than one base register, the composite USING range is the sum of the
USING ranges that would apply if the base registers were specified in separate
USING instructions.

Two USING ranges coincide when the same base address is specified in two
different USING instructions, even though the base registers used are different.

  Chapter 5. Assembler Instruction Statements 195



 USING Instruction  
 

When two USING ranges coincide, the assembler uses the higher-numbered
register for assembling the addresses within the common USING range. In effect,
the domain of the USING instruction that specifies the lower-numbered register is
ended by the other USING instruction. If the domain of the USING instruction that
specifies the higher-number register is subsequently terminated, the domain of the
other USING instruction is resumed.

Two USING ranges overlap when the base address of one USING instruction lies
within the range of another USING instruction. You can use the WARN suboption
of the USING assembler option to find out if you have any overlapping USING
ranges. When an overlap occurs the assembler issues a diagnostic message.
However, the assembler does allow an overlap of one byte in USING ranges so
that you don't receive a diagnostic message if you code the following statements:

@PSTART CSECT
 LR R12,R15
 LA R11,4K95(,R12)
 USING @PSTART,R12
 USING @PSTART+4K95,R11

In the above example, the second USING instruction begins the base address of
the second base register (R11) in the 4096th byte of the first base register (R12)
USING range. If you don't want the USING ranges to overlap, you can code the
following statements:

@PSTART CSECT
 LR R12,R15
 LA R11,4K95(,R12)
 LA R11,1(,R11)
 USING @PSTART,R12
 USING @PSTART+4K96,R11

When two ranges overlap, the assembler computes displacements from the base
address that gives the smallest displacement; it uses the corresponding base
register when it assembles the addresses within the range overlap. This applies
only to implicit addresses that appear after the second USING instruction.

Domain of an Ordinary USING Instruction
The domain of an ordinary USING instruction (called the ordinary USING domain,
or simply the USING domain) begins where the USING instruction appears in a
source module. It continues until the end of a source module, except when:

� A subsequent DROP instruction specifies the same base register or registers
assigned by the preceding USING instruction.

� A subsequent USING instruction specifies the same register or registers
assigned by the preceding USING instruction.

The assembler converts implicit address references into their explicit form when the
following conditions are met:

� The address reference appears in the domain of a USING instruction.

� The addresses referred to lie within the range of the same USING instruction.

The assembler does not convert address references that are outside the USING
domain. The USING domain depends on the position of the USING instruction in
the source module after conditional assembly, if any, has been done.

196 HLASM V1R3 Language Reference  



  USING Instruction
 

Labeled USING Instruction
The labeled USING instruction specifies a base address, one or more base
registers, and a USING label which can be used as a symbol qualifier.

 Labeled USING 

 ┌ ┐────────────────
��─  ─label──USING─ ──┬ ┬─base───────────── ───+ ┴,base_register ──────────��
 └ ┘──(base ──┬ ┬────── )

└ ┘──,end

label
is one of the following:

� An ordinary symbol

� A variable symbol that has been assigned a character string with a value
that is valid for an ordinary symbol

base
specifies a base address, which can be a relocatable or an absolute

| expression. The value of the expression must lie between 0 and 2b]−1.

| end
| specifies the end address, which can be a relocatable or an absolute
| expression. The value of the expression must lie between 0 and and 2b]−1.
| The end address may exceed the (base address + default range) without error.
| The end address must be greater than the base and must have the same
| relocatability attributes.

base_register
is an absolute expression whose value represents general registers 0 through
15.

The default range is 4096 per base register.

The essential difference between a labeled USING instruction and an ordinary
USING instruction is the label placed on the USING statement. You can use the
label to direct the assembler to use only this USING by qualifying any relevant
symbols with the label. Qualifying a symbol consists of preceding the symbol with

| the label on the USING followed by a period. This label cannot be used for any
| other purpose in the program, except possibly as a label on other USING
| instructions.

The following examples show how labeled USINGs are used:

PRIOR USING IHADCB,R1K
NEXT USING IHADCB,R2
 MVC PRIOR.DCBLRECL,NEXT.DCBLRECL

The same code without labeled USINGs could be written like this:

 USING IHADCB,R1K
 MVC DCBLRECL,DCBLRECL-IHADCB(R2)

In the following example, a new element, NEW, is inserted into a doubly-linked list
between two existing elements LEFT and RIGHT, where the links are stored as
pointers LPTR and RPTR:

  Chapter 5. Assembler Instruction Statements 197



 USING Instruction  
 

LEFT USING ELEMENT,R3
RIGHT USING ELEMENT,R6
NEW USING ELEMENT,R1
 .
 .

MVC NEW.RPTR,LEFT.RPTR Move previous Right pointer
MVC NEW.LPTR,RIGHT.LPTR Move previous Left pointer
ST R1,LEFT.RPTR Chain new element from Left
ST R1,RIGHT.LPTR Chain new element from Right

 .
 .
ELEMENT DSECT
LPTR DS A Link to left element
RPTR DS A Link to right element
 .
 .

Range of a Labeled USING Instruction
The range of a labeled USING instruction (called the labeled USING range) is the
4096 bytes beginning at the base address specified in the labeled USING

| instruction, or the range as specified by the range end, whichever is the lesser.
Addresses that lie within the labeled USING range can be converted from their
implicit form (qualified symbols) to their explicit form; those outside the USING
range cannot be converted.

Like the ordinary USING range, the labeled USING range is the range of addresses
in a control section that is associated with the base register specified in the labeled
USING instruction. If the labeled USING instruction assigns more than one base
register, the composite labeled USING range is the product of the number of
registers specified in the labeled USING instruction and 4096 bytes. The
composite labeled USING range begins at the base address specified in the
labeled USING instruction. Unlike the ordinary USING range, however, you cannot
specify separate labeled USING instructions to establish the same labeled USING
range.

You can specify the same base address in any number of labeled USING
instructions. You can also specify the same base address in an ordinary USING
and a labeled USING. However, unlike ordinary USING instructions that have the
same base address, if you specify the same base address in an ordinary USING
instruction and a labeled USING instruction, High Level Assembler does not treat
the USING ranges as coinciding. When you specify an unqualified symbol in an
assembler instruction, the base register specified in the ordinary USING is used by
the assembler to resolve the address into base-displacement form. An example of
coexistent ordinary USINGs and labeled USINGs is given below:

 USING IHADCB,R1K
SAMPLE USING IHADCB,R2
 MVC DCBLRECL,SAMPLE.DCBLRECL

In this MVC instruction, the (unqualified) first operand is resolved with the ordinary
USING, and the (qualified) second operand is resolved with the labeled USING.

198 HLASM V1R3 Language Reference  



  USING Instruction
 

Domain of a Labeled USING Instruction
The domain of a labeled USING instruction (called the labeled USING domain)
begins where the USING instruction appears in a source module. It continues to
the end of the source module, except when:

� A subsequent DROP instruction specifies the label used in the preceding
labeled USING instruction.

� A subsequent USING instruction specifies the same label used in the preceding
labeled USING instruction. The second specification of the label causes the
assembler to end the domain of the prior USING with the same label.

You can specify the same base register or registers in any number of labeled
USING instructions. However, unlike ordinary USING instructions, as long as all
the labeled USINGs have unique labels, the assembler considers the domains of all
the labeled USINGs to be active and their labels eligible to be used as symbol
qualifiers. With ordinary USINGs, when you specify the same base register in a
subsequent USING instruction, the domain of the prior USING is ended.

The assembler converts implicit address references into their explicit form using the
base register or registers specified in a labeled USING instruction when the
following conditions are met:

� The address reference appears in the domain of the labeled USING instruction.

� The address reference takes the form of a qualified symbol and the qualifier is
the label of the labeled USING instruction.

� The addresses lie within the range of the same labeled USING instruction.

Dependent USING Instruction
The dependent USING instruction format specifies a base address and a
relocatable expression instead of one or more base registers. If a USING label is
also specified, this format USING instruction is called a labeled dependent USING
instruction.

 Dependent USING 

��─ ── ──┬ ┬───────────────── USING ──┬ ┬─base───────────── ,address ──────��
├ ┤─label─────────── └ ┘──(base ──┬ ┬────── )

| └ ┘─sequence_symbol─ └ ┘──,end

label
is one of the following:

� An ordinary symbol

� A variable symbol that has been assigned a character string with a value
that is valid for an ordinary symbol

sequence_symbol
is a sequence symbol.

base
specifies a base address, which must be a relocatable expression. The value
of the expression must lie between 0 and 2b]−1.

  Chapter 5. Assembler Instruction Statements 199



 USING Instruction  
 

address
is a simply relocatable expression that represents an implicit address within the
range of an active USING instruction.

| end
| specifies the end address, which can be a relocatable or an absolute
| expression. The value of the expression must lie between 0 and 2b]−1. The
| end address may exceed the (base address + default range) without error. The
| end address must be greater than the base and must have the same
| relocatability attributes.

The implicit address denoted by address specifies the address where base is to be
based, and is known as the supporting base address. As address is a relocatable
expression, it distinguishes a dependent USING from an ordinary USING. The
assembler converts the implicit address denoted by address into its explicit
base-displacement form. It then assigns the base register from this explicit address
as the base register for base. The assembler assumes that the base register
contains the base address base minus the displacement determined in the explicit

| address. The assembler also assumes that address is appropriately aligned for the
| code based on base. Warnings are not issued for potential alignment problems in
| the dependent USING address.

A dependent USING depends on the presence of one or more corresponding
labeled or ordinary USINGs being in effect to resolve the symbolic expressions in
the range of the dependent USING.

The following example shows the use of an unlabeled dependent USING:

EXAMPLE CSECT
 USING EXAMPLE,R1K,R11 Ordinary USING
 .
 .

USING IHADCB,DCBUT2 Unlabeled dependent USING
LH RK,DCBBLKSI Uses R1K or R11 for BASE

 .
 .
DCBUT2 DCB DDNAME=SYSUT2,...

The following example shows the use of two labeled dependent USINGs:

EXAMPLE CSECT
 USING EXAMPLE,R1K,R11 Ordinary USING
 .
 .
DCB1 USING IHADCB,DCBUT1 Labeled dependent USING
DCB2 USING IHADCB,DCBUT2 Labeled dependent USING

MVC DCB2.DCBBLKSI,DCB1.DCBBLKSI Uses R1K or R11 for BASE
 .
 .
DCBUT1 DCB DDNAME=SYSUT1,...
DCBUT2 DCB DDNAME=SYSUT2,...

200 HLASM V1R3 Language Reference  



  USING Instruction
 

Range of a Dependent USING Instruction
The range of a dependent USING instruction (called the dependent USING range)

| is either the range as specified by the range end, or the range of the corresponding
| USING minus the offset of address within that range, whichever is the lesser. If the
| corresponding labeled or ordinary USING assigns more than one base register, the
| maximum dependent USING range is the composite USING range of the labeled or

ordinary USING.

If the dependent USING instruction specifies a supporting base address that is
within the range of more than one ordinary USING, the assembler determines
which base register to use during base-displacement resolution as follows:

� The assembler computes displacements from the ordinary USING base
address that gives the smallest displacement, and uses the corresponding base
register.

� If more than one ordinary USING gives the smallest displacement, the
assembler uses the higher-numbered register for assembling addresses within
the coinciding USING ranges.

Domain of a Dependent USING Instruction
The domain of a dependent USING instruction (called the dependent USING
domain) begins where the dependent USING appears in the source module and
continues until the end of the source module, except when:

� You end the domain of the corresponding ordinary USING by specifying the
base register or registers from the ordinary USING instruction in a subsequent
DROP instruction.

� You end the domain of the corresponding ordinary USING by specifying the
same base register or registers from the ordinary USING instruction in a
subsequent ordinary USING instruction.

� You end the domain of a labeled dependent USING by specifying the label of
the labeled dependent USING in the operand of a subsequent DROP
instruction.

� You end the domain of a labeled dependent USING by specifying the label of
the labeled dependent USING in the operand of a subsequent labeled USING
instruction.

When a labeled dependent USING domain is dropped, none of any subordinate
USING domains are dropped. In the following example the labeled dependent
USING BLBL1 is not dropped, even though it appears to be dependent on the
USING ALBL2 that is being dropped:

  Chapter 5. Assembler Instruction Statements 201



 WXTRN Instruction  
 

 USING DSECTA,14
ALBL1 USING DSECTA,14
 USING DSECTB,ALBL1.A
 .
 .
ALBL2 USING DSECTA,ALBL1.A
 .
BLBL1 USING DSECTA,ALBL2.A
 .
 DROP ALBL2
 .
DSECTA DSECT
A DS A
DSECTB DSECT
B DS A

A dependent USING is not dependent on another dependent USING. It is
dependent on the ordinary or labeled USING that is finally used to resolve the
address. For example, the USING at BLBL1 is dependent on the ALBL1 USING.

 WXTRN Instruction
The WXTRN statement identifies “weak external” symbols referred to in a source
module but defined in another source module. The WXTRN instruction differs from
the EXTRN instruction as follows:

� The EXTRN instruction causes the linker to automatically search libraries (if
automatic library call is in effect) to find the module that contains the external
symbols that you identify in its operand field. If the module is found, linkage
addresses are resolved; the module is then linked to your module, which
contains the EXTRN instruction.

� The WXTRN instruction suppresses automatic search of libraries. The linker
only resolves the linkage addresses if the external symbols that you identify in
the WXTRN operand field are defined:

– In a module that is linked and loaded along with the object module
assembled from your source module, or

– In a module brought in from a library because of the presence of an
EXTRN instruction in another module linked and loaded with yours.

 

 ┌ ┐─,───────────────
��─ ──┬ ┬───────────────── ─WXTRN─ ───+ ┴─external_symbol─ ───────────────��
 └ ┘ ─sequence_symbol─

sequence_symbol
is a sequence symbol.

external_symbol
is a relocatable symbol that is not:

� Used as the name entry of a source statement in the source module in
which it is defined

� Paired in an expression

202 HLASM V1R3 Language Reference  



  WXTRN Instruction
 

The external symbols identified by a WXTRN instruction have the same properties
as the external symbols identified by the EXTRN instruction. However, the type
code assigned to these external symbols differs.

V-Type Address Constant:  If a symbol, specified in a V-type address constant, is
also identified by a WXTRN instruction, it is assigned the same ESD type code as
the symbol in the WXTRN instruction, and is treated by the linkage editor as a
weak external symbol.

If an external symbol is identified by both an EXTRN and WXTRN instruction in the
same source module, the first declaration takes precedence, and subsequent
declarations are flagged with warning messages.

  Chapter 5. Assembler Instruction Statements 203



 WXTRN Instruction  
 

204 HLASM V1R3 Language Reference  



  Part 3. Macro Language
 

 Part 3. Macro Language

Chapter 6. Introduction to Macro Language . . . . . . . . . . . . . . . . . . .  208
Using Macros  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Macro Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Model Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Processing Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Comment Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Macro Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Source and Library Macro Definitions . . . . . . . . . . . . . . . . . . . . . . . .  211

Macro Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
System Macro Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  212

Conditional Assembly Language . . . . . . . . . . . . . . . . . . . . . . . . . . .  212

Chapter 7. How to Specify Macro Definitions . . . . . . . . . . . . . . . . . .  213
Where to Define a Macro in a Source Module . . . . . . . . . . . . . . . . . . .  213
Format of a Macro Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  214
Macro Definition Header and Trailer . . . . . . . . . . . . . . . . . . . . . . . . .  214

MACRO Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
MEND Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Macro Instruction Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215
Body of a Macro Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217
Model Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Variable Symbols as Points of Substitution . . . . . . . . . . . . . . . . . . . .  218
Listing of Generated Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218
Rules for Concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219
Rules for Model Statement Fields . . . . . . . . . . . . . . . . . . . . . . . . .  221

Symbolic Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Positional Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Keyword Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Combining Positional and Keyword Parameters . . . . . . . . . . . . . . . . .  225
Subscripted Symbolic Parameters . . . . . . . . . . . . . . . . . . . . . . . . .  225

Processing Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Conditional Assembly Instructions . . . . . . . . . . . . . . . . . . . . . . . . .  225
Inner Macro Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  226
AEJECT Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

| AINSERT Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
AREAD Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
ASPACE Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
COPY Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
MEXIT Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
MNOTE Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Comment Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Ordinary Comment Statements . . . . . . . . . . . . . . . . . . . . . . . . . . .  232
Internal Macro Comment Statements . . . . . . . . . . . . . . . . . . . . . . .  232

System Variable Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  233
Scope and Variability of System Variable Symbols . . . . . . . . . . . . . . .  233
&SYSADATA_DSN System Variable Symbol . . . . . . . . . . . . . . . . . .  234
&SYSADATA_MEMBER System Variable Symbol . . . . . . . . . . . . . . .  235
&SYSADATA_VOLUME System Variable Symbol . . . . . . . . . . . . . . . .  236
&SYSASM System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . . .  236

| &SYSCLOCK System Variable Symbol . . . . . . . . . . . . . . . . . . . . . .  237

 Copyright IBM Corp. 1982, 1998  205



 Part 3. Macro Language  
 

&SYSDATC System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . .  237
&SYSDATE System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . .  238
&SYSECT System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . . .  238
&SYSIN_DSN System Variable Symbol . . . . . . . . . . . . . . . . . . . . . .  240
&SYSIN_MEMBER System Variable Symbol . . . . . . . . . . . . . . . . . . .  241
&SYSIN_VOLUME System Variable Symbol . . . . . . . . . . . . . . . . . . .  242
&SYSJOB System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . . .  243
&SYSLIB_DSN System Variable Symbol . . . . . . . . . . . . . . . . . . . . .  243
&SYSLIB_MEMBER System Variable Symbol . . . . . . . . . . . . . . . . . .  244
&SYSLIB_VOLUME System Variable Symbol . . . . . . . . . . . . . . . . . .  244
&SYSLIN_DSN System Variable Symbol . . . . . . . . . . . . . . . . . . . . .  245
&SYSLIN_MEMBER System Variable Symbol . . . . . . . . . . . . . . . . . .  246
&SYSLIN_VOLUME System Variable Symbol . . . . . . . . . . . . . . . . . .  246
&SYSLIST System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . . .  247
&SYSLOC System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . . .  249

| &SYSMAC System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . .  250
| &SYSM_HSEV System Variable Symbol . . . . . . . . . . . . . . . . . . . . .  250
| &SYSM_SEV System Variable Symbol . . . . . . . . . . . . . . . . . . . . . .  250

&SYSNDX System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . . .  251
&SYSNEST System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . .  254
&SYSOPT_DBCS System Variable Symbol . . . . . . . . . . . . . . . . . . .  255
&SYSOPT_OPTABLE System Variable Symbol . . . . . . . . . . . . . . . . .  255
&SYSOPT_RENT System Variable Symbol . . . . . . . . . . . . . . . . . . .  255

| &SYSOPT_XOBJECT System Variable Symbol . . . . . . . . . . . . . . . . .  256
&SYSPARM System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . .  256
&SYSPRINT_DSN System Variable Symbol . . . . . . . . . . . . . . . . . . .  257
&SYSPRINT_MEMBER System Variable Symbol . . . . . . . . . . . . . . . .  258
&SYSPRINT_VOLUME System Variable Symbol . . . . . . . . . . . . . . . .  259
&SYSPUNCH_DSN System Variable Symbol . . . . . . . . . . . . . . . . . .  259
&SYSPUNCH_MEMBER System Variable Symbol . . . . . . . . . . . . . . .  260
&SYSPUNCH_VOLUME System Variable Symbol . . . . . . . . . . . . . . .  261
&SYSSEQF System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . .  262
&SYSSTEP System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . .  262
&SYSSTMT System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . .  263
&SYSSTYP System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . .  263
&SYSTEM_ID System Variable Symbol . . . . . . . . . . . . . . . . . . . . . .  264
&SYSTERM_DSN System Variable Symbol . . . . . . . . . . . . . . . . . . .  264
&SYSTERM_MEMBER System Variable Symbol . . . . . . . . . . . . . . . .  265
&SYSTERM_VOLUME System Variable Symbol . . . . . . . . . . . . . . . .  266
&SYSTIME System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . .  267
&SYSVER System Variable Symbol . . . . . . . . . . . . . . . . . . . . . . . .  267

Chapter 8. How to Write Macro Instructions . . . . . . . . . . . . . . . . . .  268
Macro Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  268

Alternative Ways of Coding a Macro Instruction . . . . . . . . . . . . . . . . .  269
Name Entry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Operation Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Operand Entry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Sublists in Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  275
Values in Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  278

Omitted Operands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Unquoted Operands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Special Characters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Nesting Macro Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  282

206 HLASM V1R3 Language Reference  



  Part 3. Macro Language
 

Inner and Outer Macro Instructions . . . . . . . . . . . . . . . . . . . . . . . .  282
Levels of Nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  282
General Rules and Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . .  282
Passing Values through Nesting Levels . . . . . . . . . . . . . . . . . . . . . .  283
System Variable Symbols in Nested Macros . . . . . . . . . . . . . . . . . . .  285

Chapter 9. How to Write Conditional Assembly Instructions . . . . . . . .  287
SET Symbols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Subscripted SET Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  288
Scope of SET Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  288
Scope of Symbolic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . .  288
SET Symbol Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  289
Subscripted SET Symbols Specifications . . . . . . . . . . . . . . . . . . . . .  291
Created SET Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  292

Data Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Combining with Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  295
Type Attribute (T') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  296
Length Attribute (L') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  300
Scaling Attribute (S') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  301
Integer Attribute (I') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  301
Count Attribute (K') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  302
Number Attribute (N') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  303
Defined Attribute (D') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  304
Operation Code Attribute (O') . . . . . . . . . . . . . . . . . . . . . . . . . . .  304

Sequence Symbols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Lookahead  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Open Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Conditional Assembly Instructions . . . . . . . . . . . . . . . . . . . . . . . . . .  310
Declaring SET Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  310

GBLA, GBLB, and GBLC Instructions . . . . . . . . . . . . . . . . . . . . . . .  311
LCLA, LCLB, and LCLC Instructions . . . . . . . . . . . . . . . . . . . . . . .  312

Assigning Values to SET Symbols . . . . . . . . . . . . . . . . . . . . . . . . . .  314
SETA Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
SETB Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
SETC Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Extended SET Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  337
SETAF Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
SETCF Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Substring Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

AIF Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
AGO Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
ACTR Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
ANOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

Chapter 10. MHELP Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . 349

  Part 3. Macro Language 207



 Introduction to Macro Language  
 

Chapter 6. Introduction to Macro Language

This chapter introduces the basic macro concept: what you can use the macro
facility for, how you can prepare your own macro definitions, and how you call
these macro definitions for processing by the assembler.

Macro language is an extension of assembler language. It provides a convenient
way to generate a sequence of assembler language statements many times in one
or more programs. A macro definition is written only once; thereafter, a single
statement, a macro instruction statement, is written each time you want to generate
the sequence of statements. This simplifies the coding of programs, reduces the
chance of programming errors, and ensures that standard sequences of statements
are used to accomplish the functions you want.

In addition, conditional assembly lets you code statements that may or may not be
assembled, depending upon conditions evaluated at assembly time. These
conditions are usually tests of values which may be defined, set, changed, and
tested during assembly. Conditional assembly statements can be used within
macro definitions or in open code.

 Using Macros
The main use of macros is to insert assembler language statements into a source
program.

You call a named sequence of statements (the macro definition) by using a macro
instruction, or macro call. The assembler replaces the macro call by the
statements from the macro definition and inserts them into the source module at
the point of call. The process of inserting the text of the macro definition is called
macro generation or macro expansion. Macro generation occurs during conditional
assembly.

The expanded stream of code then becomes the input for processing at assembly
time; that is, the time at which the assembler translates the machine instructions
into object code.

 Macro Definition
A macro definition is a named sequence of statements you can call with a macro
instruction. When it is called, the assembler processes and usually generates
assembler language statements from the definition into the source module. The
statements generated can be:

� Copied directly from the definition

� Modified by parameter values and other values in variable symbols before
generation

� Manipulated by internal macro processing to change the sequence in which
they are generated

You can define your own macro definitions in which any combination of these three
processes can occur. Some macro definitions, like some of those used for system

208  Copyright IBM Corp. 1982, 1998



  Introduction to Macro Language
 

generation, do not generate assembler language statements, but do only internal
processing.

A macro definition provides the assembler with:

� The name of the macro

� The parameters used in the macro

� The sequence of statements the assembler generates when the macro
instruction appears in the source program.

Every macro definition consists of a macro definition header statement (MACRO), a
macro instruction prototype statement, one or more assembler language
statements, and a macro definition trailer statement (MEND), as shown in
Figure 51.

 ┌──────────────────────────────� MACRO
 │ ┌────────────────────────────────────────────┐
 │ Prototype │ &LABEL MACID &PARAM1,&PARAM2 │
 │ │ └─┬─┘ └──────┬──────┘ │
│ │ �2� �3� │

 │ ┌ ├────────────────────────────────────────────┤
 │ │ │ │
�1� │ │ │
 │ │ │ │
 │ �5�─┤ │ Body of macro │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 │ └ └────────────────────────────────────────────┘
 └──────────────────────────────� MEND

 �4�
 ┌───────┴───────┐
 Macro instruction MACID OPERAND1,OPERAND2

Figure 51. Parts of a Macro Definition

� The macro definition header and trailer statements (MACRO and MEND)
indicate to the assembler the beginning and end of a macro definition (see �1�
in Figure 51).

� The macro instruction prototype statement names the macro (see �2� in
Figure 51), and declares its parameters (see �3� in Figure 51). In the operand
field of the macro instruction, you can assign values (see �4� in Figure 51) to
the parameters declared for the called macro definition.

� The body of a macro definition (see �5� in Figure 51) contains the statements
that are generated when you call the macro. These statements are called
model statements; they are usually interspersed with conditional assembly
statements or other processing statements.

 Model Statements
You can write machine instruction statements and assembler instruction statements
as model statements. During macro generation, the assembler copies them exactly
as they are written. You can also use variable symbols as points of substitution in
a model statement. The assembler enters values in place of these points of
substitution each time the macro is called.

  Chapter 6. Introduction to Macro Language 209



 Introduction to Macro Language  
 

The three types of variable symbols in the assembler language are:

� Symbolic parameters, declared in the prototype statement
� System variable symbols
� SET symbols, which are part of the conditional assembly language

The assembler processes the generated statements, with or without value
substitution, at assembly time.

 Processing Statements
Processing statements are processed during conditional assembly, when macros
are expanded, but they are not themselves generated for further processing at
assembly time. The processing statements are:

 � AEJECT instructions
 � AREAD instructions
 � ASPACE instructions
� Conditional assembly instructions
� Inner macro calls

 � MEXIT instructions
 � MNOTE instructions

The AEJECT and ASPACE instructions let you control the listing of your macro
definition. Use the AEJECT instruction to stop printing the listing on the current
page and continue printing on the next. Use the ASPACE instruction to insert
blank lines in the listing. The AEJECT instruction is described on page 226. The
ASPACE instruction is described on page 229.

The AREAD instruction assigns a character string value, of a statement that is
placed immediately after a macro instruction, to a SETC symbol. The AREAD
instruction is described on page 227.

Conditional assembly instructions, inner macro calls, and macro processing
instructions are described in detail in the following chapters.

The MNOTE instruction generates an error message with an error condition code
attached, or generates comments in which you can display the results of a
conditional assembly computation. The MNOTE instruction is described on page
230.

The MEND statement delimits the contents of a macro definition, and also provides
an exit from the definition. The MEND instruction is described on page 215.

The MEXIT instruction tells the assembler to stop processing a macro definition,
and provides an exit from the macro definition at a point before the MEND
statement. The MEXIT instruction is described on page 229.

 Comment Statements
One type of comment statement describes conditional assembly operations and is
not generated. The other type describes assembly-time operations and is,
therefore, generated. For a description of the two types of comment statements,
see “Comment Statements” on page 232.

210 HLASM V1R3 Language Reference  



  Introduction to Macro Language
 

 Macro Instruction
A macro instruction is a source program statement that you code to tell the
assembler to process a particular macro definition. The assembler generates a
sequence of assembler language statements for each occurrence of the same
macro instruction. The generated statements are then processed as any other
assembler language statement.

The macro instruction provides the assembler with:

� The name of the macro definition to be processed.

� The information or values to be passed to the macro definition. The assembler
uses the information either in processing the macro definition or for substituting
values into a model statement in the definition.

The output from a macro definition, called by a macro instruction, can be:

� A sequence of statements generated from the model statements of the macro
for further processing at assembly time.

� Values assigned to global SET symbols. These values can be used in other
macro definitions and in open code.

You can call a macro definition by specifying a macro instruction anywhere in a
source module. You can also call a macro definition from within another macro
definition. This type of call is an inner macro call; it is said to be nested in the
macro definition.

Source and Library Macro Definitions
You can include a macro definition in a source module. This type of definition is
called a source macro definition, or, sometimes, an in-line macro definition.

You can also insert a macro definition into a system or user library by using the
applicable utility program. This type of definition is called a library macro definition.
The IBM-supplied macro definitions are examples of library macro definitions.

You can call a source macro definition only from the source module in which it is
included. You can call a library macro definition from any source module if the
library containing the macro definition is available to the assembler.

Syntax errors in processing statements are handled differently for source macro
definitions and library macro definitions. In source macro definitions, error
messages are listed following the statements in error. In library macros, however,
error messages cannot be associated with the statement in error, because the
statements in library macro definitions are not included in the assembly listing.
Therefore, the error messages are listed directly following the first call of that
macro.

Because of the difficulty of finding syntax errors in library macros, a macro
definition should be run and “debugged” as a source macro before it is placed in a
macro library. Alternatively, you can use the LIBMAC assembler option to have the
assembler automatically include the source statements of the library macro in your
source module. For more information about the LIBMAC option, see the High Level
Assembler Programmer's Guide.

  Chapter 6. Introduction to Macro Language 211



 Introduction to Macro Language  
 

 Macro Library
The same macro definition may be made available to more than one source
program by placing the macro definition in the macro library. The macro library is a
collection of macro definitions that can be used by all the assembler language
programs in an installation. When a macro definition has been placed in the macro
library, it can be called by coding its corresponding macro instruction in a source
program. Macro definitions must be in a macro library with a member name that is
the same as the macro name. The procedure for placing macro definitions in the
macro library is described in the applicable utilities manual.

The DOS/VSE assembler requires library macro definitions to be placed in the
macro library in a special edited format. High Level Assembler does not require
this. Library macro definitions must be placed in the macro library in source
statement format. If you wish to use edited macros in VSE you can provide a
LIBRARY exit to read the edited macros and convert them into source statement
format. A library exit is supplied with VSE and is described in VSE/ESA Guide to
System Functions.

System Macro Instructions
The macro instructions that correspond to macro definitions prepared by IBM are
called system macro instructions. System macro instructions are described in the
applicable operating system manuals that describe macro instructions for supervisor
services and data management.

Conditional Assembly Language
The conditional assembly language is a programming language with most of the
features that characterize a programming language. For example, it provides:

 � Variables
 � Data attributes
 � Expression computation
 � Assignment instructions
� Labels for branching

 � Branching instructions
� Substring operators that select characters from a string

Use the conditional assembly language in a macro definition to receive input from a
calling macro instruction. You can produce output from the conditional assembly
language by using the MNOTE instruction.

Use the functions of the conditional assembly language to select statements for
generation, to determine their order of generation, and to do computations that
affect the content of the generated statements.

The conditional assembly language is described in Chapter 9, “How to Write
Conditional Assembly Instructions” on page 287.

212 HLASM V1R3 Language Reference  



  How to Specify Macro Definitions
 

Chapter 7. How to Specify Macro Definitions

A macro definition is a set of statements that defines the name, the format, and the
conditions for generating a sequence of assembler language statements. The
macro definition can then be called by a macro instruction to process the
statements. See page 211 for a description of the macro instruction. To define a
macro you must:

� Give it a name
� Declare any parameters to be used
� Write the statements it contains
� Establish its boundaries with a macro definition header statement (MACRO)

and a macro definition trailer statement (MEND)

Except for conditional assembly instructions, this chapter describes all the
statements that can be used to specify macro definitions. Conditional assembly
instructions are described in Chapter 9, “How to Write Conditional Assembly
Instructions” on page 287.

Where to Define a Macro in a Source Module
Macro definitions can appear anywhere in a source module. They remain in effect
for the rest of your source module, or until another macro definition defining a
macro with the same operation code is encountered, or until an OPSYN statement
deletes its definition. Thus, you can redefine a macro at any point in your program.
The new definition is used for all subsequent calls to the macro in the program.

This type of macro definition is called a source macro definition, or, sometimes, an
in-line macro definition. A macro definition can also reside in a system library; this
type of macro is called a library macro definition. Either type can be called from
the source module by the applicable macro instruction.

Macro definitions can also appear inside other macro definitions. There is no limit
to the levels of macro definitions permitted.

The assembler does not process inner macro definitions until it finds the definition
during the processing of a macro instruction calling the outer macro. The following
example shows an inner macro definition:

Example:

MACRO Macro header for outer macro
 OUTER &A,&C= Macro prototype

AIF ('&C' EQ '').A
MACRO Macro header for inner macro

 INNER Macro prototype
 .
 .

MEND Macro trailer for inner macro
.A ANOP
 .

MEND Macro trailer for outer macro

 Copyright IBM Corp. 1982, 1998  213



 MACRO and MEND Statements  
 

The assembler does not process the macro definition for INNER until OUTER is called
with a value for &C other than a null string.

Open Code:  Open code is that part of a source module that lies outside of any
source macro definition. At coding time, it is important to distinguish between
source statements that lie in open code, and those that lie inside macro definitions.

Format of a Macro Definition
The general format of a macro definition is shown in Figure 52. The four parts are
described in detail in the following sections.

┌─────────────────────────────────────────────────┐
│ ┌───────────────────────────────────────────┐ │
│ │ MACRO Header statement │ │
│ └───────────────────────────────────────────┘ │
│ ┌───────────────────────────────────────────┐ │
│ │ ANYNAME Prototype statement│ │
│ └───────────────────────────────────────────┘ │
│ ┌───────────────────────────────────────────┐ │
│ │ │ │
│ │ Body of macro │ │
│ │ │ │
│ └───────────────────────────────────────────┘ │
│ ┌───────────────────────────────────────────┐ │
│ │ MEND Trailer statement │ │
│ └───────────────────────────────────────────┘ │
└─────────────────────────────────────────────────┘

Figure 52. Format of a Macro Definition

Macro Definition Header and Trailer
You must establish the boundaries of a macro definition by coding:

� A macro definition header statement as the first statement of the macro
definition (a MACRO statement)

� A macro definition trailer statement as the last statement of the macro definition
(a MEND statement)

The instructions used to define the boundaries of a macro instruction are described
in the following sections.

 MACRO Statement
Use the MACRO statement to indicate the beginning of a macro definition. It must
be the first non-comment statement in every macro definition. Library macro
definitions may have ordinary or internal macro comments before the MACRO
statement.

 

��──MACRO──────────────────────────────────────────────────────────��

The MACRO statement must not have a name entry or an operand entry.

214 HLASM V1R3 Language Reference  



  Prototype Statement
 

 MEND Statement
Use the MEND statement to indicate the end of a macro definition. It also provides
an exit when it is processed during macro expansion. It can appear only once
within a macro definition and must be the last statement in every macro definition.

 

��─ ──┬ ┬───────────────── ─MEND──────────────────────────────────────��
 └ ┘ ─sequence_symbol─

sequence_symbol
is a sequence symbol.

See “MEXIT Instruction” on page 229 for details on exiting from a macro before the
MEND statement.

Macro Instruction Prototype
The macro instruction prototype statement (hereafter called the prototype
statement) specifies the mnemonic operation code and the format of all macro
instructions that you use to call the macro definition.

The prototype statement must be the second non-comment statement in every
macro definition. Both ordinary comment statements and internal comment
statements are allowed between the macro definition header and the macro
prototype. Such comment statements are listed only with the macro definition.

 

��─ ──┬ ┬──────────── ─operation_field─ ──┬ ┬──────────────────────── ───��
 └ ┘ ─name_field─ │ │┌ ┐─,──────────────────
 └ ┘ ───+ ┴─symbolic_parameter─

name_field
is a variable symbol.

You can write a name field parameter, similar to the symbolic parameter, as the
name entry of a macro prototype statement. You can then assign a value to
this parameter from the name entry in the calling macro instruction.

If this parameter also appears in the body of a macro, it is given the value
assigned to the parameter in the name field of the corresponding macro
instruction.

operation_field
is an ordinary symbol.

The symbol in the operation field of the prototype statement establishes the
name by which a macro definition must be called. This name becomes the
operation code required in any macro instruction that calls the macro.

Any operation code can be specified in the prototype operation field. If the
entry is the same as an assembler or a machine operation code, the new
definition overrides the previous use of the symbol. The same is true if the
specified operation code has been defined earlier in the program as a macro,
or is the operation code of a library macro.

  Chapter 7. How to Specify Macro Definitions 215



 Prototype Statement  
 

Macros that are defined inline may use any ordinary symbol, up to 63
characters in length, for the operation field. However, operating system rules
may prevent some of these macros from being stored as member names.

The assembler requires that the library member name and macro name be the
same; otherwise error diagnostic message ASMA126S Library macro name
incorrect is issued.

symbolic_parameter
The symbolic parameters are used in the macro definition to represent the
operands of the corresponding macro instruction. A description of symbolic
parameters appears under “Symbolic Parameters” on page 223.

The operand field in a prototype statement lets you specify positional or
keyword parameters. These parameters represent the values you can pass
from the calling macro instruction to the statements within the body of a macro
definition.

The operand field of the macro prototype statement must contain 0 to 32000
symbolic parameters separated by commas. They can be positional
parameters or keyword parameters, or both.

If no parameters are specified in the operand field and if the absence of the
operand entry is indicated by a comma preceded and followed by one or more
blanks, remarks are allowed.

The following is an example of a prototype statement:

&NAME MOVE &TO,&FROM

Alternative Ways of Coding the Prototype Statement
The prototype statement can be specified in one of the following three ways:

� The normal way, with all the symbolic parameters preceding any remarks
� An alternative way, allowing remarks for each parameter
� A combination of the first two ways

The following examples show the normal statement format (&NAME1), the alternative
statement format (&NAME2), and a combination of both statement formats (&NAME3):

 Opera-
Name tion Operand Comment Cont.

&NAME1 OP1 &OPERAND1,&OPERAND2,&OPERAND3 This is the normal X
 statement format

&NAME2 OP2 &OPERAND1, This is the alter- X
&OPERAND2 native statement format

&NAME3 OP3 &OPERAND1, This is a combination X
 &OPERAND2,&OPERAND3, of both X
 &OPERAND4

216 HLASM V1R3 Language Reference  



  Model Statements
 

Notes:

1. Any number of continuation lines is allowed. However, each continuation line
must be indicated by a nonblank character in the column after the end column
on the preceding line.

2. For each continuation line, the operand field entries (symbolic parameters) must
begin in the continue column; otherwise, the whole line and any lines that
follow are considered to contain remarks.

No error diagnostic message is issued to indicate that operands are
treated as remarks in this situation. However, the FLAG(CONT) assembler
option can be specified so that the assembler issues warning messages if
it suspects an error in a continuation line.

3. The standard value for the continue column is 16, and, for the column after the
end column, is 72.

4. A comma is required after each parameter except the last. If you code excess
commas between parameters, they are considered null positional parameters.
No error diagnostic message is issued.

5. One or more blanks is required between the operand and the remarks.

6. If the DBCS assembler option is specified, the continuation features outlined in
“Continuation of double-byte data” on page 15 apply to continuation in the
macro language. Extended continuation may be useful if a macro keyword
parameter contains double-byte data.

Body of a Macro Definition
The body of a macro definition contains the sequence of statements that constitutes
the working part of a macro. You can specify:

� Model statements to be generated

� Processing statements that, for example, can alter the content and sequence of
the statements generated or issue error messages

� Comment statements, some that are generated and others that are not

� Conditional assembly instructions to compute results to be displayed in the
message created by the MNOTE instruction, without causing any assembler
language statements to be generated

The statements in the body of a macro definition must appear between the macro
prototype statement and the MEND statement of the definition. The body of a
macro definition can be empty, that is, contain no statements.

Nesting Macros:  You can include macro definitions in the body of a macro
definition.

 Model Statements
Model statements are statements from which assembler language statements are
generated during conditional assembly. They let you determine the form of the
statements to be generated. By specifying variable symbols as points of
substitution in a model statement, you can vary the contents of the statements

  Chapter 7. How to Specify Macro Definitions 217



 Model Statements  
 

generated from that model statement. You can also substitute values into model
statements in open code.

A model statement consists of one or more fields, separated by one or more
blanks, in columns 1 to 71. The fields are called the name, operation, operand,
and remarks fields.

Each field or subfield can consist of:

� An ordinary character string composed of alphanumeric and special characters

� A variable symbol as a point of substitution

� Any combination of ordinary character strings and variable symbols to form a
concatenated string

The statements generated from model statements during conditional assembly must
be valid machine or assembler instructions, but must not be conditional assembly
instructions. They must follow the coding rules described in “Rules for Model
Statement Fields” on page 221 or they are flagged as errors at assembly time.

Examples:

LABEL L 3,AREA
LABEL2 L 3,2K(4,5)
&LABEL L 3,&AREA
FIELD&A L 3,AREA&C

Variable Symbols as Points of Substitution
Values can be substituted for variable symbols that appear in the name, operation,
and operand fields of model statements; thus, variable symbols represent points of
substitution. The three main types of variable symbol are:

� Symbolic parameters (positional or keyword)
� System variable symbols (see “System Variable Symbols” on page 233)
� SET symbols (global or local SETA, SETB, or SETC symbols)

Examples:

&PARAM(3)
&SYSLIST(1,3)
&SYSLIST(2)
&SETA(1K)
&SETC(15)

Symbols That Can Be Subscripted:   Symbolic parameters, SET symbols, and
the system variable symbol, &SYSLIST, can all be subscripted. All remaining
system variable symbols contain only one value.

Listing of Generated Fields
The different fields in a macro-generated statement or a statement generated in
open code appear in the listing in the same column as they are coded in the model
statement, with the following exceptions:

� If the substituted value in the name or operation field is too large for the space
available, the next field is moved to the right with one blank separating the
fields.

218 HLASM V1R3 Language Reference  



  Model Statements
 

� If the substituted value in the operand field causes the remarks field to be
displaced, the remarks field is written on the next line, starting in the column
where it is coded in the model statement.

� If the substituted value in the operation field of a macro-generated statement
contains leading blanks, the blanks are ignored.

� If the substituted value in the operation field of a model statement in open code
contains leading blanks, the blanks are used to move the field to the right.

� If the substituted value in the operand field contains leading blanks, the blanks
are used to move the field to the right.

� If the substituted value contains trailing blanks, the blanks are ignored.

Listing of Generated Fields Containing Double-Byte Data:  If the DBCS
assembler option is specified, then the following differences apply:

� Any continuation indicators present in the model statement are discarded.

� Double-byte data that must be split at a continuation point is always readable
on a device capable of presenting DBCS characters—SI and SO are inserted
at the break point, and the break-point always occurs between double-byte
characters.

� The continuation indicator is extended to the left, if necessary, to fill space that
cannot be filled with double-byte data because of alignment and delimiter
considerations. The maximum number of columns is 3.

� If continuation is required and the character to the left of the continuation
indicator is X, then + is used as the continuation indicator so as to clearly
distinguish the position of the end column. This applies to any generated field,
regardless of its contents, to prevent ambiguity.

� Redundant SI/SO pairs may be present in a field after substitution. If they
occur at a continuation point, the assembler does not distinguish them from SI
and SO inserted by the assembler to preserve readability. Refer to the object
code to resolve this ambiguity.

Rules for Concatenation
If a symbolic parameter in a model statement is immediately preceded or followed
by other characters or another symbolic parameter, the characters that correspond
to the symbolic parameter are combined in the generated statement with the other
characters, or with the characters that correspond to the other symbolic parameter.
This process is called concatenation.

When variable symbols are concatenated to ordinary character strings, the following
rules apply to the use of the concatenation character (a period). The concatenation
character is mandatory when:

�1� An alphanumeric character follows a variable symbol.

�2� A left parenthesis that does not enclose a subscript follows a variable
symbol.

�3�—�4� A period (.) is to be generated. Two periods must be specified in the
concatenated string following a variable symbol.

The concatenation character is not required when:

  Chapter 7. How to Specify Macro Definitions 219



 Model Statements  
 

�5� An ordinary character string precedes a variable symbol.

�6� A special character, except a left parenthesis or a period, is to follow a
variable symbol.

�7� A variable symbol follows another variable symbol.

�8� A variable symbol is used with a subscript. The concatenation character
must not be used between a variable symbol and its subscript; otherwise,
the characters are considered a concatenated string and not a subscripted
variable symbol.

Figure 53, in which the numbers correspond to the numbers in the above list, gives
the rules for concatenating variable symbols to ordinary character strings.

Figure 53. Rules for Concatenation

Concatenated String

Values to be
Substituted

Generated Result
Variable
Symbol Value

&FIELD.A �1�
&FIELDA

&FIELD
&FIELDA

AREA
SUM

AREAA
SUM

&DISP.(&BASE)]
 < <
 �2� �6�

&DISP
&BASE

1KK
1K

1KK(1K)

DC D'&INT..&FRACT']
 <
 �3�

DC D'&INT&FRACT'
 <
 �7�

&INT
&FRACT

99
88

DC D'99.88'
 <
 �4�

DC D'9988'

FIELD&A �5� &A A FIELDA

&A┼&BD3-D
 < <
 └──┴── �6�

&A
&B

A
B

A+BD3-D

&SYM(&SUBSCR)
 <
 �8�

&SUBSCR
&SYM(1K)

1K
ENTRY

ENTRY

Notes: 

1. The concatenation character is not generated.

220 HLASM V1R3 Language Reference  



  Model Statements
 

Concatenation of Fields Containing Double-Byte Data:  If the DBCS assembler
option is specified, then the following additional rules apply:

� Because ampersand is not recognized in double-byte data, variable symbols
must not be present in double-byte data.

� The concatenation character is mandatory when double-byte data is to follow a
variable symbol.

� The assembler checks for redundant SI and SO at concatenation points. If the
byte to the left of the join is SI and the byte to the right of the join is SO, then
the SI/SO pair is considered redundant and is removed.

The following example shows these rules:

&SYMBOL SETC '<DcDd>'
DBCS DC C'<DaDb>&SYMBOL.<.&.S.Y.M.B.O.L>'

The SI/SO pairs between double-byte characters Db and Dc, and Dd and .&, are
removed. The variable symbol &SYMBOL is recognized between the double-byte
strings but not in the double-byte strings. The result after concatenation is:

DBCS DC C'<DaDbDcDd.&.S.Y.M.B.O.L>'

Rules for Model Statement Fields
The fields that can be specified in model statements are the same fields that can
be specified in an ordinary assembler language statement. They are the name,
operation, operand, and remarks fields. You can also specify a
continuation-indicator field, an identification-sequence field, and, in source macro
definitions, a field before the begin column if the correct ICTL instruction has been
specified. Character strings in the last three fields (in the standard format only,
columns 72 through 80) are generated exactly as they appear in the model
statement, and no values are substituted for variable symbols.

Model statements must have an entry in the operation field, and, in most cases, an
entry in the operand field in order to generate valid assembler language
instructions.

 Name Field
The entries allowed in the name field of a model statement, before generation, are:

 � Blank
� An ordinary symbol
� A sequence symbol
� A variable symbol
� Any combination of variable symbols, or system variable symbols such as

&SYSNDX, and other character strings concatenated together

The generated result must be a blank (if valid) or a character string that represents
a valid assembler or machine instruction name field. Double-byte data is not valid
in an assembler or machine instruction name field and must not be generated.

Variable symbols must not be used to generate comment statement indicators (D or
.D).

  Chapter 7. How to Specify Macro Definitions 221



 Model Statements  
 

Notes:

1. You can not reference an ordinary symbol defined in the name field of a model
statement until the macro definition containing the model statement has been
called, and the model statement has been generated.

2. Restrictions on the name entry of assembler language instructions are further
specified where each individual assembler language instruction is described in
this manual.

 Operation Field
The entries allowed in the operation field of a model statement, before generation,
are given in the following list:

� An ordinary symbol that represents the operation code for:

– Any machine instruction
– A macro instruction

 – MNOTE instruction
– A variable symbol
– A combination of variable strings concatenated together
– All assembler instructions, except ICTL and conditional assembly

instructions

The following rules apply to the operation field of a model statement:

� Operation code ICTL is not allowed inside a macro definition.

� The MACRO and MEND statements are not allowed in model statements; they
are used only for delimiting macro definitions.

� If the REPRO operation code is specified in a model statement, no substitution
is done for the variable symbols in the statement line following the REPRO
statement.

� Variable symbols can be used alone or as part of a concatenated string to
generate operation codes for:

– Any machine instruction

– Any assembler instruction, except COPY, ICTL, ISEQ, REPRO, and MEXIT

The generated operation code must not be an operation code for the following
(or their OPSYN equivalents):

– A conditional assembly instruction

– The following assembler instructions: COPY, ICTL, ISEQ, MACRO, MEND,
MEXIT, and REPRO

� Double-byte data is not valid in the operation field.

 Operand Field
The entries allowed in the operand field of a model statement, before generation,
are:

� Blank (if valid)

� An ordinary symbol

� A character string, combining alphanumeric and special characters (but not
variable symbols)

222 HLASM V1R3 Language Reference  



  Symbolic Parameters
 

� A variable symbol

� A combination of variable symbols and other character strings concatenated
together

� If the DBCS assembler option is specified, character strings may contain
double-byte data, provided the character strings are enclosed by apostrophes.

The allowable results of generation are a blank (if valid) and a character string that
represents a valid assembler or machine instruction operand field.

Variable Symbols:  Variable symbols must not be used in the operand field of a
ICTL, or ISEQ instruction. A variable symbol must not be used in the operand field
of a COPY instruction that is inside a macro definition.

 Remarks Field
The remarks field of a model statement can contain any combination of characters.
No substitution is done for variable symbols appearing in the remarks field. Only
generated statements are printed in the listing.

Using Blanks:  One or more blanks must be used in a model statement to
separate the name, operation, operand, and remarks fields from each other.
Blanks cannot be generated between fields in order to create a complete assembler
language statement. The exception to this rule is that a combined
operand-remarks field can be generated with one or more blanks to separate the
two fields.

 Symbolic Parameters
Symbolic parameters let you pass values into the body of a macro definition from
the calling macro instruction. You declare these parameters in the macro prototype
statement. They can serve as points of substitution in the body of the macro
definition and are replaced by the values assigned to them by the calling macro
instruction.

By using symbolic parameters with meaningful names, you can indicate the
purpose for which the parameters (or substituted values) are used.

Symbolic parameters must be valid variable symbols. A symbolic parameter
consists of an ampersand followed by an alphabetic character and from 0 to 61
alphanumeric characters.

The following are valid symbolic parameters:

&READER &LOOP2
&A23456 &N
&X4F2 &$4

The following are not valid symbolic parameters:

CARDAREA first character is not an ampersand
&256B first character after ampersand is not a letter
&BCD%34 contains a special character other than initial ampersand
&IN AREA contains a special character [blank] other than initial ampersand

Symbolic parameters have a local scope; that is, the name and value they are
assigned only applies to the macro definition in which they have been declared.

  Chapter 7. How to Specify Macro Definitions 223



 Positional Parameters  
 

The value of the parameter remains constant throughout the processing of the
containing macro definition during each call of that definition.

Notes:

1. Symbolic parameters must not have multiple definitions or be identical to any
other variable symbols within the given local scope. This applies to the system
variable symbols described in “System Variable Symbols” on page 233, and to
local and global SET symbols described in “SET Symbols” on page 288.

2. Symbolic parameters should not begin with &SYS because these characters are
used for system variable symbols provided with High Level Assembler.

The two kinds of symbolic parameters are:

 � Positional parameters
 � Keyword parameters

Each positional or keyword parameter used in the body of a macro definition must
be declared in the prototype statement.

The following is an example of a macro definition with symbolic parameters.

 MACRO Header
&NAME MOVE &TO,&FROM Prototype
&NAME ST 2,SAVE Model
 L 2,&FROM Model
 ST 2,&TO Model
 L 2,SAVE Model
 MEND Trailer

In the following macro instruction that calls the above macro, the characters HERE,
FIELDA, and FIELDB of the MOVE macro instruction correspond to the symbolic
parameters &NAME, &TO, and &FROM, respectively, of the MOVE prototype statement.

HERE MOVE FIELDA,FIELDB

If the preceding macro instruction were used in a source program, the following
assembler language statements would be generated:

HERE ST 2,SAVE
 L 2,FIELDB
 ST 2,FIELDA
 L 2,SAVE

 Positional Parameters
You should use a positional parameter in a macro definition if you want to change
the value of the parameter each time you call the macro definition. This is because
it is easier to supply the value for a positional parameter than for a keyword
parameter. You only have to write the value you want the parameter to have in the
correct position in the operand of the calling macro instruction. However, if you
need a large number of parameters, you should use keyword parameters. The
keywords make it easier to keep track of the individual values you must specify at
each call by reminding you which parameters are being given values.

See “Positional Operands” on page 271 for details of how to write macro definitions
with positional parameters.

224 HLASM V1R3 Language Reference  



  Conditional Assembly Instructions
 

 Keyword Parameters
You should use a keyword parameter in a macro definition for a value that changes
infrequently, or if you have a large number of parameters. The keyword, repeated
in the operand, reminds you which parameter is being given a value and for which
purpose the parameter is being used. By specifying a standard default value to be
assigned to the keyword parameter, you can omit the corresponding keyword
operand in the calling macro instruction. You can specify the corresponding
keyword operands in any order in the calling macro instruction.

See “Keyword Operands” on page 272 for details of how to write macro definitions
with keyword parameters.

Combining Positional and Keyword Parameters
By using positional and keyword parameters in a prototype statement, you combine
the benefits of both. You can use positional parameters in a macro definition for
passing values that change frequently, and keyword parameters for passing values
that do not change often.

Positional and keyword parameters can be mixed freely in the macro prototype
statement.

See “Combining Positional and Keyword Operands” on page 274 for details of how
to write macro definitions using combined positional and keyword parameters.

Subscripted Symbolic Parameters
Subscripted symbolic parameters must be coded in the format:

&PARAM(subscript)

where &PARAM is a variable symbol and subscript is an arithmetic expression. The
subscript can be any arithmetic expression allowed in the operand field of a SETA
instruction (arithmetic expressions are discussed in “SETA Instruction” on
page 314). The arithmetic expression can contain subscripted variable symbols.
Subscripts can be nested to any level provided that the total length of an individual
operand does not exceed 255 characters.

The value of the subscript must be greater than or equal to one. The subscript
indicates the position of the entry in the sublist that is specified as the value of the
subscripted parameter (sublists as values in macro instruction operands are fully
described in “Sublists in Operands” on page 275).

 Processing Statements

Conditional Assembly Instructions
Conditional assembly instructions let you determine at conditional assembly time
the content of the generated statements and the sequence in which they are
generated. The instructions and their functions are listed below:

Conditional Assembly Operation Done

GBLA, GBLB, GBLC
LCLA, LCLB, LCLC

Declaration of variable symbols (global and local SET
symbols) and setting of default initial values

  Chapter 7. How to Specify Macro Definitions 225



 AINSERT Instruction  
 

Conditional assembly instructions can be used both inside macro definitions and in
open code. They are described in Chapter 9, “How to Write Conditional Assembly
Instructions.”

Conditional Assembly Operation Done

SETA, SETB, SETC Assignment of values to variable symbols (SET symbols)

SETAF, SETCF External function assignment of values to variable symbols
(SET symbols)

ACTR Setting loop counter

AGO Unconditional branch

AIF Conditional branch (based on logical test)

ANOP Pass control to next sequential instruction (no operation)

Inner Macro Instructions
Macro instructions can be nested inside macro definitions, allowing you to call other
macros from within your own definition.

 AEJECT Instruction
Use the AEJECT instruction to stop the printing of the assembler listing of your
macro definition on the current page, and continue the printing on the next page.

 

��─ ──┬ ┬───────────────── ─AEJECT────────────────────────────────────��
 └ ┘ ─sequence_symbol─

sequence_symbol
is a sequence symbol.

The AEJECT instruction causes the next line of the assembly listing of your macro
definition to be printed at the top of a new page. If the line before the AEJECT
statement appears at the bottom of a page, the AEJECT statement has no effect.
An AEJECT instruction immediately following another AEJECT instruction causes a
blank page in the listing of the macro definition.

Notes:

1. The AEJECT instruction can only be used inside a macro definition.

2. The AEJECT instruction itself is not printed in the listing.

3. The AEJECT instruction does not affect the listing of statements generated
when the macro is called.

|  AINSERT Instruction
| The AINSERT instruction, inside macro definitions, harnesses the power of macros
| to generate source statements, for instance, using variable substitution. Generated
| statements are queued in a special buffer and read after the macro generator
| finishes.

| The specifications for the AINSERT instruction, which can also be used in open
| code, are described in “AINSERT Instruction” on page 97.

226 HLASM V1R3 Language Reference  



  AREAD Instruction
 

 AREAD Instruction
The AREAD instruction assigns an arbitrary character string value to a SETC
symbol.

The AREAD instruction has two formats. The first format lets you assign to a
SETC symbol the character string value of a statement that is placed immediately
after a macro instruction.

The AREAD instruction can only be used inside macro definitions.

Assign Character String Value 

��──SETC_symbol──AREAD─ ──┬ ┬───────── ───────────────────────────────��
 ├ ┤─NOPRINT─
 └ ┘─NOSTMT──

The second format of the AREAD instruction assigns to a SETC symbol a character
string containing the local time.

Assign Local Time 

��──SETC_symbol──AREAD─ ──┬ ┬─CLOCKB─ ────────────────────────────────��
 └ ┘─CLOCKD─

SETC_symbol
is a SETC symbol. See “SETC Instruction” on page 329.

NOSTMT
specifies that the statement to be read by the AREAD instruction is printed in
the assembly listing, but not given any statement number.

NOPRINT
specifies that the statement does not appear in the listing, and no statement
number is assigned to it.

CLOCKB
assigns an 8-character string to SETC_symbol containing the local time in
hundredths of a second since midnight.

CLOCKD
assigns an 8-character string to SETC_symbol containing the local time in the
format HHMMSSTH, where HH is a value between 00 and 23, MM and SS
each have a value between 00 and 59, and TH has a value between 00 and
99.

Assign Character String Value
The first format of AREAD functions in much the same way as symbolic
parameters, but instead of providing your input to macro processing as part of the
macro instruction, you add the values in the form of whole 80-character input
records that follow immediately after the macro instruction. Any number of
successive statements can be read into the macro for processing.

SETC_symbol may be subscripted. When the assembler encounters a Format-1
AREAD statement during the processing of a macro instruction, it reads the source
statement following the macro instruction and assigns an 80-character string to the

  Chapter 7. How to Specify Macro Definitions 227



 AREAD Instruction  
 

SETC symbol in the name field. In the case of nested macros, it reads the
statement following the outermost macro instruction.

If no operand is specified, the statement to be read by AREAD is printed in the
listing and assigned a statement number.

Repeated AREAD instruction statements read successive statements. In the
following example, the input record starting with INRECORD1 is read by the first
AREAD statement, and assigned to the SETC symbol &VAL. The input record
starting with INRECORD2 is read by the second AREAD statement, and assigned to
the SETC symbol &VAL1.

Example:

 MACRO
 MAC1
 .
&VAL AREAD
 .
&VAL1 AREAD
 .
 MEND
 CSECT
 .
 MAC1
INRECORD1 THIS IS THE STATEMENT TO BE PROCESSED FIRST
INRECORD2 THIS IS THE NEXT STATEMENT
 .
 END

The records read by the AREAD instruction can be in code brought in with the
COPY instruction, if the macro instruction appears in such code. If no more
records exist in the code brought in by the COPY instruction, subsequent
statements are read from the ordinary input stream.

Assign Local Time of Day
The second format of AREAD functions in much the same way as a SETC
instruction, but instead of supplying the value you want assigned to the SETC
symbol as a character string in the operand of the AREAD instruction, the value is
provided by the operating system in the form of an 8-character string containing the
local time. A Format-2 AREAD instruction does not cause the assembler to read
the statement following the macro instruction.

Example:

 MACRO
 MAC2
 .
&VAL AREAD CLOCKB
 DC C'&VAL'
&VAL1 AREAD CLOCKD
 DC C'&VAL1'
 .
 MEND

When the macro definition described above is called, the following statements are
generated:

228 HLASM V1R3 Language Reference  



  MEXIT Instruction
 

 MAC2
+ DC C'K32514KK'
+ DC C'K9K154KK'

 ASPACE Instruction
Use the ASPACE instruction to insert one or more blank lines in the listing of a
macro definition in your source module. This separates sections of macro definition
code on the listing page.

 

��─ ──┬ ┬───────────────── ─ASPACE─ ──┬ ┬───────────────── ──────────────��
 └ ┘ ─sequence_symbol─ └ ┘ ─number_of_lines─

sequence_symbol
is a sequence symbol.

number_of_lines
is an absolute value that specifies the number of lines to be left blank. You
may use any absolute expression to specify number_of_lines. If
number_of_lines is omitted, one line is left blank. If number_of_lines has a
value greater than the number of lines remaining on the listing page, the
instruction has the same effect as an AEJECT statement.

Notes:

1. The ASPACE instruction can only be used inside a macro definition.

2. The ASPACE instruction itself is not printed in the listing.

3. The ASPACE instruction does not affect the listing of statements generated
when the macro is called.

 COPY Instruction
The COPY instruction, inside macro definitions, lets you copy into the macro
definition any sequence of statements allowed in the body of a macro definition.
These statements become part of the body of the macro before macro processing
takes place. You can also use the COPY instruction to copy complete macro
definitions into a source module.

The specifications for the COPY instruction, which can also be used in open code,
are described in “COPY Instruction” on page 110.

 MEXIT Instruction
The MEXIT instruction provides an exit for the assembler from any point in the
body of a macro definition. The MEND instruction provides an exit only from the
end of a macro definition (see “MEND Statement” on page 215 for details).

The MEXIT instruction statement can be used only inside macro definitions.

 

��─ ──┬ ┬───────────────── ─MEXIT─────────────────────────────────────��
 └ ┘ ─sequence_symbol─

  Chapter 7. How to Specify Macro Definitions 229



 MNOTE Instruction  
 

sequence_symbol
is a sequence symbol.

The MEXIT instruction causes the assembler to exit from a macro definition to the
next sequential instruction after the macro instruction that calls the definition. (This
also applies to nested macro instructions, which are described in “Nesting Macro
Instructions” on page 282.)

For example, the following macro definition contains an MEXIT statement:

 MACRO
 EXITS
 DC C'A'
 DC C'B'
 DC C'C'
 MEXIT
 DC C'D'
 DC C'E'
 DC C'F'
 MEND

When the macro definition described above is called, the following statements are
generated:

 EXITS
+ DC C'A'
+ DC C'B'
+ DC C'C'

 MNOTE Instruction
The MNOTE instruction generates your own error messages or displays
intermediate values of variable symbols computed during conditional assembly.

The MNOTE instruction can be used inside macro definitions or in open code, and
its operation code can be created by substitution. The MNOTE instruction causes
the generation of a message that is given a statement number in the printed listing.

 

��─ ──┬ ┬───────────────── ─MNOTE─ ── ──┬ ┬─────────── message ────────────��
 └ ┘─sequence_symbol─ ├ ┤──severity,
 ├ ┤─D,────────
 └ ┘─,─────────

sequence_symbol
is a sequence symbol.

severity
is a severity code. The severity operand may be an arithmetic term allowed in
the operand field of a SETA or a SETC instruction. The term must have a
value in the range 0 through 255. The severity code is used to determine the
return code issued by the assembler when it returns control to the operating

| system. The severity may also change the value of the system variable
| symbols &SYSM_HSEV and &SYSM_SEV (see “&SYSM_HSEV System
| Variable Symbol” on page 250 and “&SYSM_SEV System Variable Symbol” on
| page 250).

230 HLASM V1R3 Language Reference  



  MNOTE Instruction
 

message
is the message text. It may be any combination of characters enclosed in
single quotation marks.

The rules that apply to this character string are as follows:

� Variable symbols are allowed. The single quotation marks that enclose the
message can be generated from variable symbols.

� Two ampersands and two single quotation marks are needed to generate
an ampersand or a single quotation mark, respectively. If variable symbols
have ampersands or single quotation marks as values, the values must be
coded as two ampersands or two single quotation marks.

� If the number of characters in the character string plus the rest of the
MNOTE operand exceeds 1024 bytes the assembler issues diagnostic
message

ASMAK62E Illegal operand format

.

� Double-byte data is permissible in the operand field when the DBCS
assembler option is specified. The double-byte data must be valid.

� The DBCS ampersand and apostrophe are not recognized as delimiters.

�  A double-byte character that contains the value of an EBCDIC ampersand
or apostrophe in either byte is not recognized as a delimiter when enclosed
by SO and SI.

Remarks:  Any remarks for the MNOTE instruction statement must be separated
by one or more blanks from the single quotation mark that ends the message.

If severity is provided, or severity is omitted but the comma separating it from
message is present, the message is treated as an error message; otherwise the
message is treated as comments. The rules for specifying the contents of severity
are:

� The severity code can be specified as any arithmetic expression allowed in the
operand field of a SETA instruction. The expression must have a value in the
range 0 through 255.

Example:

MNOTE 2,'ERROR IN SYNTAX'

The generated result is:

2,ERROR IN SYNTAX

� If the severity code is omitted, but the comma separating it from the message
is present, the assembler assigns a default value of 1 as the severity code.

Example:

MNOTE ,'ERROR, SEV 1'

The generated result is:

,ERROR, SEV 1

� An asterisk in the severity code subfield causes the message and the asterisk
to be generated as a comment statement.

  Chapter 7. How to Specify Macro Definitions 231



 Comment Statements  
 

Example:

MNOTE D,'NO ERROR'

The generated result is:

 D,NO ERROR

� If the severity code subfield is omitted, including the comma separating it from
the message, the assembler generates the message as a comment statement.

Example:

MNOTE 'NO ERROR'

The generated result is:

 NO ERROR

Notes:

1. An MNOTE instruction causes a message to be printed, if the current PRINT
option is ON, even if the PRINT NOGEN option is specified.

2. The statement number of the message generated from an MNOTE instruction
with a severity code is listed among any other error messages for the current
source module. However, the message is printed only if the severity code
specified is greater than or equal to the severity code nnn specified in the
FLAG(nnn) assembler option.

3. The statement number of the comments generated from an MNOTE instruction
without a severity code is not listed among other error messages.

 Comment Statements
Two types of comment statements can be used within a macro definition:

� Ordinary comment statements
� Internal macro comment statements

Ordinary Comment Statements
Ordinary comment statements let you make descriptive remarks about the
generated output from a macro definition. Ordinary comment statements can be
used in macro definitions and in open code.

An ordinary comment statement consists of an asterisk in the begin column,
followed by any character string. The comment statement is used by the
assembler to generate an assembler language comment statement, just as other
model statements are used by the assembler to generate assembler statements.
No variable symbol substitution is done.

Internal Macro Comment Statements
You can also write internal macro comments in the body of a macro definition to
describe the operations done during conditional assembly when the macro is
processed.

An internal macro comment statement consists of a period in the begin column,
followed by an asterisk, followed by any character string. No values are substituted
for any variable symbols that are specified in internal macro comment statements.

232 HLASM V1R3 Language Reference  



  System Variable Symbols
 

Internal macro comment statements may appear anywhere in a macro definition.

Notes:

1. Internal macro comments are not generated.
2. The comment character string may contain double-byte data.
3. Internal macro comment statements can be used in open code, however, they

are processed as ordinary comment statements.

System Variable Symbols
System variable symbols are a special class of variable symbols, starting with the
characters &SYS. Their values are set by the assembler according to specific rules.
You cannot declare them in local SET symbols or global SET symbols, nor use
them as symbolic parameters in macro prototype statements. You can use these
symbols as points of substitution in model statements and conditional assembly
instructions.

All system variable symbols are subject to the same rules of concatenation and
substitution as other variable symbols.

A description of each system variable symbols begins on page 234.

You should not prefix your SET symbols with the character sequence &SYS.
The assembler uses this sequence as a prefix to all system variable symbol
names, and using them for other SET symbol names might cause future
conflicts.

Scope and Variability of System Variable Symbols
| Global Scope:  Some system variable symbols have values that are established at
| the beginning of an assembly and are available both in open code and from within
| macros. These symbols have global scope. Most system variable symbols with
| global scope have fixed values, although there are some whose value can change
| within a single macro expansion. The global system variables symbols with
| variable values are &SYSSTMT, &SYSM_HSEV, and &SYSM_SEV.

| Local Scope:  Some system variable symbols have values that are available only
| from within a macro expansion. These system variables have local scope. Since
| the value of system variable symbols with local scope is established at the
| beginning of a macro expansion and remains unchanged throughout the expansion,
| they are designated as having constant values, even though they might have
| different values in a later expansion of the same macro, or within inner macros.

| Over half of the system variable symbols have local scope and therefore are not
| available in open code.

  Chapter 7. How to Specify Macro Definitions 233



 &SYSADATA_DSN System Variable Symbol  
 

|  1 macro
|  2 getLocalSys
| 3 &n seta n'&syslist Save number of parameters
| 4 &i seta K Initalize loop counter
|  5 .loop anop
| 6 &i seta &i+1 Increment loop counter
| 7 &lc setc (lower '&syslist(&i)') Get next parm as lowercase
| 8 &lvar setc '&sysclock' &Sysclock value when macro is called
| 9 aif ('&lc' eq 'sysclock').ainsert
| 1K &lvar setc '&sysloc' Location counter when macro's called
| 11 aif ('&lc' eq 'sysloc').ainsert
|  .
|  .
|  .
| 12 &lvar setc '&sysin_dsn' SYSIN at time the macro is called
| 13 aif ('&lc' eq 'sysin_dsn').ainsert
| 14 mnote 1,'&syslist(&i) is not a supported local system variable'
|  15 ago .chkloop
| 16 .ainsert ainsert '&&&syslist(&i) setc ''&lvar'' ',back
| 17 .chkloop aif (&i LT &n).loop Loop if we have any parms left
| 18 mend else the macro's finished
| KKKKKK KKKKK KKK1A 19 R CSECT
|  2K getLocalSys syslib_member,sysCLOCK,sysin_dsn,sysstyp
| DD ASMA254I DDD MNOTE DDD 21+ 1,syslib_member is not a supported local system variable
| 22+ ainsert '&&sysCLOCK setc ''1998-K8-K6 K6:K5:59.284223'' ',back
| 23+ ainsert '&&sysin_dsn setc ''GETLOC2 ASSEMBLE A1'' ',back
| DD ASMA254I DDD MNOTE DDD 24+ 1,sysstyp is not a supported local system variable
| 25>&sysCLOCK setc '1998-K8-K6 K6:K5:59.284223'
| 26>&sysin_dsn setc 'GETLOC2 ASSEMBLE A1'
|  27 DC C'&sysclock'
| KKKKKK F1F9F9F86KFKF86K + DC C'1998-K8-K6 K6:K5:59.284223'
| KKKKKK 28 END R

| Figure 54. Exposing the Value of a Local Scope Variable to Open Code

Uses, Values and Properties:  System variable symbols have many uses,
including:

� Helping to control conditional assemblies
� Capturing environmental data for inclusion in the generated object code
� Providing program debugging data

Refer to Appendix C, “Macro and Conditional Assembly Language Summary” on
page 361 for a summary of the values and properties that can be assigned to
system variable symbols.

&SYSADATA_DSN System Variable Symbol
Use &SYSADATA_DSN in a macro definition to obtain the name of the data set to
which the assembler is writing the associated data.

The local system variable symbol &SYSADATA_DSN is assigned a read-only value
each time a macro definition is called.

 When the assembler runs on the MVS/ESA operating systems, the value
of the character string assigned to &SYSADATA_DSN is always the value stored in
the JFCB for SYSADATA. If SYSADATA is allocated to DUMMY, or a NULLFILE,
the value in &SYSADATA_DSN is NULLFILE.

For example, &SYSADATA_DSN might be assigned a value such as:

VCATR49.SYSADATA

234 HLASM V1R3 Language Reference  



  &SYSADATA_MEMBER System Variable Symbol
 

 When the assembler runs on the CMS component of the VM/ESA
operating systems, the value of the character string assigned to &SYSADATA_DSN
is determined as follows:

For example, &SYSADATA_DSN might be assigned a value such as:

SAMPLE SYSADATA A1

 The value of the character string assigned to &SYSADATA_DSN is the
disk

| For example, &SYSADATA_DSN might be assigned a value such as:

| VCATR49.SYSADAT

|

| Notes:

| 1. The value of the type attribute of &SYSADATA_DSN (T'&SYSADATA_DSN) is
| always U.

| 2. The value of the count attribute of &SYSADATA_DSN (K'&SYSADATA_DSN)
| is equal to the number of characters assigned as a value to
| &SYSADATA_DSN. In the CMS example above, the count attribute of
| &SYSADATA_DSN is 20.

Figure 55. Contents of &SYSADATA_DSN on CMS

SYSADATA Allocated To: Contents of &SYSADATA_DSN:

CMS file The 8-character filename, the
8-character filetype, and the
2-character filemode of the file, each
separated by a blank

Dummy file (no physical I/O) DUMMY

Labeled tape file The data set name of the tape file

Unlabeled tape file TAPn, where n is a value from 0 to 9,
or A to F.

&SYSADATA_MEMBER System Variable Symbol
|  The value of &SYSADATA_MEMBER is always null. The value of the
| type attribute is O, and the value of the count attribute is 0. 

|  You can use &SYSADATA_MEMBER in a macro definition to obtain
| the name of the data set member to which the assembler is writing the associated
| data.

| The local system variable symbol &SYSADATA_MEMBER is assigned a read-only
| value each time a macro definition is called.

| If the data set to which the assembler is writing the associated data is not an MVS
| partitioned data set, &SYSADATA_MEMBER is assigned a null character string.
|

  Chapter 7. How to Specify Macro Definitions 235



 &SYSASM System Variable Symbol  
 

Notes:

1. The value of the type attribute of &SYSADATA_MEMBER
(T'&SYSADATA_MEMBER) is U, unless &SYSADATA_MEMBER is assigned a
null character string, in which case the value of the type attribute is O.

2. The value of the count attribute of &SYSADATA_MEMBER
(K'&SYSADATA_MEMBER) is equal to the number of characters assigned as
a value to &SYSADATA_MEMBER. If &SYSADATA_MEMBER is assigned a
null character string, the value of the count attribute is 0.

&SYSADATA_VOLUME System Variable Symbol
Use &SYSADATA_VOLUME in a macro definition to obtain the volume identifier of
the first volume containing the data set to which the assembler is writing the
associated data.

The local system variable symbol &SYSADATA_VOLUME is assigned a read-only
value each time a macro definition is called.

 If the assembler runs on the CMS component of the VM/ESA operating
system, and the associated data is being written to a Shared File System CMS file,
&SYSADATA_VOLUME is assigned the value DD SFS. 

If the volume on which the data set resides is not labeled, &SYSADATA_VOLUME
is assigned a null character string.

Notes:

1. The value of the type attribute of &SYSADATA_VOLUME
(T'&SYSADATA_VOLUME) is U, unless &SYSADATA_VOLUME is assigned a
null character string, in which case the value of the type attribute is O.

2. The value of the count attribute of &SYSADATA_VOLUME
(K'&SYSADATA_VOLUME) is equal to the number of characters assigned as a
value to &SYSADATA_VOLUME. If &SYSADATA_VOLUME is assigned a null
character string, the value of the count attribute is 0. The maximum length of
this system variable symbol is 6.

&SYSASM System Variable Symbol
Use &SYSASM to obtain the name of the assembler being used to assemble your
source module. &SYSASM has a global scope. For example, when IBM High
Level Assembler for MVS & VM & VSE is used, &SYSASM has the value:

HIGH LEVEL ASSEMBLER

Notes:

1. The value of the type attribute of &SYSASM (T'&SYSASM) is always U.

2. The value of the count attribute (K'&SYSASM) is the number of characters
assigned. In the above example, the count attribute of &SYSASM is 20.

236 HLASM V1R3 Language Reference  



  &SYSDATC System Variable Symbol
 

| &SYSCLOCK System Variable Symbol
| Use &SYSCLOCK to obtain the TOD clock date and time at which the macro was
| generated.

| The local system variable symbol &SYSCLOCK is assigned a read-only value each
| time a macro definition is called.

| The value of &SYSCLOCK is a 26-character string in the format:

| YYYY-MM-DD HH:MM:SS mmmmmm

| where:

| YYYY is a four-digit field that gives the year, including the century. It has a value
| between 0000 and 9999, inclusive.

| MM is a two-digit field that gives the month of the year. It has a value between
| 01 and 12, inclusive.

| DD is a two-digit field that gives the day of the month. It has a value between
| 01 and 31, inclusive.

| HH is a two-digit field that gives the hour of the day. It has a value between
| 00 and 23, inclusive.

| MM is a two-digit field that gives the minute of the hour. It has a value
| between 00 and 59, inclusive.

| SS is a two-digit field that gives the second of the minute. It has a value
| between 00 and 59, inclusive.

| mmmmmm is a six-digit field that gives the microseconds. It has a value between
| 000000 and 999999, inclusive.

| Example:

| 2KK1-K6-K8 17:36:K3 K43284

| Notes:

| 1. The value of the type attribute of &SYSCLOCK (T'&SYSCLOCK) is always U.

| 2. The value of the count attribute (K'&SYSCLOCK) is always 26.

&SYSDATC System Variable Symbol
Use &SYSDATC to obtain the date, including the century, on which your source
module is assembled. &SYSDATC has a global scope.

The value of &SYSDATC is an 8-character string in the format:

YYYYMMDD

where:

YYYY is four-digit field that gives the year, including the century. It has a value
between 0000 and 9999, inclusive.

MM is two-digit field that gives the month of the year. It has a value between 01
and 12, inclusive.

DD is two-digit field that gives the day of the month. It has a value between 01
and 31, inclusive.

  Chapter 7. How to Specify Macro Definitions 237



 &SYSECT System Variable Symbol  
 

Example:

1995K328

Notes:

1. The date corresponds to the date printed in the page heading of listings and
remains constant for each assembly.

2. The value of the type attribute of &SYSDATC (T'&SYSDATC) is always N.

3. The value of the count attribute (K'&SYSDATC) is always 8.

&SYSDATE System Variable Symbol
Use &SYSDATE to obtain the date, in standard format, on which your source
module is assembled. &SYSDATE has a global scope.

The value of &SYSDATE is an 8-character string in the format:

MM/DD/YY

where:

MM is a two-digit field that gives the month of the year. It has a value between
01 and 12, inclusive.

DD is a two-digit field that gives the day of the month. It has a value between
01 and 31, inclusive. It is separated from MM by a slash.

YY is a two-digit field that gives the year of the century. It has a value between
00 and 99, inclusive. It is separated from DD by a slash.

Example:

K3/28/95

Notes:

1. The date corresponds to the date printed in the page heading of listings and
remains constant for each assembly.

2. The value of the type attribute of &SYSDATE (T'&SYSDATE) is always U.

3. The value of the count attribute (K'&SYSDATE) is always 8.

&SYSECT System Variable Symbol
Use &SYSECT in a macro definition to generate the name of the current control
section. The current control section is the control section in which the macro
instruction that calls the definition appears.

The local system variable symbol &SYSECT is assigned a read-only value each
time a macro definition is called.

The value assigned is the symbol that represents the name of the current control
section from which the macro definition is called. Note that it is the control section
in effect when the macro is called. A control section that has been initiated or
continued by substitution does not affect the value of &SYSECT for the expansion
of the current macro. However, it does affect &SYSECT for a subsequent macro
call. Nested macros cause the assembler to assign a value to &SYSECT that

238 HLASM V1R3 Language Reference  



  &SYSECT System Variable Symbol
 

depends on the control section in force inside the outer macro when the inner
macro is called.

Notes:

1. The control section whose name is assigned to &SYSECT can be defined by a
program sectioning statement. This can be a START, CSECT, RSECT,
DSECT, or COM statement.

2. The value of the type attribute of &SYSECT (T'&SYSECT) is always U.

3. The value of the count attribute (K'&SYSECT) is equal to the number of
characters assigned as a value to &SYSECT.

4. Throughout the use of a macro definition, the value of &SYSECT is considered
a constant, independent of any program sectioning statements or inner macro
instructions in that definition.

The next example shows these rules:

 MACRO
 INNER &INCSECT
&INCSECT CSECT Statement 1
 DC A(&SYSECT) Statement 2
 MEND

 MACRO
 OUTER1
CSOUT1 CSECT Statement 3
 DS 1KKC
 INNER INA Statement 4
 INNER INB Statement 5
 DC A(&SYSECT) Statement 6
 MEND

 MACRO
 OUTER2
 DC A(&SYSECT) Statement 7
 MEND
-------------------------------------------------------------------
MAINPROG CSECT Statement 8
 DS 2KKC
 OUTER1 Statement 9
 OUTER2 Statement 1K
-------------------------------------------------------------------
MAINPROG CSECT
 DS 2KKC
CSOUT1 CSECT
 DS 1KKC
INA CSECT
 DC A(CSOUT1)
INB CSECT
 DC A(INA)
 DC A(MAINPROG)
 DC A(INB)

In this example:

� Statement 8 is the last program sectioning statement processed before
statement 9 is processed. Therefore, &SYSECT is assigned the value

  Chapter 7. How to Specify Macro Definitions 239



 &SYSIN_DSN System Variable Symbol  
 

MAINPROG for macro instruction OUTER1 in statement 9. MAINPROG is substituted
for &SYSECT when it appears in statement 6.

� Statement 3 is the program sectioning statement processed before statement 4
is processed. Therefore, &SYSECT is assigned the value CSOUT1 for macro
instruction INNER in statement 4. CSOUT1 is substituted for &SYSECT when it
appears in statement 2.

� Statement 1 is used to generate a CSECT statement for statement 4. This is
the last program sectioning statement that appears before statement 5.
Therefore, &SYSECT is assigned the value INA for macro instruction INNER in
statement 5. INA is substituted for &SYSECT when it appears in statement 2.

� Statement 1 is used to generate a CSECT statement for statement 5. This is
the last program sectioning statement that appears before statement 10.
Therefore, &SYSECT is assigned the value INB for macro instruction OUTER2 in
statement 10. INB is substituted for &SYSECT when it appears in statement 7.

&SYSIN_DSN System Variable Symbol
Use &SYSIN_DSN in a macro definition to obtain the name of the data set from
which the assembler is reading the source module.

 If concatenated data sets are used to provide the source module,
&SYSIN_DSN has a value equal to the data set name of the data set that contains
the open code source line of the macro call statement, irrespective of the nesting
depth of the macro line containing the &SYSIN_DSN reference. 

The local system variable symbol &SYSIN_DSN is assigned a read-only value each
time a macro definition is called.

When the assembler runs on the MVS/ESA operating systems, the value of the
character string assigned to &SYSIN_DSN is always the value stored in the JFCB
for SYSIN.

When the assembler runs on the CMS component of the VM/ESA operating
systems, the value of the character string assigned to &SYSIN_DSN is determined
as follows:

| When the assembler runs on the VSE operating system, the value of the character
| string assigned to &SYSIN_DSN is determined as follows:

Figure 56. Contents of &SYSIN_DSN on CMS

SYSIN Allocated To: Contents of &SYSIN_DSN:

CMS file The 8-character filename, the
8-character filetype, and the
2-character filemode of the file, each
separated by a blank

Reader READER

Terminal TERMINAL

Labeled tape file The data set name of the tape file

Unlabeled tape file TAPn, where n is a value from 0 to 9,
or A to F.

240 HLASM V1R3 Language Reference  



  &SYSIN_MEMBER System Variable Symbol
 

Examples:

On MVS, &SYSIN_DSN might be assigned a value such as:

VCATR49.ASSEMBLE.SOURCE

On CMS, &SYSIN_DSN might be assigned a value such as:

SAMPLE ASSEMBLE A1

Notes:

1. If the SOURCE user exit provides the data set information then the value in
&SYSIN_DSN is the value extracted from the Exit-Specific Information block
described in the High Level Assembler Programmer's Guide.

2. The value of the type attribute of &SYSIN_DSN (T'&SYSIN_DSN) is always U.

3. The value of the count attribute of &SYSIN_DSN (K'&SYSIN_DSN) is equal to
the number of characters assigned as a value to &SYSIN_DSN. In the CMS
example above, the count attribute of &SYSIN_DSN is 20.

4. Throughout the use of a macro definition, the value of &SYSIN_DSN is
considered a constant.

| Figure 57. Contents of &SYSIN_DSN on VSE

| SYSIPT Assigned To:| Contents of &SYSIN_DSN:

| Job stream (SYSIPT)| SYSIPT

| Disk| The file-id

| Labeled tape file| The file-id of the tape file

| Unlabeled tape file| SYSIPT

&SYSIN_MEMBER System Variable Symbol
|  The value of &SYSIN_MEMBER is always null.

| The value of the type attribute is O, and the value of the count attribute is 0.
|

|  You can use &SYSIN_MEMBER in a macro definition to obtain the
| name of the data set member from which the assembler is reading the source
| module. If concatenated data sets are used to provide the source module,
| &SYSIN_MEMBER has a value equal to the name of the data set member that
| contains the macro instruction that calls the definition.

| The local system variable symbol &SYSIN_MEMBER is assigned a read-only value
| each time a macro definition is called.

| If the data set from which the assembler is reading the source module is not an
| MVS partitioned data set or a CMS MACLIB, &SYSIN_MEMBER is assigned a null
| character string. 

  Chapter 7. How to Specify Macro Definitions 241



 &SYSIN_VOLUME System Variable Symbol  
 

Notes:

1. If the SOURCE user exit provides the data set information then the value in
&SYSIN_MEMBER is the value extracted from the Exit-Specific Information
block described in the High Level Assembler Programmer's Guide.

2. The value of the type attribute of &SYSIN_MEMBER (T'&SYSIN_MEMBER) is
U, unless &SYSIN_MEMBER is assigned a null character string, in which case
the value of the type attribute is O.

3. The value of the count attribute of &SYSIN_MEMBER (K'&SYSIN_MEMBER)
is equal to the number of characters assigned as a value to
&SYSIN_MEMBER. If &SYSIN_MEMBER is assigned a null character string,
the value of the count attribute is 0.

4. Throughout the use of a macro definition, the value of &SYSIN_MEMBER is
considered a constant.

&SYSIN_VOLUME System Variable Symbol
Use &SYSIN_VOLUME in a macro definition to obtain the volume identifier of the
first volume containing the data set from which the assembler is reading the source
module.

|  If concatenated data sets are used to provide the source module,
| &SYSIN_VOLUME has a value equal to the volume identifier of the first volume
| containing the data set that contains the macro call instruction. 

The local system variable symbol &SYSIN_VOLUME is assigned a read-only value
each time a macro definition is called.

If the assembler runs on the CMS component of the VM/ESA operating system,
and the source module is being read from a Shared File System CMS file,
&SYSIN_VOLUME is assigned the value DD SFS.

If the volume on which the input data set resides is not labeled, &SYSIN_VOLUME
is assigned a null character string.

Notes:

1. If the SOURCE user exit provides the data set information then the value in
&SYSIN_VOLUME is the value extracted from the Exit-Specific Information
block described in the High Level Assembler Programmer's Guide.

2. The value of the type attribute of &SYSIN_VOLUME (T'&SYSIN_VOLUME) is
U, unless &SYSIN_VOLUME is assigned a null character string, in which case
the value of the type attribute is O.

3. The value of the count attribute of &SYSIN_VOLUME (K'&SYSIN_VOLUME) is
equal to the number of characters assigned as a value to &SYSIN_VOLUME. If
&SYSIN_VOLUME is assigned a null character string, the value of the count
attribute is 0. The maximum length of this system variable symbol is 6.

4. Throughout the use of a macro definition, the value of &SYSIN_VOLUME is
considered a constant.

242 HLASM V1R3 Language Reference  



  &SYSLIB_DSN System Variable Symbol
 

&SYSJOB System Variable Symbol
Use &SYSJOB to obtain the jobname of the assembly job used to assemble your
source module. &SYSJOB has a global scope.

When the assembler runs on the CMS component of the VM/ESA operating
systems, &SYSJOB is assigned a value of (NOJOB).

Notes:

1. The value of the type attribute of &SYSJOB (T'&SYSJOB) is always U.

2. The value of the count attribute (K'&SYSJOB) is the number of characters
assigned.

&SYSLIB_DSN System Variable Symbol
Use &SYSLIB_DSN in a macro definition to obtain name of the data set from which
the assembler read the macro definition statements. If the macro definition is a
source macro definition, &SYSLIB_DSN is assigned the same value as
&SYSIN_DSN.

The local system variable symbol &SYSLIB_DSN is assigned a read-only value
each time a macro definition is called.

When the assembler runs on the MVS/ESA operating systems, the value of the
character string assigned to &SYSLIB_DSN is always the value stored in the JFCB
for SYSLIB.

When the assembler runs on the CMS component of the VM/ESA operating
systems, and the macro definition is a library macro definition, &SYSLIB_DSN is
assigned the file name, file type, and file mode of the data set.

 When the macro definition is a library macro definition, &SYSLIB_DSN is
assigned the library name and sublibrary name of the VSE Librarian file. 

Examples

Under MVS, &SYSLIB_DSN might be assigned a value such as:

SYS1.MACLIB

Under CMS, &SYSLIB_DSN might be assigned a value such as:

DMSGPI MACLIB S2

Under VSE, &SYSLIB_DSN might be assigned a value such as:

IJSYSRS.SYSLIB

Notes:

1. If the LIBRARY user exit provides the data set information then the value in
&SYSLIB_DSN is the value extracted from the Exit-Specific Information block
described in the High Level Assembler Programmer's Guide.

2. The value of the type attribute of &SYSLIB_DSN (T'&SYSLIB_DSN) is always
U.

  Chapter 7. How to Specify Macro Definitions 243



 &SYSLIB_VOLUME System Variable Symbol  
 

3. The value of the count attribute of &SYSLIB_DSN (K'&SYSLIB_DSN) is equal
to the number of characters assigned as a value to &SYSLIB_DSN.

4. Throughout the use of a macro definition, the value of &SYSLIB_DSN is
considered a constant.

&SYSLIB_MEMBER System Variable Symbol
Use &SYSLIB_MEMBER in a macro definition to obtain the name of the data set
member from which the assembler read the macro definition statements. If the
macro definition is a source macro definition, &SYSLIB_MEMBER is assigned the
same value as &SYSIN_MEMBER.

The local system variable symbol &SYSLIB_MEMBER is assigned a read-only
value each time a macro definition is called.

Notes:

1. If the LIBRARY user exit provides the data set information then the value in
&SYSLIB_MEMBER is the value extracted from the Exit-Specific Information
block described in the High Level Assembler Programmer's Guide.

2. The value of the type attribute of &SYSLIB_MEMBER (T'&SYSLIB_MEMBER)
is U, unless &SYSLIB_MEMBER is assigned a null character string, in which
case the value of the type attribute is O.

3. The value of the count attribute of &SYSLIB_MEMBER
(K'&SYSLIB_MEMBER) is equal to the number of characters assigned as a
value to &SYSLIB_MEMBER. If &SYSLIB_MEMBER is assigned a null
character string, the value of the count attribute is 0.

4. Throughout the use of a macro definition, the value of &SYSLIB_MEMBER is
considered a constant.

&SYSLIB_VOLUME System Variable Symbol
Use &SYSLIB_VOLUME in a macro definition to obtain the volume identifier of the
volume containing the data set from which the assembler read the macro definition
statements. If the macro definition is a source macro definition,
&SYSLIB_VOLUME is assigned the same value as &SYSIN_VOLUME.

The local system variable symbol &SYSLIB_VOLUME is assigned a read-only
value each time a macro definition is called.

If the assembler runs on the CMS component of the VM/ESA operating system,
and the source module is being read from a Shared File System CMS file,
&SYSLIB_VOLUME is assigned the value DD SFS.

Notes:

1. If the LIBRARY user exit provides the data set information then the value in
&SYSLIB_VOLUME is the value extracted from the Exit-Specific Information
block described in the High Level Assembler Programmer's Guide.

2. The value of the type attribute of &SYSLIB_VOLUME (T'&SYSLIB_VOLUME)
is U, unless &SYSLIB_VOLUME is assigned a null character string, in which
case the value of the type attribute is O.

3. The value of the count attribute of &SYSLIB_VOLUME (K'&SYSLIB_VOLUME)
is equal to the number of characters assigned as a value to

244 HLASM V1R3 Language Reference  



  &SYSLIN_DSN System Variable Symbol
 

&SYSLIB_VOLUME. If &SYSLIB_VOLUME is assigned a null character string,
the value of the count attribute is 0. The maximum length of this system
variable symbol is 6.

4. Throughout the use of a macro definition, the value of &SYSLIB_VOLUME is
considered a constant.

&SYSLIN_DSN System Variable Symbol
| Use &SYSLIN_DSN in a macro definition to obtain the name of the data set to
| which the assembler is writing the object records when assembler option OBJECT
| or XOBJECT is specified.

The local system variable symbol &SYSLIN_DSN is assigned a read-only value
each time a macro definition is called.

 The value of the character string assigned to &SYSLIN_DSN is always
the value stored in the JFCB for SYSLIN. If SYSLIN is allocated to DUMMY, or a
NULLFILE, the value in &SYSLIN_DSN is NULLFILE. 

 The value of the character string assigned to &SYSLIN_DSN is
determined as follows:

 The value of the character string assigned to &SYSLIN_DSN is
determined as follows:

Examples:

On MVS, &SYSLIN_DSN might be assigned a value such as:

Figure 58. Contents of &SYSLIN_DSN on CMS

SYSLIN Allocated To: Contents of &SYSLIN_DSN:

CMS file The 8-character filename, the
8-character filetype, and the
2-character filemode of the file, each
separated by a blank

Dummy file (no physical I/O) DUMMY

Punch PUNCH

Labeled tape file The data set name of the tape file

Unlabeled tape file TAPn, where n is a value from 0 to 9,
or A to F.

Figure 59. Contents of &SYSLIN_DSN on VSE

SYSLNK Assigned To: Contents of &SYSLIN_DSN:

Disk file The file-id

Labeled tape file The file-id of the tape file

Unlabeled tape file SYSLNK

  Chapter 7. How to Specify Macro Definitions 245



 &SYSLIN_VOLUME System Variable Symbol  
 

VCATR49.OBJ

On CMS, &SYSLIN_DSN might be assigned a value such as:

SAMPLE TEXT A1

Notes:

1. If the OBJECT user exit provides the data set information then the value in
&SYSLIN_DSN is the value extracted from the Exit-Specific Information block
described in the High Level Assembler Programmer's Guide.

2. The value of the type attribute of &SYSLIN_DSN (T'&SYSLIN_DSN) is always
U.

3. The value of the count attribute of &SYSLIN_DSN (K'&SYSLIN_DSN) is equal
to the number of characters assigned as a value to &SYSLIN_DSN.

&SYSLIN_MEMBER System Variable Symbol
 The value of &SYSLIN_MEMBER is always null.

The value of the type attribute is O, and the value of the count attribute is 0.

 You can use &SYSLIN_MEMBER in a macro definition to obtain the
name of the data set member to which the assembler is writing the object module
when the assembler option OBJECT or XOBJECT is specified.

The local system variable symbol &SYSLIN_MEMBER is assigned a read-only
value each time a macro definition is called.

If the library to which the assembler is writing the object records is not an MVS
partitioned data set, &SYSLIN_MEMBER is assigned a null character string.

Notes:

1. If the OBJECT user exit provides the data set information then the value in
&SYSLIN_MEMBER is the value extracted from the Exit-Specific Information
block described in the High Level Assembler Programmer's Guide.

2. The value of the type attribute of &SYSLIN_MEMBER (T'&SYSLIN_MEMBER)
is U, unless &SYSLIN_MEMBER is assigned a null character string, in which
case the value of the type attribute is O.

3. The value of the count attribute of &SYSLIN_MEMBER
(K'&SYSLIN_MEMBER) is equal to the number of characters assigned as a
value to &SYSLIN_MEMBER. If &SYSLIN_MEMBER is assigned a null
character string, the value of the count attribute is 0.

&SYSLIN_VOLUME System Variable Symbol
Use &SYSLIN_VOLUME in a macro definition to obtain the volume identifier of the
object data set. The volume identifier is of the first volume containing the data set.
&SYSLIN_VOLUME is only assigned a value when you specify the OBJECT or
XOBJECT assembler option.

246 HLASM V1R3 Language Reference  



  &SYSLIST System Variable Symbol
 

The local system variable symbol &SYSLIN_VOLUME is assigned a read-only
value each time a macro definition is called.

If the assembler runs on the CMS component of the VM/ESA operating system,
and the assembler listing is being written to a Shared File System CMS file,
&SYSLIN_VOLUME is assigned the value DD SFS.

If the volume on which the data set resides is not labeled, &SYSLIN_VOLUME is
assigned a null character string.

Notes:

1. If the OBJECT user exit provides the data set information then the value in
&SYSLIN_VOLUME is the value extracted from the Exit-Specific Information
block described in the High Level Assembler Programmer's Guide.

2. The value of the type attribute of &SYSLIN_VOLUME (T'&SYSLIN_VOLUME)
is U, unless &SYSLIN_VOLUME is assigned a null character string, in which
case the value of the type attribute is O.

3. The value of the count attribute of &SYSLIN_VOLUME (K'&SYSLIN_VOLUME)
is equal to the number of characters assigned as a value to
&SYSLIN_VOLUME. If &SYSLIN_VOLUME is assigned a null character string,
the value of the count attribute is 0. The maximum length of this system
variable symbol is 6.

&SYSLIST System Variable Symbol
Use &SYSLIST instead of a positional parameter inside a macro definition; for
example, as a point of substitution. By varying the subscripts attached to
&SYSLIST, you can refer to any sublist entry in a macro call, or any positional
operands in a macro call. You can also refer to positional operands for which no
corresponding positional parameter is specified in the macro prototype statement.

The local system variable symbol &SYSLIST is assigned a read-only value each
time a macro definition is called.

&SYSLIST refers to the complete list of positional operands specified in a macro
instruction. &SYSLIST does not refer to keyword operands. However, &SYSLIST
cannot be specified as &SYSLIST alone. One of the two following forms must be
used as a point of substitution:

1. &SYSLIST(n) can be used to refer to the n-th positional operand

2. If the n-th operand is a sublist, then &SYSLIST(n,m) can be used to refer to the
m-th operand in the sublist.

The subscripts n and m can be any arithmetic expression allowed in the operand of
a SETA instruction (See “SETA Instruction” on page 314). The subscript n must
be greater than or equal to 0. The subscript m must be greater than or equal to 1.

When referring to multilevel (nested) sublists in operands of macro instructions,
refer to elements of inner sublists by using the applicable number of subscripts for
&SYSLIST.

The examples below show the values assigned to &SYSLIST according to the
value of its subscripts n and m.

  Chapter 7. How to Specify Macro Definitions 247



 &SYSLIST System Variable Symbol  
 

Macro instruction:
------------------
NAME MACALL ONE,TWO,(3,(4,5,6),,8),,TEN

Point of Substitution Value
in Macro Definition: Substituted: See note:
--------------------- ------------ ---------
&SYSLIST(2) TWO
&SYSLIST(3,1) 3
&SYSLIST(3,2,2) 5

&SYSLIST(4) Null 1

&SYSLIST(9) Null 1

&SYSLIST(3,3) Null 2

&SYSLIST(3,5) Null 2

&SYSLIST(2,1) TWO 3
&SYSLIST(2,2) Null

&SYSLIST(K) NAME 4
&SYSLIST(3) (3,(4,5,6),,8)

Notes:

1. If the position indicated by n refers to an omitted operand, or refers past the
end of the list of positional operands specified, the null character string is
substituted for &SYSLIST(n).

2. If the position (in a sublist) indicated by the second subscript, m, refers to an
omitted entry, or refers past the end of the list of entries specified in the sublist
referred to by the first subscript, n, the null character string is substituted for
&SYSLIST(n,m).

3. If the n-th positional operand is not a sublist, &SYSLIST(n,1) refers to the
operand. However, &SYSLIST(n,m), where m is greater than 1, causes the
null character string to be substituted.

4. If the value of subscript n is 0, then &SYSLIST(n) is assigned the value
specified in the name field of the macro instruction, except when it is a
sequence symbol.

Attribute references can be made to the previously described forms of &SYSLIST.
The attributes are the attributes inherent in the positional operands or sublist entries
to which you refer. However, the number attribute of &SYSLIST (N'&SYSLIST) is
different from the number attribute described in “Data Attributes” on page 292.
One of two forms can be used for the number attribute:

� To indicate the number of positional operands specified in a call, use the form
N'&SYSLIST.

� To indicate the number of sublist entries that have been specified in a
positional operand, use the form N'&SYSLIST(n).

248 HLASM V1R3 Language Reference  



  &SYSLOC System Variable Symbol
 

Notes:

1. N'&SYSLIST includes any positional operands that are omitted. Positional
operands are omitted by coding a comma where an operand is expected.

2. N'&SYSLIST(n) includes those sublist entries specifically omitted by specifying
the comma that would normally have followed the entry.

3. If the operand indicated by n is not a sublist, N'&SYSLIST(n) is 1. If it is
omitted, N'&SYSLIST(n) is 0.

The COMPAT(SYSLIST) assembler option instructs the assembler to treat sublists
in macro instruction operands as character strings, not sublists. See the High Level
Assembler Programmer's Guide for a description of the COMPAT(SYSLIST)
assembler option.

Examples of sublists:

 Macro Instruction N'&SYSLIST

 MACLST 1,2,3,4 4
 MACLST A,B,,D,E 5
 MACLST ,A,B,C,D 5
 MACLST (A,B,C),(D,E,F) 2
 MACLST K
 MACLST KEY1=A,KEY2=B K
 MACLST A,B,KEY1=C 2

 N'&SYSLIST(2)

 MACSUB A,(1,2,3,4,5),B 5
 MACSUB A,(1,,3,,5),B 5
 MACSUB A,(,2,3,4,5),B 5
 MACSUB A,B,C 1
 MACSUB A,,C K
 MACSUB A,KEY=(A,B,C) K
 MACSUB K

&SYSLOC System Variable Symbol
Use &SYSLOC in a macro definition to generate the name of the location counter
in effect. If you have not coded a LOCTR instruction between the macro instruction
and the preceding START, CSECT, RSECT, DSECT, or COM instruction, the value
of &SYSLOC is the same as the value of &SYSECT.

The assembler assigns to the system variable symbol &SYSLOC a local read-only
value each time a macro definition containing it is called. The value assigned is the
symbol representing the name of the location counter in use at the point where the
macro is called.

&SYSLOC can only be used in macro definitions.

  Chapter 7. How to Specify Macro Definitions 249



 &SYSM_SEV System Variable Symbol  
 

Notes:

1. The value of the type attribute of &SYSLOC (T'&SYSLOC) is always U.

2. The value of the count attribute (K'&SYSLOC) is equal to the number of
characters assigned as a value to &SYSLOC.

3. Throughout the use of a macro definition, the value of &SYSLOC is considered
a constant.

| &SYSMAC System Variable Symbol
| By varying the subscripts attached to the &SYSMAC you can refer to the name of
| any of the macros called between opencode and the current nesting level, that is,
| &SYSMAC(&SYSNEST) returns 'OPEN CODE'. Valid subscripts are 0 to
| &SYSNEST. If &SYSMAC is used with a subscript greater than &SYSNEST, a null
| character string is returned.

| &SYSMAC with no subscript is treated as &SYSMAC(0) and so provides the name
| of the macro being expanded. This is not considered to be an error and so no
| message is issued.

| The local system variable symbol &SYSMAC is assigned a read-only value each
| time a macro definition is called.

| Notes:

| 1. The value of the type attribute of &SYSMAC (T'&SYSMAC(n)) is U, unless
| &SYSMAC(n) is assigned a null character string, in which case the value of the
| type attribute is O.

| 2. The value of the count attribute (K'&SYSMAC(n)) is equal to the number of
| characters assigned as a value to &SYSMAC(n).

| &SYSM_HSEV System Variable Symbol
| Use &SYSM_HSEV to get the highest MNOTE severity so far for the assembly.

| The global system variable symbol &SYSM_HSEV is assigned a read-only value.
| The assembler compares this value with the severity of MNOTE assembler
| instructions as they are encountered and, if lower, updates it with the higher value.

| Notes:

| 1. The value of the type attribute of &SYSM_HSEV (T'&SYSM_HSEV) is always
| N.

| 2. The value of the count attribute (K'&SYSM_HSEV) is always 3.

| In Figure 60 on page 251 the &SYSM_HSEV variable is updated immediately an
| MNOTE is issued with a higher severity.

| &SYSM_SEV System Variable Symbol
| Use &SYSM_SEV to get the highest MNOTE severity code for the macro most
| recently called directly from this level.

| The global system variable symbol &SYSM_SEV is assigned a read-only value.
| The assembler assigns a value of zero when a macro is called and when a macro

250 HLASM V1R3 Language Reference  



  &SYSNDX System Variable Symbol
 

| returns (MEND or MEXIT), the highest severity of all MNOTE assembler
| instructions executed in the called macro is used to update the variable.

| Notes:

| 1. The value of the type attribute of &SYSM_SEV (T'&SYSM_SEV) is always N.

| 2. The value of the count attribute (K'&SYSM_SEV) is always 3.

| In Figure 60 the &SYSM_SEV variable has a value of 0 until INNER returns. The
| OUTER macro uses &SYSM_SEV to determine which statements to generate, and
| in this case issues an MNOTE to pass the severity back to the open code.

|  1 MACRO
|  2 OUTER &SEV
| 3 DC A(&SYSM_HSEV,&SYSM_SEV) outer 1
| 4 MNOTE &SEV,'OUTER - parm severity=&SEV'
| 5 DC A(&SYSM_HSEV,&SYSM_SEV) outer 2
|  6 INNER
| 7 DC A(&SYSM_HSEV,&SYSM_SEV) outer 3
| 8 AIF ('&SEV' GT '&SYSM_SEV').MN
| 9 MNOTE &SYSM_SEV,'OUTER - returned severity=&SYSM_SEV'
| 1K .MN ANOP
| 11 DC A(&SYSM_HSEV,&SYSM_SEV) outer 4
|  12 MEND
|  13 MACRO
|  14 INNER
| 15 DC A(&SYSM_HSEV,&SYSM_SEV) inner 1
|  16 MNOTE 8,'INNER'
| 17 DC A(&SYSM_HSEV,&SYSM_SEV) inner 2
|  18 MEND
| KKKKKK KKKKK KKK4K 19 E_G CSECT
| 2K D,OPEN CODE an mnote comment - sev=K
| 21 DC A(&SYSM_HSEV,&SYSM_SEV) open_code
| KKKKKK KKKKKKKKKKKKKKKK + DC A(KKK,KKK) open_code
|  22 OUTER 4
| KKKKK8 KKKKKKKKKKKKKKKK 23+ DC A(KKK,KKK) outer 1
| DD ASMA254I DDD MNOTE DDD 24+ 4,OUTER - parm severity=4
| KKKK1K KKKKKKK4KKKKKKKK 25+ DC A(KK4,KKK) outer 2
| KKKK18 KKKKKKK4KKKKKKKK 26+ DC A(KK4,KKK) inner 1
| DD ASMA254I DDD MNOTE DDD 27+ 8,INNER
| KKKK2K KKKKKKK8KKKKKKKK 28+ DC A(KK8,KKK) inner 2
| KKKK28 KKKKKKK8KKKKKKK8 29+ DC A(KK8,KK8) outer 3
| DD ASMA254I DDD MNOTE DDD 3K+ KK8,OUTER - returned severity=KK8
| KKKK3K KKKKKKK8KKKKKKK8 31+ DC A(KK8,KK8) outer 4
| 32 D,OPEN CODE an mnote comment - sev=K
| 33 DC A(&SYSM_HSEV,&SYSM_SEV) open_code
| KKKK38 KKKKKKK8KKKKKKK8 + DC A(KK8,KK8) open_code
|  34 END

| Figure 60. Example of the behavior of the &SYSM_HSEV and &SYSM_SEV variables.

&SYSNDX System Variable Symbol
You can attach &SYSNDX to the end of a symbol inside a macro definition to
generate a unique suffix for that symbol each time you call the definition. Although
the same symbol is generated by two or more calls to the same definition, the suffix
provided by &SYSNDX produces two or more unique symbols. Thus you avoid an
error being flagged for multiply defined symbols.

  Chapter 7. How to Specify Macro Definitions 251



 &SYSNDX System Variable Symbol  
 

The local system variable symbol &SYSNDX is assigned a read-only value each
time a macro definition is called from a source module.

The value assigned to &SYSNDX is a number from 1 to 9999999. For the
numbers 0001 through 9999, four digits are generated. For the numbers 10000
through 9999999, the value is generated with no zeros to the left. The value 0001
is assigned to the first macro called by a program, and is incremented by one for
each subsequent macro call (including nested macro calls).

The maximum value for &SYSNDX can be controlled by the MHELP instruction
described under “MHELP Control on &SYSNDX” on page 350.

Notes:

1. &SYSNDX does not generate a valid symbol, and it must:

� Follow the symbol to which it is concatenated
� Be concatenated to a symbol containing 59 characters or less

2. The value of the type attribute of &SYSNDX (T'&SYSNDX) is always N.

3. The value of the count attribute (K'&SYSNDX) is equal to the number of digits
generated.

The example that follows, shows the use of &SYSNDX. It is assumed that the first
macro instruction processed, OUTER1, is the 106th macro instruction processed by
the assembler.

252 HLASM V1R3 Language Reference  



  &SYSNDX System Variable Symbol
 

 MACRO
 INNER1
 GBLC &NDXNUM
A&SYSNDX SR 2,5 Statement 1
 CR 2,5
 BE B&NDXNUM Statement 2
 B A&SYSNDX Statement 3
 MEND

 MACRO
&NAME OUTER1
 GBLC &NDXNUM
&NDXNUM SETC '&SYSNDX' Statement 4
&NAME SR 2,4
 AR 2,6
 INNER1 Statement 5
B&SYSNDX S 2,=F'1KKK' Statement 6
 MEND
-------------------------------------------------------------------
ALPHA OUTER1 Statement 7
BETA OUTER1 Statement 8
-------------------------------------------------------------------
ALPHA SR 2,4
 AR 2,6
AK1K7 SR 2,5
 CR 2,5
 BE BK1K6
 B AK1K7
BK1K6 S 2,=F'1KKK'
BETA SR 2,4
 AR 2,6
AK1K9 SR 2,5
 CR 2,5
 BE BK1K8
 B AK1K9
BK1K8 S 2,=F'1KKK'

Statement 7 is the 106th macro instruction processed. Therefore, &SYSNDX is
assigned the number 0106 for that macro instruction. The number 0106 is
substituted for &SYSNDX when it is used in statements 4 and 6. Statement 4 is
used to assign the character value K1K6 to the SETC symbol &NDXNUM Statement 6
is used to create the unique name BK1K6.

Statement 5 is the 107th macro instruction processed. Therefore, &SYSNDX is
assigned the number K1K7 for that macro instruction. The number K1K7 is
substituted for &SYSNDX when it is used in statements 1 and 3. The number K1K6
is substituted for the global SETC symbol &NDXNUM in statement 2.

Statement 8 is the 108th macro instruction processed. Therefore, each occurrence
of &SYSNDX is replaced by the number K1K8. For example, statement 6 is used to
create the unique name BK1K8.

When statement 5 is used to process the 108th macro instruction, statement 5
becomes the 109th macro instruction processed. Therefore, each occurrence of
&SYSNDX is replaced by the number K1K9. For example, statement 1 is used to
create the unique name AK1K9.

  Chapter 7. How to Specify Macro Definitions 253



 &SYSNEST System Variable Symbol  
 

&SYSNEST System Variable Symbol
Use &SYSNEST to obtain the current macro instruction nesting level.

The local system variable symbol &SYSNEST is assigned a read-only value each
time a macro definition is called from a source module.

The value assigned to &SYSNEST is a number from 1 to 99999999. No leading
zeros are generated as part of the number. When a macro is called from open
code, the value assigned to &SYSNEST is the number 1. Each time a macro
definition is called by an inner macro instruction, the value assigned to &SYSNEXT
is incremented by 1. Each time an inner macro exits, the value is decremented by
1.

Notes:

1. The value of the type attribute of &SYSNEST (T'&SYSNEST) is always N.

2. The value of the count attribute (K'&SYSNEST) is equal to the number of digits
assigned.

The following example shows the values assigned to &SYSNEST:

 MACRO
 OUTER
 DC A(&SYSNEST) Statement 1
 INNER1 Statement 2
 INNER2 Statement 3
 MEND

 MACRO
 INNER1
 DC A(&SYSNEST) Statement 4
 INNER2 Statement 5
 MEND

 MACRO
 INNER2
 DC A(&SYSNEST) Statement 6
 MEND
--------------------------------------------------------------------
 OUTER Statement 7
+ DC A(1)
+ DC A(2)
+ DC A(3)
+ DC A(2)

Statement 7 is in open code. It calls the macro OUTER. &SYSNEST is assigned a
value of 1 which is substituted in statement 1.

Statement 2, within the macro definition of OUTER, calls macro INNER1. The value
assigned to &SYSNEST is incremented by 1. The value 2 is substituted for
&SYSNEST in statement 4.

Statement 5, within the macro definition of INNER1, calls macro INNER2. The value
assigned to &SYSNEST is incremented by 1. The value 3 is substituted for
&SYSNEST in statement 6.

254 HLASM V1R3 Language Reference  



  &SYSOPT_RENT System Variable Symbol
 

When the macro INNER2 exits, the value assigned to &SYSNEST is decremented by
1. The value of &SYNEST is 2.

When the macro INNER1 exits, the value assigned to &SYSNEST is decremented by
1. The value of &SYSNEST is 1.

Statement 3, within the macro definition of OUTER, calls macro INNER2. The value
assigned to &SYSNEST is incremented by 1. The value 2 is substituted for
&SYSNEST in statement 6.

&SYSOPT_DBCS System Variable Symbol
You can use &SYSOPT_DBCS to determine if the DBCS assembler option was
supplied for the assembly of your source module. &SYSOPT_DBCS is a Boolean
system variable symbol, and has a global scope.

If the DBCS assembler option was specified, &SYSOPT_DBCS is assigned a value
of 1. If the DBCS assembler option was not specified, &SYSOPT_DBCS is
assigned a value of 0.

For more information about the DBCS assembler option, see the High Level
Assembler Programmer's Guide.

Notes:

1. The value of the type attribute of &SYSOPT_DBCS (T'&SYSOPT_DBCS) is
always N.

2. The value of the count attribute (K'&SYSOPT_DBCS) is always 1.

&SYSOPT_OPTABLE System Variable Symbol
Use &SYSOPT_OPTABLE to determine the value that was specified for the
OPTABLE assembler option. &SYSOPT_OPTABLE has a global scope.

The value that was specified for the OPTABLE assembler option indicates which
operation code table the assembler has loaded, and is using.

For more information about the OPTABLE assembler option, see your High Level
Assembler Programmer's Guide.

Notes:

1. The value of the type attribute of &SYSOPT_OPTABLE
(T'&SYSOPT_OPTABLE) is always U.

2. The value of the count attribute (K'&SYSOPT_OPTABLE) is the number of
characters assigned.

&SYSOPT_RENT System Variable Symbol
Use &SYSOPT_RENT to determine if the RENT assembler option was specified for
the assembly of your source module. The RENT option instructs the assembler to
check for possible coding violations of program reenterability. &SYSOPT_RENT is
a Boolean system variable symbol, and has a global scope.

  Chapter 7. How to Specify Macro Definitions 255



 &SYSPARM System Variable Symbol  
 

If the RENT assembler option was specified, &SYSOPT_RENT is assigned a value
of 1. If the RENT assembler option was not specified, &SYSOPT_RENT is
assigned a value of 0.

For more information about the RENT assembler option, see your High Level
Assembler Programmer's Guide.

Notes:

1. The value of the type attribute of &SYSOPT_RENT (T'&SYSOPT_RENT) is
always N.

2. The value of the count attribute (K'&SYSOPT_RENT) is always 1.

| &SYSOPT_XOBJECT System Variable Symbol
| The &SYSOPT_XOBJECT system variable is set to 1 if XOBJECT is specified,
| otherwise it is set to 0.

| &SYSOPT_XOBJECT is a Boolean system variable symbol with global scope.

| Notes:

| 1. The value of the type attribute of &SYSOPT_XOBJECT
| (T'&SYSOPT_XOBJECT) is always N.

| 2. The value of the count attribute (K'&SYSOPT_XOBJECT) is always 1.

&SYSPARM System Variable Symbol
Use &SYSPARM to communicate with an assembler source module through job
control language (JCL). Through &SYSPARM, you pass a character string into the
source module to be assembled from a JCL statement, or from a program that
dynamically calls the assembler. Thus, you can set a character value from outside
a source module and then examine it as part of the source module during
conditional assembly processing.

The global system variable symbol &SYSPARM is assigned a read-only value in a
JCL statement or in a field set up by a program that dynamically calls the
assembler. It is treated as a global SETC symbol in a source module except that
its value cannot be changed.

Notes:

1. The largest value that &SYSPARM can hold is 255 characters. However, if the
PARM field of the EXEC statement is used to specify its value, the PARM field
restrictions reduce its maximum possible length.

| 2. No values are substituted for variable symbols in the specified value, however,
| on MVS and VSE, you must use double ampersands to represent a single
| ampersand.

| 3. On MVS and VSE, you must use two single quotation marks to represent a
| single quotation mark, because the entire EXEC PARM field is enclosed in
| single quotation marks.

4. If the SYSPARM assembler option is not specified, &SYSPARM is assigned the
default value that was specified when the assembler was installed on your
system.

256 HLASM V1R3 Language Reference  



  &SYSPRINT_DSN System Variable Symbol
 

If a default value for SYSPARM was not specified when the assembler was
installed on your system, &SYSPARM is assigned a value of the null character
string.

5. The value of the type attribute of &SYSPARM (T'&SYSPARM) is U, unless
&SYSPARM is assigned a null value, in which case the value of the type
attribute is O.

6. The value of the count attribute (K'&SYSPARM) is the number of characters
assigned as a value to &SYSPARM. If &SYSPARM is assigned a null character
string, the value of the count attribute is 0.

&SYSPRINT_DSN System Variable Symbol
Use &SYSPRINT_DSN in a macro definition to obtain the name of the data set to
which the assembler writes the assembler listing.

The local system variable symbol &SYSPRINT_DSN is assigned a read-only value
each time a macro definition is called.

When the assembler runs on the MVS/ESA operating systems, the value of the
character string assigned to &SYSPRINT_DSN is always the value stored in the
JFCB for SYSPRINT. If SYSPRINT is allocated to DUMMY, or a NULLFILE, the
value in &SYSPRINT_DSN is NULLFILE.

When the assembler runs on the CMS component of the VM/ESA operating
systems, the value of the character string assigned to &SYSPRINT_DSN is
determined as follows:

| When the assembler runs on VSE, the value of the character string assigned to
| &SYSPRINT_DSN is determined as follows:

Figure 61. Contents of &SYSPRINT_DSN on CMS

SYSPRINT Allocated To: Contents of &SYSPRINT_DSN:

CMS file The 8-character filename, the
8-character filetype, and the
2-character filemode of the file, each
separated by a blank

Dummy file (no physical I/O) DUMMY

Printer PRINTER

Labeled tape file The data set name of the tape file

Unlabeled tape file TAPn, where n is a value from 0 to 9,
or A to F.

Terminal TERMINAL

Figure 62. Contents of &SYSPRINT_DSN on VSE

SYSLST Assigned To: Contents of &SYSPRINT_DSN:

Disk file (not for dynamic partitions) The file-id

Printer SYSLST

Labeled tape file The file-id of the tape file

Unlabeled tape file SYSLST

  Chapter 7. How to Specify Macro Definitions 257



 &SYSPRINT_MEMBER System Variable Symbol  
 

Examples:

On MVS, &SYSPRINT_DSN might be assigned a value such as:

VCATR49.VCATR49A.JOBK6734.DKKKK1K2.?

On CMS, &SYSPRINT_DSN might be assigned a value such as:

SAMPLE LISTING A1

Notes:

1. If the LISTING user exit provides the listing data set information then the value
in &SYSPRINT_DSN is the value extracted from the Exit-Specific Information
block described in the High Level Assembler Programmer's Guide.

2. The value of the type attribute of &SYSPRINT_DSN (T'&SYSPRINT_DSN) is
always U.

3. The value of the count attribute of &SYSPRINT_DSN (K'&SYSPRINT_DSN) is
equal to the number of characters assigned as a value to &SYSPRINT_DSN.

&SYSPRINT_MEMBER System Variable Symbol
 The value of &SYSPRINT_MEMBER is always null.

The value of the type attribute is O, and the value of the count attribute is 0.

 You can use &SYSPRINT_MEMBER in a macro definition to obtain
the name of the data set member to which the assembler is writing the assembler
listing.

The local system variable symbol &SYSPRINT_MEMBER is assigned a read-only
value each time a macro definition is called.

If the data set to which the assembler is writing the assembler listing is not an MVS
partitioned data set, &SYSPRINT_MEMBER is assigned a null character string.

Notes:

1. If the LISTING user exit provides the listing data set information then the value
in &SYSPRINT_MEMBER is the value extracted from the Exit-Specific
Information block described in the High Level Assembler Programmer's Guide.

2. The value of the type attribute of &SYSPRINT_MEMBER
(T'&SYSPRINT_MEMBER) is U, unless &SYSPRINT_MEMBER is assigned a
null character string, in which case the value of the type attribute is O.

3. The value of the count attribute of &SYSPRINT_MEMBER
(K'&SYSPRINT_MEMBER) is equal to the number of characters assigned as a
value to &SYSPRINT_MEMBER. If &SYSPRINT_MEMBER is assigned a null
character string, the value of the count attribute is 0.

258 HLASM V1R3 Language Reference  



  &SYSPUNCH_DSN System Variable Symbol
 

&SYSPRINT_VOLUME System Variable Symbol
Use &SYSPRINT_VOLUME in a macro definition to obtain the volume identifier of
the first volume containing the data set to which the assembler writes the
assembler listing.

The local system variable symbol &SYSPRINT_VOLUME is assigned a read-only
value each time a macro definition is called.

If the assembler runs on the CMS component of the VM/ESA operating system,
and the assembler listing writes to a Shared File System CMS file,
&SYSPRINT_VOLUME is assigned the value DD SFS.

If the volume on which the data set resides is not labeled, &SYSPRINT_VOLUME
is assigned a null character string.

Notes:

1. If the LISTING user exit provides the listing data set information then the value
in &SYSPRINT_VOLUME is the value extracted from the Exit-Specific
Information block described in the High Level Assembler Programmer's Guide.

2. The value of the type attribute of &SYSPRINT_VOLUME
(T'&SYSPRINT_VOLUME) is U, unless &SYSPRINT_VOLUME is assigned a
null character string, in which case the value of the type attribute is O.

3. The value of the count attribute of &SYSPRINT_VOLUME
(K'&SYSPRINT_VOLUME) is equal to the number of characters assigned as a
value to &SYSPRINT_VOLUME. If &SYSPRINT_VOLUME is assigned a null
character string, the value of the count attribute is 0. The maximum length of
this system variable symbol is 6.

&SYSPUNCH_DSN System Variable Symbol
Use &SYSPUNCH_DSN in a macro definition to obtain the name of the data set to
which the assembler is writing the object records when assembler option DECK is
specified.

The local system variable symbol &SYSPUNCH_DSN is assigned a read-only value
each time a macro definition is called.

When the assembler runs on the MVS/ESA operating systems, the value of the
character string assigned to &SYSPUNCH_DSN is always the value stored in the
JFCB for SYSPUNCH. If SYSPUNCH is allocated to DUMMY, or a NULLFILE, the
value in &SYSPUNCH_DSN is NULLFILE.

When the assembler runs on the CMS component of the VM/ESA operating
systems, the value of the character string assigned to &SYSPUNCH_DSN is
determined as follows:

Figure 63 (Page 1 of 2). Contents of &SYSPUNCH_DSN on CMS

SYSPUNCH Allocated To: Contents of &SYSPUNCH_DSN:

CMS file The 8-character filename, the
8-character filetype, and the
2-character filemode of the file, each
separated by a blank

  Chapter 7. How to Specify Macro Definitions 259



 &SYSPUNCH_MEMBER System Variable Symbol  
 

On VSE, the value of the character string assigned to &SYSPUNCH_DSN is
determined as follows:

Examples:

On MVS, &SYSPUNCH_DSN might be assigned a value such as:

VCATR49.VCATR49A.JOBK6734.DKKKK1K3.?

On CMS, &SYSPUNCH_DSN might be assigned a value such as:

PUNCH

Notes:

1. If the PUNCH user exit provides the punch data set information then the value
in &SYSPUNCH_DSN is the value extracted from the Exit-Specific Information
block described in the High Level Assembler Programmer's Guide.

2. The value of the type attribute of &SYSPUNCH_DSN (T'&SYSPUNCH_DSN)
is always U.

3. The value of the count attribute of &SYSPUNCH_DSN (K'&SYSPUNCH_DSN)
is equal to the number of characters assigned as a value to
&SYSPUNCH_DSN.

Figure 63 (Page 2 of 2). Contents of &SYSPUNCH_DSN on CMS

SYSPUNCH Allocated To: Contents of &SYSPUNCH_DSN:

Dummy file (no physical I/O) DUMMY

Punch PUNCH

Labeled tape file The data set name of the tape file

Unlabeled tape file TAPn, where n is a value from 0 to 9,
or A to F.

Figure 64. Contents of &SYSPUNCH_DSN on VSE

SYSPCH Assigned To: Contents of &SYSPUNCH_DSN:

Disk file The file-id

Punch SYSPCH

Labeled tape file The file-id of the tape file

Unlabeled tape file SYSPCH

&SYSPUNCH_MEMBER System Variable Symbol
|  The value of &SYSPUNCH_MEMBER is always null.

| The value of the type attribute is O, and the value of the count attribute is 0.
|

|  You can use &SYSPUNCH_MEMBER in a macro definition to obtain
| the name of the data set member to which the assembler is writing the object
| records when the assembler option DECK is specified.

260 HLASM V1R3 Language Reference  



  &SYSPUNCH_VOLUME System Variable Symbol
 

| The local system variable symbol &SYSPUNCH_MEMBER is assigned a read-only
| value each time a macro definition is called.

| If the data set to which the assembler is writing the object records is not an MVS
| partitioned data set, &SYSPUNCH_MEMBER is assigned a null character string.
|

Notes:

1. If the PUNCH user exit provides the punch data set information then the value
in &SYSPUNCH_MEMBER is the value extracted from the Exit-Specific
Information block described in the High Level Assembler Programmer's Guide.

2. The value of the type attribute of &SYSPUNCH_MEMBER
(T'&SYSPUNCH_MEMBER) is U, unless &SYSPUNCH_MEMBER is assigned
a null character string, in which case the value of the type attribute is O.

3. The value of the count attribute of &SYSPUNCH_MEMBER
(K'&SYSPUNCH_MEMBER) is equal to the number of characters assigned as
a value to &SYSPUNCH_MEMBER. If &SYSPUNCH_MEMBER is assigned a
null character string, the value of the count attribute is 0.

&SYSPUNCH_VOLUME System Variable Symbol
Use &SYSPUNCH_VOLUME in a macro definition to obtain the volume identifier of
the object data set. The volume identifier is of the first volume containing the data
set. &SYSPUNCH_VOLUME is only assigned a value when you specify the DECK
assembler option.

The local system variable symbol &SYSPUNCH_VOLUME is assigned a read-only
value each time a macro definition is called.

If the assembler runs on the CMS component of the VM/ESA operating system,
and the object records are being written to a Shared File System CMS file,
&SYSPUNCH_VOLUME is assigned the value DD SFS.

If the volume on which the data set resides is not labeled, &SYSPUNCH_VOLUME
is assigned a null character string.

Notes:

1. If the PUNCH user exit provides the punch data set information then the value
in &SYSPUNCH_VOLUME is the value extracted from the Exit-Specific
Information block described in the High Level Assembler Programmer's Guide.

2. The value of the type attribute of &SYSPUNCH_VOLUME
(T'&SYSPUNCH_VOLUME) is U, unless &SYSPUNCH_VOLUME is assigned
a null character string, in which case the value of the type attribute is O.

3. The value of the count attribute of &SYSPUNCH_VOLUME
(K'&SYSPUNCH_VOLUME) is equal to the number of characters assigned as
a value to &SYSPUNCH_VOLUME. If &SYSPUNCH_VOLUME is assigned a
null character string, the value of the count attribute is 0. The maximum length
of this system variable symbol is 6.

  Chapter 7. How to Specify Macro Definitions 261



 &SYSSTEP System Variable Symbol  
 

&SYSSEQF System Variable Symbol
Use &SYSSEQF in a macro definition to obtain the value of the
identification-sequence field of the macro instruction in open code that caused,
directly or indirectly, the macro to be called.

The local system variable symbol &SYSSEQF is assigned a read-only value each
time a macro definition is called from a source module.

The value assigned to &SYSSEQF is determined as follows:

1. If no ICTL instruction has been specified and sequence checking is not active,
the contents of columns 73 to 80 inclusive of the source statement are
assigned to &SYSSEQF.

2. If an ICTL instruction has been specified, but sequence checking is not active,
the contents of the columns of the source statement to the right of the
continuation-indicator column are assigned to &SYSSEQF. If the end column or
the continuation-indicator column is 80, &SYSSEQF is assigned a null
character string.

3. If an ISEQ instruction with operands has been specified to start sequence
checking, the contents of columns specified in the ISEQ instruction operand are
assigned to &SYSSEQF.

4. If an ISEQ instruction without an operand has been specified to end sequence
checking, steps (1) and (2) are used to determine the value assigned to
&SYSSEQF.

Notes:

1. The value of the type attribute of &SYSSEQF (T'&SYSSEQF) is U, unless
&SYSSEQF is assigned a null character string, in which case the value of the
type attribute is O.

2. The value of the count attribute of &SYSSEQF (K'&SYSSEQF) is equal to the
number of characters assigned as a value to &SYSSEQF. If &SYSSEQF is
assigned a null character string, the value of the count attribute is 0.

3. Throughout the use of a macro definition, the value of &SYSSEQF is
considered a constant.

&SYSSTEP System Variable Symbol
Use &SYSSTEP to obtain the stepname of the job step used to assemble your
source module. &SYSSTEP has a global scope.

On VSE the value of &SYSSTEP is always (NOSTEP).

On CMS, &SYSSTEP is assigned a value of (NOSTEP).

Notes:

1. The value of the type attribute of &SYSSTEP (T'&SYSSTEP) is always U.

2. The value of the count attribute (K'&SYSSTEP) is the number of characters
assigned.

262 HLASM V1R3 Language Reference  



  &SYSSTYP System Variable Symbol
 

&SYSSTMT System Variable Symbol
Use &SYSSTMT to obtain the next statement number that is assigned to a
statement by the assembler. &SYSSTMT has a global scope.

The value assigned to &SYSSTMT is an 8-character string, padded on the left with
leading zeros. The following example shows the value assigned to &SYSSTMT. It
assumes that the DC statement is in open code, and is the 23rd statement in the
source module.

23 DC C'&SYSSTMT'
 + DC C'KKKKKK24'

Notes:

1. The value of the type attribute of &SYSSTMT (T'&SYSSTMT) is always N.
2. The value of the count attribute of &SYSSTMT (K'&SYSSTMT) is always 8.

&SYSSTYP System Variable Symbol
Use &SYSSTYP in a macro definition to generate the type of the current control
section. The current control section is the control section in which the macro
instruction that calls the definition appears.

The local system variable symbol &SYSSTYP is assigned a read-only value each
time a macro definition is called.

The value assigned is the symbol that represents the type of the current control
section in effect when the macro is called. A control section that has been initiated
or continued by substitution does not affect the value of &SYSSTYP for the
expansion of the current macro. However, it does affect &SYSSTYP for a
subsequent macro call. Nested macros cause the assembler to assign a value to
&SYSSTYP that depends on the control section in force inside the calling macro
when the inner macro is called.

The control section whose type is assigned to &SYSSTYP can be defined by a
program sectioning statement. This can be a START, CSECT, RSECT, DSECT, or
COM statement, or, for the first control section, any instruction described in “First
Control Section” on page 51. Depending upon the instruction used to initiate the
current control section, the value assigned to &SYSSTYP is either CSECT, RSECT,
DSECT, or COM. If the current control section is an executable control section
initiated by other than a CSECT or RSECT instruction, the value assigned to
&SYSSTYP is CSECT.

If a control section has not been initiated, &SYSSTYP is assigned a null character
string.

Notes:

1. The value of the type attribute of &SYSSTYP (T'&SYSSTYP) is U, unless
&SYSSTYP is assigned a null character string, in which case the value of the
type attribute is O.

2. The value of the count attribute of &SYSSTYP (K'&SYSSTYP) is equal to the
number of characters assigned as a value to &SYSSTYP. If &SYSSTYP is
assigned a null character string, the value of the count attribute is 0.

  Chapter 7. How to Specify Macro Definitions 263



 &SYSTERM_DSN System Variable Symbol  
 

3. Throughout the use of a macro definition, the value of &SYSSTYP is
considered a constant.

&SYSTEM_ID System Variable Symbol
Use &SYSTEM_ID to obtain the name and release of the operating system under
which your source module is being assembled. &SYSTEM_ID has a global scope.

For example, on MVS, &SYSTEM_ID might contain one of the following:

MVS/ESA SP 4.3.K
MVS/ESA SP 5.1.K
... etc.

on CMS, &SYSTEM_ID might contain one of the following:

CMS 7
CMS 9
CMS 11
... etc.

on VSE, &SYSTEM_ID might contain one of the following:

VSE/AF 5.1.2
VSE/AF 6.1.K
... etc.

Notes:

1. The value of the type attribute of &SYSTEM_ID (T'&SYSTEM_ID) is always U.

2. The value of the count attribute (K'&SYSTEM_ID) is the number of characters
assigned.

&SYSTERM_DSN System Variable Symbol
Use &SYSTERM_DSN in a macro definition to obtain the name of the data set to
which the assembler is writing the terminal records.

The local system variable symbol &SYSTERM_DSN is assigned a read-only value
each time a macro definition is called.

When the assembler runs on the MVS/ESA operating systems, the value of the
character string assigned to &SYSTERM_DSN is always the value stored in the
JFCB for SYSTERM. If SYSTERM is allocated to DUMMY, or a NULLFILE, the
value in &SYSTERM_DSN is NULLFILE.

When the assembler runs on the CMS component of the VM/ESA operating
systems, the value of the character string assigned to &SYSTERM_DSN is
determined as follows:

Figure 65 (Page 1 of 2). Contents of &SYSTERM_DSN on CMS

SYSTERM Allocated To: Contents of &SYSTERM_DSN:

CMS file The 8-character filename, the
8-character filetype, and the
2-character filemode of the file, each
separated by a blank

264 HLASM V1R3 Language Reference  



  &SYSTERM_MEMBER System Variable Symbol
 

On VSE, the value of the character string assigned to &SYSTERM_DSN is always
SYSLOG.

Examples:

On MVS, &SYSTERM_DSN might be assigned a value such as:

VCATR49.VCATR49A.JOBK6734.DKKKK1K4.?

On CMS, &SYSTERM_DSN might be assigned a value such as:

TERMINAL

Notes:

1. If the TERM user exit provides the terminal data set information then the value
in &SYSTERM_DSN is the value extracted from the Exit-Specific Information
block described in the High Level Assembler Programmer's Guide.

2. The value of the type attribute of &SYSTERM_DSN (T'&SYSTERM_DSN) is
always U.

3. The value of the count attribute of &SYSTERM_DSN (K'&SYSTERM_DSN) is
equal to the number of characters assigned as a value to &SYSTERM_DSN.

Figure 65 (Page 2 of 2). Contents of &SYSTERM_DSN on CMS

SYSTERM Allocated To: Contents of &SYSTERM_DSN:

Dummy file (no physical I/O) DUMMY

Printer PRINTER

Labeled tape file The data set name of the tape file

Unlabeled tape file TAPn, where n is a value from 0 to 9,
or A to F.

Terminal TERMINAL

&SYSTERM_MEMBER System Variable Symbol
 The value of &SYSTERM_MEMBER is always null.

The value of the type attribute is O, and the value of the count attribute is 0.

 You can use &SYSTERM_MEMBER in a macro definition to obtain
the name of the data set member to which the assembler is writing the terminal
records.

The local system variable symbol &SYSTERM_MEMBER is assigned a read-only
value each time a macro definition is called.

If the data set to which the assembler is writing the terminal records is not an MVS
partitioned data set, &SYSTERM_MEMBER is assigned a null character string.

  Chapter 7. How to Specify Macro Definitions 265



 &SYSTERM_VOLUME System Variable Symbol  
 

Notes:

1. If the TERM user exit provides the terminal data set information then the value
in &SYSTERM_MEMBER is the value extracted from the Exit-Specific
Information block described in the High Level Assembler Programmer's Guide.

2. The value of the type attribute of &SYSTERM_MEMBER
(T'&SYSTERM_MEMBER) is U, unless &SYSTERM_MEMBER is assigned a
null character string, in which case the value of the type attribute is O.

3. The value of the count attribute of &SYSTERM_MEMBER
(K'&SYSTERM_MEMBER) is equal to the number of characters assigned as a
value to &SYSTERM_MEMBER. If &SYSTERM_MEMBER is assigned a null
character string, the value of the count attribute is 0.

&SYSTERM_VOLUME System Variable Symbol
 The value of &SYSTERM_VOLUME is always null.

The value of the type attribute is U, and the value of the count attribute is 0.

 You can use &SYSTERM_VOLUME in a macro definition to obtain the
volume identifier of the first volume containing the data set to which the assembler
is writing the terminal records.

The local system variable symbol &SYSTERM_VOLUME is assigned a read-only
value each time a macro definition is called.

If the assembler runs on the CMS component of the VM/ESA operating system,
and the terminal records are being written to a Shared File System CMS file,
&SYSTERM_VOLUME is assigned the value DD SFS.

If the volume on which the data set resides is not labeled, &SYSTERM_VOLUME is
assigned a null character string. 

Notes:

1. If the TERM user exit provides the terminal data set information then the value
in &SYSTERM_VOLUME is the value extracted from the Exit-Specific
Information block described in the High Level Assembler Programmer's Guide.

2. The value of the type attribute of &SYSTERM_VOLUME
(T'&SYSTERM_VOLUME) is U, unless &SYSTERM_VOLUME is assigned a
null character string, in which case the value of the type attribute is O.

3. The value of the count attribute of &SYSTERM_VOLUME
(K'&SYSTERM_VOLUME) is equal to the number of characters assigned as a
value to &SYSTERM_VOLUME. If &SYSTERM_VOLUME is assigned a null
character string, the value of the count attribute is 0. The maximum length of
this system variable symbol is 6.

266 HLASM V1R3 Language Reference  



  &SYSVER System Variable Symbol
 

&SYSTIME System Variable Symbol
Use &SYSTIME to obtain the time at which your source module is assembled. It is
assigned a read-only value.

The value of &SYSTIME is a 5-character string in the format:

HH.MM

where:

HH is two-digit field that gives the hour of the day. It has a value between 00
and 23, inclusive.

MM is two-digit field that gives the minute of the hour. It has a value between 00
and 59, inclusive. It is separated from HH by a period.

Example:

K9.45

Notes:

1. The time corresponds to the time printed in the page heading of listings and
remains constant for each assembly.

2. The value of the type attribute of &SYSTIME (T'&SYSTIME) is always U.

3. The value of the count attribute (K'&SYSTIME) is always 5.

&SYSVER System Variable Symbol
Use &SYSVER to obtain the version, release, and modification level of the
assembler being used to assemble your source module. &SYSVER has a global
scope. For example, when IBM High Level Assembler for MVS & VM & VSE
Release 3.0 is used, &SYSVER has the value:

1.3.K

Notes:

1. The value of the type attribute of &SYSVER (T'&SYSVER) is always U.

2. The value of the count attribute (K'&SYSVER) is the number of characters
assigned. In the above example, the count attribute of &SYSVER is 5.

  Chapter 7. How to Specify Macro Definitions 267



 Macro Instruction Format  
 

Chapter 8. How to Write Macro Instructions

This chapter describes macro instructions: where you can use them and how you
specify them.

The first section on page 268 describes the macro instruction format, including
details on the name, operation, and operand entries, and what is generated as a
result of a macro instruction.

“Sublists in Operands” on page 275 describes how you can use sublists to specify
several values in an operand entry.

“Values in Operands” on page 278 describes the values you can specify in an
operand entry when you call a macro definition.

“Nesting Macro Instructions” on page 282 describes how you can use nested
macro call instructions to call macros from within a macro.

What is a Macro Instruction:  The macro instruction provides the assembler with:

� The name of the macro definition to process
� The information or values to pass to the macro definition

This information is the input to a macro definition. The assembler uses the
information either in processing the macro definition, or for substituting values into
model statements in the definition.

The output from a macro definition can be:

� A sequence of statements generated from the model statements of the macro
for further processing at assembly time.

� Values assigned to global SET symbols. These values can be used in other
macro definitions and in open code (see “SET Symbols” on page 288).

Where Macro Instructions Can Appear:  A macro instruction can be written
anywhere in your program, provided the assembler can find the macro definition.
The macro definition can be found either in a macro library, or in the source
program before the macro instruction, or be provided by a LIBRARY user exit.
However, the statements generated from the called macro definition must be valid
assembler language instructions and allowed where the calling macro instruction
appears.

Macro Instruction Format
 

��─ ──┬ ┬───────────────── ─operation_code─ ──┬ ┬───────────── ──────────��
 ├ ┤─name_field────── │ │┌ ┐─,───────
 └ ┘─sequence_symbol─ └ ┘ ───+ ┴─operand─

name_field
is a special positional operand that can be used to pass a value into the called
macro definition. For a detailed description of what form name_entry can take,
see “Name Entry” on page 270.

268  Copyright IBM Corp. 1982, 1998



  Macro Instruction Format
 

sequence_symbol
is a sequence symbol. If a sequence symbol is coded in the name entry of a
macro instruction, the value of the symbol is not passed to the called macro
definition and therefore cannot be used as a value for substitution in the macro
definition.

operation_code
is the symbolic operation code which identifies the macro definition that you
want the assembler to process. For more information, see “Operation Entry” on
page 270.

operand
The positional operands or keyword operands that you use to pass values into
the called macro definition. For more information, see “Operand Entry” on
page 271.

If no operands are specified in the operand field, and if the absence of the operand
entry is indicated by a comma preceded and followed by one or more blanks,
remarks are allowed.

The entries in the name, operation, and operand fields correspond to entries in the
prototype statement of the called macro definition (see “Macro Instruction
Prototype” on page 215).

Alternative Ways of Coding a Macro Instruction
A macro instruction can be specified in one of the three following ways:

� The normal way, with the operands preceding any remarks
� The alternative way, allowing remarks for each operand
� A combination of the first two ways

The following example show the normal statement format (NAME1), the alternative
statement format (NAME2), and a combination of both statement formats (NAME3).

 Opera-
Name tion Operand Comment Cont.

NAME1 OP1 OPERAND1,OPERAND2,OPERAND3 This is the normal X
 statement format

NAME2 OP2 OPERAND1, This is the alter- X
OPERAND2 native statement format

NAME3 OP3 OPERAND1, This is a combination X
 OPERAND2,OPERAND3 of both

Notes:

1. Any number of continuation lines are allowed. However, each continuation line
must be indicated by a nonblank character in the column after the end column
of the previous statement line (see “Continuation Lines” on page 14).

2. If the DBCS assembler option is specified, the continuation features outlined in
“Continuation of double-byte data” on page 15 apply to continuation in the
macro language. Extended continuation may be useful if a macro operand
contains double-byte data.

  Chapter 8. How to Write Macro Instructions 269



 Macro Instruction Format  
 

3. Operands on continuation lines must begin in the continue column (column 16),
or the assembler assumes that any lines that follow contain remarks.

If any entries are made in the columns before the continue column in
continuation lines, the assembler issues an error message and the whole
statement is not processed.

4. One or more blanks must separate the operand from the remarks.

5. A comma after an operand indicates more operands follow.

6. The last operand requires no comma following it, but using a comma does not
cause an error.

7. You do not need to use the same format when you code a macro instruction as
you use when you code the corresponding macro prototype statement.

 Name Entry
Use the name entry of a macro instruction to:

� Pass a value into a macro definition through the name entry declared in the
macro definition

� Provide a conditional assembly label (see “Sequence Symbols” on page 306)
so that you can branch to the macro instruction during conditional assembly if
you want the called macro definition expanded.

The name entry of a macro instruction can be:

 � Blank

� An ordinary symbol, such as HERE

� A variable symbol, such as &A.

� Any combination of variable symbols and other character strings concatenated
together, such as HERE.&A

� Any character string allowed in a macro instruction operand, such as 'Now is
the hour' or STRINGKK, excluding sublist entries and attribute references (see
“Values in Operands” on page 278)

� A sequence symbol, which is not passed to the macro definition, such as .SEQ

 Operation Entry
The operation entry is the symbolic name of the operation code that identifies a
macro definition to process.

The operation entry must be a valid symbol, and must be identical to the operation
field in the prototype statement of the macro definition.

The assembler searches for source macro definitions before library macro
definitions. If you have a source macro definition that has the same name as a
library macro definition, the assembler only processes the source macro definition.

You can use a variable symbol as a macro instruction. For example if MAC1 has
been defined as a macro, you can use the following statements to call it:

&CALL SETC 'MAC1'
 &CALL

270 HLASM V1R3 Language Reference  



  Macro Instruction Format
 

You cannot use a variable symbol as a macro instruction that passes operands to
the macro. The second statement in the following example generates an error:

&CALL SETC 'MAC1 OPERAND1=VALUE'
 &CALL

You must specify operand entries after the variable symbol, as shown in the
following example:

&CALL SETC 'MAC1'
 &CALL OPERAND1=VALUE

 Operand Entry
Use the operand entry of a macro instruction to pass values into the called macro
definition. These values can be passed through:

� The symbolic parameters you have specified in the macro prototype, or

� The system variable symbol &SYSLIST if it is specified in the body of the
macro definition (see “&SYSLIST System Variable Symbol” on page 247).

The two types of operands allowed in a macro instruction are the positional and
keyword operands. You can specify a sublist with multiple values in both types of
operands. Special rules for the various values you can specify in operands are
also given below.

 Positional Operands
You can use a positional operand to pass a value into a macro definition through
the corresponding positional parameter declared for the definition. You should
declare a positional parameter in a macro definition when you want to change the
value passed at every call to that macro definition.

You can also use a positional operand to pass a value to the system variable
symbol &SYSLIST. If &SYSLIST, with the applicable subscripts, is specified in a
macro definition, you do not need to declare positional parameters in the prototype
statement of the macro definition. You can thus use &SYSLIST to refer to any
positional operand. This allows you to vary the number of operands you specify
each time you call the same macro definition.

The positional operands of a macro instruction must be specified in the same order
as the positional parameters declared in the called macro definition.

Each positional operand constitutes a character string. This character string is the
value passed through a positional parameter into a macro definition.

The general specifications for symbolic parameters also apply to positional
operands. The specification for each positional operand in the prototype statement
definition must be a valid variable symbol. Values are assigned (see �1� in
Figure 66 on page 272) to the positional operands by the corresponding positional
operands (see �2� in Figure 66) specified in the macro instruction that calls the
macro definition.

  Chapter 8. How to Write Macro Instructions 271



 Macro Instruction Format  
 

 Source Module
 ┌────────────────────────────────────────────────┐
Macro │ MACRO │
Definition ├────────────────────────────────────────────────┤

│ POSPAR &POS1,&POS2,&POS3 │
│ . < < < │
│ . │ │ │ │
│ MEND │ │ │ │

 ├──────────────────────────┼─────┼─────┼─────────┤
│ . │ │ │ │
│ . �1� �1� �1� │
│ START │ │ │ │

 │ . │ ┌──┘ ┌───┘ │
 │ . │ │ │ │
Macro │ POSPAR ONE,TWO,THREE �2� │
Instruction │ . │
 │ . │
 │ END │
 └────────────────────────────────────────────────┘

Figure 66. Positional Operands

Notes:

1. An omitted operand has a null character value.

2. Each positional operand can be up to 255 characters long.

3. If the DBCS assembler option is specified, the positional operand can be a
quoted string containing double-byte data.

The following are examples of macro instructions with positional operands:

 MACCALL VALUE,9,8
 MACCALL &A,'QUOTED STRING'
 MACCALL EXPR+2,,SYMBOL
 MACCALL (A,B,C,D,E),(1,2,3,4)
 MACCALL &A,'4.S.T.R.I.N.G5'

The following list shows what happens when the number of positional operands in
the macro instruction is equal to or differs from the number of positional parameters
declared in the prototype statement of the called macro definition:

Equal Valid, if operands are correctly specified.

Greater than Meaningless, unless &SYSLIST is specified in definition to refer to
excess operands.

Less than Omitted operands give null character values to corresponding
parameters (or &SYSLIST specification).

 Keyword Operands
You can use a keyword operand to pass a value through a keyword parameter into
a macro definition. The values you specify in keyword operands override the
default values assigned to the keyword parameters. The default value should be a
value you use frequently. Thus, you avoid having to write this value every time you
code the calling macro instruction.

272 HLASM V1R3 Language Reference  



  Macro Instruction Format
 

When you need to change the default value, you must use the corresponding
keyword operand in the macro instruction. The keyword can indicate the purpose
for which the passed value is used.

Any keyword operand specified in a macro instruction must correspond to a
keyword parameter in the macro definition called. However, keyword operands do
not have to be specified in any particular order.

The general specifications for symbolic parameters also apply to keyword
operands. The actual operand keyword must be a valid variable symbol. A null
character string can be specified as the standard value of a keyword operand, and
is generated if the corresponding keyword operand is omitted.

A keyword operand must be coded in the format shown below:

KEYWORD=VALUE

where:

KEYWORD has up to 62 characters without an ampersand.
VALUE can be up to 255 characters.

The corresponding keyword parameter in the called macro definition is specified as:

&KEYWORD=DEFAULT

If a keyword operand is specified, its value overrides the default value specified for
the corresponding keyword parameter.

If the DBCS assembler option is specified, the keyword operand can be a quoted
string containing double-byte data.

If the value of a keyword operand is a literal, two equal signs must be specified.

The following examples of macro instructions have keyword operands:

 MACKEY KEYWORD=(A,B,C,D,E)
 MACKEY KEY1=1,KEY2=2,KEY3=3
 MACKEY KEY3=2KKK,KEY1=K,KEYWORD=HALLO
 MACKEY KEYWORD='<.S.T.R.I.N.G>'
 MACKEY KEYWORD==C'STRING'

To summarize the relationship of keyword operands to keyword parameters:

� The keyword of the operand corresponds (see �1� in Figure 67 on page 274)
to a keyword parameter. The value in the operand overrides the default value
of the parameter.

� If the keyword operand is not specified (see �2� in Figure 67), the default value
of the parameter is used.

� If the keyword of the operand does not correspond (see �3� in Figure 67) to
any keyword parameter, the assembler issues an error message, but the macro
is generated using the default values of the other parameters.

� The default value specified for a keyword parameter can be the null character
string (see �4� in Figure 67). The null character string is a character string
with a length of zero; it is not a blank, because a blank occupies one character
position.

  Chapter 8. How to Write Macro Instructions 273



 Macro Instruction Format  
 

┌─ �4� Null character string
│ is default value

 MACRO +
 MACCORR &KEY1=DEFAULT,&KEY2=,&KEY3=123
 .
 .
 DC C'&KEY1&KEY2&KEY3'
 .
 .
 MEND
───────────────────────────────────────────────────────────────
 OPEN START K
 .
 . �1� �1� �1�
 MACCOOR KEY1=OVERRIDE,KEY2=K,KEY3=456
 . │ │ │
 . ┌────┘ ┌──────────┘ │

. + + │
+ DC C'OVERRIDEK456' │

. < │
 . └────────────────┘
 .
 MACCOOR �2�

. ┌──── KEY2 has null character

. │ string as default
 . +
+ DC C'DEFAULT123'
 .
 .
 . �3�
 MACCOOR KEY4=SYMBOL,KEY2=K
ASMAK17W DD WARNING DD Undefined keyword parameter . . .
 .
 .
 .
+ DC C'DEFAULTK123'
 .
 .
 .
 MACCOOR KEY1=,KEY3=456

. ┌──────────────────── � KEY1 parameter has null

. │ character string value

. + � KEY2 has null character
+ DC C'456' string as default
 END

Figure 67. Relationship between Keyword Operands and Keyword Parameters and Their
Assigned Values

Combining Positional and Keyword Operands
You can use positional and keyword operands in the same macro instruction. Use
a positional operand for a value that you change often, and a keyword operand for
a value that you change infrequently.

Positional and keyword parameters can be mixed freely in the macro prototype
statement (see �1� in Figure 68). The same applies to the positional and keyword
operands of the macro instruction (see �2� in Figure 68). Note, however, that the
order in which the positional parameters appear (see �3� in Figure 68) determines

274 HLASM V1R3 Language Reference  



  Sublists in Operands
 

the order in which the positional operands must appear. Interspersed keyword
parameters and operands (see �4� in Figure 68) do not affect this order.

 �4�
 ┌─────────┴─────────┐
 MACRO + +
 �1� MIX &P1,&KEY1=A,&P2,&P3,&P4,&KEY2=,&P5

. ] ^ b c k �3�
 .
 .
 MEND
─────────────────────────────────────────────────────────────────
 START K
 .
 .

. h g i r s �3�
 �2� MIX KEY1=B,ONE,TWO,THREE,KEY2=33,FOUR,FIVE
 . < <
 . └─────────┬──────────┘
 . �4�
 END

Figure 68. Combining Positional and Keyword Parameters

&SYSLIST( n):  The system variable symbol &SYSLIST(n) refers only to the
positional operands in a macro instruction.

Sublists in Operands
You can use a sublist in a positional or keyword operand to specify several values.
A sublist is a character string that consists of one or more entries separated by
commas and enclosed in parentheses.

If the COMPAT(SYSLIST) assembler option is not specified, a variable symbol that
has been assigned a character string that consists of one or more entries
separated by commas and enclosed in parentheses is also treated as a sublist.
However, if the COMPAT(SYSLIST) assembler option is specified, a sublist
assigned to a variable symbol is treated as a character string, not as a sublist.

A variable symbol is not treated as a sublist if the parentheses are not present.
The following example shows two calls to macro MAC1. In the first call, the value of
the operand in variable &VAR1 is treated as a sublist. In the second call, the value
of the operand is treated as a character string, not a sublist, because the variable
&VAR2 does not include parentheses.

&VAR1 SETC '(1,2)'
 MAC1 KEY=&VAR1
&VAR2 SETC '1,2'
 MAC1 KEY=(&VAR2)

To refer to an entry of a sublist code, use:

� The corresponding symbolic parameter with an applicable subscript, or

� The system variable symbol &SYSLIST with applicable subscripts, the first of
which refers to the positional operand, and the second to the sublist entry in
the operand. &SYSLIST can refer only to sublists in positional operands.

  Chapter 8. How to Write Macro Instructions 275



 Sublists in Operands  
 

Figure 69 on page 276 shows that the value specified in a positional or keyword
operand can be a sublist.

A symbolic parameter can refer to the whole sublist (see �1� in Figure 69), or to an
individual entry of the sublist. To refer to an individual entry, the symbolic
parameter (see �2� in Figure 69) must have a subscript whose value indicates the
position (see �3� in Figure 69) of the entry in the sublist. The subscript must have
a value greater than or equal to 1.

A sublist, including the enclosing parentheses, must not contain more than 255
characters. It consists of one or more entries separated by commas and enclosed
in parentheses; for example, (A,B,C,D,E). () is a valid sublist with the null
character string as the only entry.

 MACRO
 SUBLISTS &P1,&P2,&KEY=(FK,F,K)

. < Refers to default value

. ┌───�3�──┘ in keyword operand
 . │
 &KEY(1) DC &KEY(2)'&KEY(3)'
 .

. ┌────────────�3� Refers to value in
 &P1(1) DC &P1(2)'&P1(3)' │ positional operand
 . �2� │
 . │
 DC A&P2 "
 . │ │
 . └───────────────�1� │
 MEND │ │
──────────────────────────────────┼──────┼───────────────────────────────
 OPEN START K │ │
 . + │
 . ┌─────┐ │
 SUBLISTS (H2K,H,2KK),(A,B,C) │
 . < │
 . └──────────────┘
 .
+FK DC F'K'
 .
 .
+H2K DC H'2KK'
 .
 .
+ DC A(A,B,C)
 .
 .
 END

Figure 69. Sublists in Operands

Figure 70 shows the relationship between subscripted parameters and sublist
entries if:

� A sublist entry is omitted (see �1� in Figure 70).
� The subscript refers past the end of the sublist (see �2� in Figure 70).
� The value of the operand is not a sublist (see �3� in Figure 70).
� The parameter is not subscripted (see �4� in Figure 70).

276 HLASM V1R3 Language Reference  



  Sublists in Operands
 

&SYSLIST( n,m):  The system variable symbol, &SYSLIST(n,m), can also refer to
sublist entries, but only if the sublist is specified in a positional operand.

Figure 70. Relationship between Subscripted Parameters and Sublist Entries

Parameter

Sublist specified in
corresponding operand
or as default value
of a keyword parameter

Value generated or
used in computation

�1� &PARM1(3) (1,2,,4) Null character string

�2� &PARM1(5) (1,2,3,4) Null character string

 &PARM1
�3� &PARM1(1)
 &PARM1(2)

A
A
A

A
A
Null character string

�4� &PARM1
 &PARM1(1)
�2� &PARM1(2)

 &PARM1
 &PARM1(1)
 &PARM1(2)

(A)]
(A)]
(A)]

()]
()]
()]

(A)
A
Null character string

()
Null character string
Null character string

 &PARM1(2)

 &PARM1(1)

(A, ,C,D)^

( )^

Nothingb

Nothingb

 &PARM1
 &PARM2(3)
 &SYSLIST(2,3)

A,(1,2,3,4)c
A,(1,2,3,4)c
A,(1,2,3,4)c

A
3
3

Notes: 

1. Considered a sublist.

2. The blank indicates the end of the operand field.

3. Produces error diagnostic message ASMAK88E Unbalanced parentheses in
macro call operand.

 4. Positional operands.

 Multilevel Sublists
You can specify multilevel sublists (sublists within sublists) in macro operands. The
depth of this nesting is limited only by the constraint that the total operand length
must not exceed 255 characters. Inner elements of the sublists are referenced
using additional subscripts on symbolic parameters or on &SYSLIST.

N'&SYSLIST(n) gives the number of operands in the indicated n-th level sublist.
The number attribute (N') and a parameter name with an n-element subscript array
gives the number of operands in the indicated (n+1)-th level sublist. Figure 71
shows the value of selected elements if &P is the first positional parameter, and the
value assigned to it in a macro instruction is (A,(B,(C)),D).

  Chapter 8. How to Write Macro Instructions 277



 Values in Operands  
 

Figure 71. Multilevel Sublists

Selected Elements
from &P

Selected Elements
from &SYSLIST

Value of
Selected Element

&P
&P(1)
&P(2)
&P(2,1)
&P(2,2)
&P(2,2,1)
&P(2,2,2)
N'&P(2,2)
N'&P(2)
N'&P(3)
N'&P
 

&SYSLIST(1)
&SYSLIST(1,1)
&SYSLIST(1,2)
&SYSLIST(1,2,1)
&SYSLIST(1,2,2)
&SYSLIST(1,2,2,1)
&SYSLIST(1,2,2,2)
N'&SYSLIST(1,2,2)
N'&SYSLIST(1,2)
N'&SYSLIST(1,3)
N'&SYSLIST(1)
 

(A,(B,(C)),D)
A
(B,(C))
B
(C)
C
null
1
2
1
3
 

Passing Sublists to Inner Macro Instructions
You can pass a suboperand of an outer macro instruction sublist as a sublist to an
inner macro instruction. However, if you specify the COMPAT(SYSLIST) assembler
option, a sublist assigned to a variable symbol is treated as a character string, not
as a sublist.

Values in Operands
You can use a macro instruction operand to pass a value into the called macro
definition. The two types of value you can pass are:

� Explicit values or the actual character strings you specify in the operand

� Implicit values, or the attributes inherent in the data represented by the explicit
values

The explicit value specified in a macro instruction operand is a character string that
can contain zero or more variable symbols.

The character string must not be greater than 255 characters after substitution of
values for any variable symbols. This includes a character string that constitutes a
sublist.

The character string values in the operands, including sublist entries, are assigned
to the corresponding parameters declared in the prototype statement of the called
macro definition. A sublist entry is assigned to the corresponding subscripted
parameter.

 Omitted Operands
When a keyword operand is omitted, the default value specified for the
corresponding keyword parameter is the value assigned to the parameter. When a
positional operand or sublist entry is omitted, the null character string is assigned to
the parameter.

278 HLASM V1R3 Language Reference  



  Values in Operands
 

Notes:

1. Blanks appearing between commas (without surrounding single quotation
marks) do not signify an omitted positional operand or an omitted sublist entry;
they indicate the end of the operand field.

2. Adjacent commas indicate omission of positional operands; no comma is
needed to indicate omission of the last or only positional operand.

The following example shows a macro instruction preceded by its corresponding
prototype statement. The macro instruction operands that correspond to the third
and sixth operands of the prototype statement are omitted in this example.

 EXAMPLE &A,&B,&C,&D,&E,&F
 EXAMPLE 17,D+4,,AREA,FIELD(6)

 Unquoted Operands
The assembler normally retains the case of unquoted macro operands. However,
to maintain uppercase alphabetic character set compatibility with earlier
assemblers, High Level Assembler provides the COMPAT(MACROCASE)
assembler option. When you specify this option, the assembler converts lowercase
alphabetic characters (a through z) in unquoted macro instruction operands to
uppercase alphabetic characters (A though Z).

 Special Characters
Any of the 256 characters of the System/370 character set can appear in the value
of a macro instruction operand (or sublist entry). However, the following characters
require special consideration:

 Ampersands
A single ampersand indicates the presence of a variable symbol. The assembler
substitutes the value of the variable symbol into the character string specified in a
macro instruction operand. The resultant string is then the value passed into the
macro definition. If the variable symbol is undefined, an error message is issued.

Double ampersands must be specified if a single ampersand is to be passed to the
macro definition.

Examples:

&VAR
&A+&B+3+&CD1K
'&MESSAGE'
&&REGISTER

Single Quotation Marks
A single quotation mark is used:

� To indicate the beginning and end of a quoted string
� In a length, type, integer, or scale attribute reference notation that is not within

a quoted string

Examples:

'QUOTED STRING'
L'SYMBOL
T'SYMBOL

  Chapter 8. How to Write Macro Instructions 279



 Values in Operands  
 

Shift-out (SO) and Shift-in (SI)
If the DBCS assembler option is specified, then SO (X'0E') and SI (X'0F') are
recognized as shift codes within quoted strings. SO and SI delimit the start and
end of double-byte data respectively. Double-byte data is only recognized within a
quoted string.

 Quoted Strings
A quoted string is any sequence of characters that begins and ends with a single
quotation mark (compare with conditional assembly character expressions
described in “Character (SETC) Expressions” on page 331).

Two single quotation marks must be specified inside each quoted string. This
includes substituted single quotation marks.

Quoted strings can contain double-byte data, if the DBCS assembler option is
specified. The double-byte data must be bracketed by the SO and SI delimiters.
Only valid double-byte data is recognized between the SO and SI. The SI may be
in any odd-numbered byte position after the SO. If the end of the operand is
reached before SI is found, then error ASMA2K3E Unbalanced double-byte
delimiters is issued.

Macro instruction operands can have values that include one or more quoted
strings. Each quoted string can be separated from the following quoted string by
one or more characters, and each must contain an even number of single quotation
marks.

Examples:

''
'L''SYMBOL'
'QUOTE1'AND'QUOTE2'

Attribute Reference Notation
You can specify an attribute reference notation as a macro instruction operand
value. The attribute reference notation must be preceded by a blank or any other
special character except the ampersand and the single quotation mark. See “Data
Attributes” on page 292 for details about data attributes, and the format of attribute
references.

Examples:

 MAC1 L'SYMBOL,1K+L'AREADL'FIELD
 MAC1 I'PACKED-S'PACKED

 Parentheses
In macro instruction operand values, there must be an equal number of left and
right parentheses. They must be paired, that is, each left parenthesis needs a
following right parenthesis at the same level of nesting. An unpaired (single) left or
right parenthesis can appear only in a quoted string.

Examples:

(PAIRED-PARENTHESES)
()
(A(B)C)D(E)
(IN'('STRING)

280 HLASM V1R3 Language Reference  



  Values in Operands
 

 Blanks
One or more blanks outside a quoted string indicates the end of the operands of a
macro instruction. Thus blanks should only be used inside quoted strings.

Example:

'BLANKS ALLOWED'

 Commas
A comma outside a quoted string indicates the end of an operand value or sublist
entry. Commas that do not delimit values can appear inside quoted strings or
paired parentheses that do not enclose sublists.

Examples:

A,B,C,D
(1,2)3'5,6'

 Equal Signs
An equal sign can appear in the value of a macro instruction operand or sublist
entry:

� As the first character
� Inside quoted strings
� Between paired parentheses
� In a keyword operand
� In a positional operand, provided the parameter does not resemble a keyword

operand

The assembler issues a warning message for a positional operand containing an
equal sign, if the operand resembles a keyword operand. Thus, if we assume that
the following is the prototype of a macro definition:

 MAC1 &F

the following macro instruction generates a warning message:

MAC1 K=L (K is a valid keyword)

while the following macro instruction does not:

MAC1 2+2=4 (2+2 is not a valid keyword)

Examples:

=H'2K1'
A'='B
C(A=B)
2X=B
KEY=A=B

 Periods
A period (.) can be used in the value of an operand or sublist entry. It is passed as
a period. However, if it is used immediately after a variable symbol, it becomes a
concatenation character. Two periods are required if one is to be passed as a
character.

Examples:

  Chapter 8. How to Write Macro Instructions 281



 Nesting Macro Instructions  
 

3.4
&A.1
&A..1

Nesting Macro Instructions
A nested macro instruction is a macro instruction you can specify as a model
statement in the body of a macro definition. This let you expand a macro definition
from within another macro definition.

Inner and Outer Macro Instructions
Any macro instruction you write in the open code of a source module is an outer
macro instruction or call. Any macro instruction that appears within a macro
definition is an inner macro instruction or call.

Levels of Nesting
The code generated by a macro definition called by an inner macro call is nested
inside the code generated by the macro definition that contains the inner macro
call. In the macro definition called by an inner macro call, you can include a macro
call to another macro definition. Thus, you can nest macro calls at different levels.

The &SYSNEST system variable indicates how many levels you called. It has the
value 1 in an outer macro, and is incremented by one at a macro call.

 Recursion
You can also call a macro definition recursively; that is, you can write macro
instructions inside macro definitions that are calls to the containing definition. This
is how you define macros to process recursive functions.

General Rules and Restrictions
Macro instruction statements can be written inside macro definitions. Values are
substituted in the same way as they are for the model statements of the containing
macro definition. The assembler processes the called macro definition, passing to
it the operand values (after substitution) from the inner macro instruction. In
addition to the operand values described in “Values in Operands” on page 278,
nested macro calls can specify values that include:

� Any of the symbolic parameters (see �1� in Figure 72) specified in the
prototype statement of the containing macro definition

� Any SET symbols (see �2� in Figure 72) declared in the containing macro
definition

� Any of the system variable symbols such as &SYSDATE, &SYSTIME, etc.
(see �3� in Figure 72).

282 HLASM V1R3 Language Reference  



  Nesting Macro Instructions
 

 ┌──────────── Parameters
 │
 MACRO ┌────────┴────────┐
 OUTERMAC &P1,&P2,&KEY1=VALUE Prototype
 . │
 . �1�
 . │
 LCLC &C──────────────��2�
 . │ │
 . │ │
&C SETC 'ABC' │ │
 . │ │
 . + +

INNERMAC &P1,&KEY1,&C Inner macro call
 . └─────┬────┘
 . └─────────────── Operands
 .
 MEND
─────────────────────────────────────────────────────────────────────
 MACRO
 OUT Prototype
 .
 .
 . �3� �3� �3�

IN &SYSLIST(3),&SYSECT,A&SYSDNX Inner macro call
 .
 .
 MEND

Figure 72. Values in Nested Macro Calls

The number of nesting levels permitted depends on the complexity and size of the
macros at the different levels; that is, the number of operands specified, the
number of local and global SET symbols declared, and the number of sequence
symbols used.

When the assembler processes a macro exit instruction, either MEXIT or MEND, it
selects the next statement to process depending on the level of nesting. If the
macro exit instruction is from an inner macro, the assembler processes the next
statement after the statement that called the inner macro. If the macro exit
instruction is from an outer macro, the assembler processes the next statement in
open code, after the statement that called the inner macro.

Passing Values through Nesting Levels
The value contained in an outer macro instruction operand can be passed through
one or more levels of nesting (see Figure 73 on page 284). However, the value
specified (see �1� in Figure 73) in the inner macro instruction operand must be
identical t o the corresponding symbolic parameter (see �2� in Figure 73) declared
in the prototype of the containing macro definition.

Thus, a sublist can be passed (see �3� in Figure 73) and referred to (see �4� in
Figure 73) as a sublist in the macro definition called by the inner macro call. Also,
any symbol (see �5� in Figure 73) that is passed carries its attribute values through
the nesting levels.

  Chapter 8. How to Write Macro Instructions 283



 Nesting Macro Instructions  
 

If inner macro calls at each level are specified with symbolic parameters as
operand values, values can be passed from open code through several levels of
macro nesting.

COMPAT(SYSLIST) Assembler Option:  If the COMPAT(SYSLIST) assembler
option is specified, and a symbolic parameter is only a part of the value specified in
an inner macro instruction operand, only the character string value given to the
parameter by an outer call is passed through the nesting level. Inner sublist entries
are, therefore, not available for reference in the inner macro.

 �2�
 MACRO ┌────┴────┐
 OUTER &P1,&P2,&P3
 .
 .
 .
 INNER &P1,&P2,&P3
 . └────┬────┘
 . �1�
 .
 MEND

 MACRO
 INNER &Q,&R,&S
 .
 . ┐
 L 3,&Q(1) │
 A 3,&Q(2) ├ �4�
 ST 3,&Q(3) │
 . ┘
 .
 MVC &R,&S
 .
 .
 MEND
────────────────────────────────────────────────────────────────
 START K
 . �5�
 . ┌──┴──┐
 OUTER (AREA,F2KK,SUM),TO,FROM]
 . └──────┬──────┘
 . �3�
 .
+ L 3,AREA
+ A 2,F2KK
+ ST 3,SUM
 .
 .
+ MVC TO,FROM
 .
 .
 END

Notes:

1. The following inner macro call statement is generated, but not listed:

 INNER (AREA,F2KK,SUM),TO,FROM

Figure 73. Passing Values Through Nesting Levels

284 HLASM V1R3 Language Reference  



  Nesting Macro Instructions
 

System Variable Symbols in Nested Macros
The fixed global system variable symbols (see “System Variable Symbols” on
page 233) are not affected by the nesting of macros. The variable global system
variable symbols have values which may change during the expansion of a macro
definition. The following system variable is specifically influenced by nested macros:

&SYSM_SEV
Provides the highest MNOTE severity code from the nested macro
most recently called.

The local variable symbols are given read-only values each time a macro definition
is called.

The following system variables can be affected by the position of a macro
instruction in code and the operand value specified in the macro instruction:

| &SYSCLOCK The assembler assigns &SYSCLOCK the constant string value
| representing the TOD clock value at the time at which a macro call
| is made. The time portion of this value goes down to the
| microsecond. For any inner macro call, the value assigned to
| &SYSCLOCK differs from that of its parent.

&SYSECT The assembler gives &SYSECT the character string value of the
name of the control section in use at the point at which a macro call
is made. For a macro definition called by an inner macro call, the
assembler assigns to &SYSECT the name of the control section in
effect in the macro definition that contains the inner macro call, at
the time the inner macro is called.

If no control section is generated within a macro definition, the value
assigned to &SYSECT does not change. It is the same for the next
level of macro definition called by an inner macro instruction.

| &SYSLIB_DSN, &SYSLIB_MEMBER, &SYSLIB_VOLUME
| The assembler assigns the character string value of the syslib
| system variable symbols at the point at which a macro is called.
| For an inner macro call whose definition is from a library member,
| these values may differ, if this is the first time this macro is invoked.

&SYSLIST If &SYSLIST is specified in a macro definition called by an inner
macro instruction, &SYSLIST refers to the positional operands of
the inner macro instruction.

&SYSLOC The assembler gives &SYSLOC the character string value of the
name of the location counter in use at the point at which a macro is
called. For a macro definition called by an inner macro call, the
assembler assigns to &SYSLOC the name of the location counter in
effect in the macro definition that contains the inner macro call. If
no LOCTR or control section is generated within a macro definition,
the value assigned to &SYSLOC does not change. It is the same
for the next level of macro definition called by an inner macro
instruction.

&SYSNDX The assembler increments &SYSNDX by one each time it
encounters a macro call. It retains the incremented value
throughout the expansion of the macro definition called, that is,
within the local scope of the nesting level.

  Chapter 8. How to Write Macro Instructions 285



 Nesting Macro Instructions  
 

&SYSNEST The assembler increments &SYSNEST by one each time it
encounters a nested macro instruction. It retains the incremented
value within the local scope of the macro definition called by the
inner macro instruction. Subsequent nested macro instructions
cause &SYSNEST to be incremented by 1. When the assembler
exits from a nested macro it decreases the value in &SYSNEST by
1.

&SYSSEQF The assembler assigns &SYSSEQF the character string value of
the identification-field of the outer-most macro instruction statement.
The value of &SYSSEQF remains constant throughout the
expansion of the called macro definition and all macro definitions
called from within the outer macro.

&SYSSTYP The assembler gives &SYSSTYP the character string value of the
type of the control section in use at the point at which a macro is
called. For a macro definition called by an inner macro call, the
assembler assigns to &SYSSTYP the type of the control section in
effect in the macro definition that contains the inner macro call, at
the time the inner macro is called.

If no control section is generated within a macro definition, the value
assigned to &SYSSTYP does not change. It is the same for the
next level of macro definition called by an inner macro instruction.

286 HLASM V1R3 Language Reference  



  How to Write Conditional Assembly Instructions
 

Chapter 9. How to Write Conditional Assembly Instructions

This chapter describes the conditional assembly language. With the conditional
assembly language, you can carry out general arithmetic and logical computations,
and many of the other functions you can carry out with any other programming
language. Also, by writing conditional assembly instructions in combination with
other assembler language statements, you can:

� Select sequences of these source statements, called model statements, from
which machine and assembler instructions are generated

� Vary the contents of these model statements during generation

The assembler processes the instructions and expressions of the conditional
assembly language during conditional assembly processing. Then, at assembly
time, it processes the generated instructions. Conditional assembly instructions,
however, are not processed after conditional assembly processing is completed.

The conditional assembly language is more versatile when you use it to interact
with symbolic parameters and the system variable symbols inside a macro
definition. However, you can also use the conditional assembly language in open
code; that is, code that is not within a macro definition.

Elements and Functions
The elements of the conditional assembly language are:

� SET symbols that represent data. See “SET Symbols” on page 288.

� Attributes that represent different characteristics of symbols. See “Data
Attributes” on page 292.

� Sequence symbols that act as labels for branching to statements during
conditional assembly processing. See “Sequence Symbols” on page 306.

The functions of the conditional assembly language are:

� Declaring SET symbols as variables for use locally and globally in macro
definitions and open code. See “Declaring SET Symbols” on page 310.

� Assigning values to the declared SET symbols. See “Assigning Values to SET
Symbols” on page 314.

� Selecting characters from strings for substitution in, and concatenation to, other
strings; or for inspection in condition tests. See “Substring Notation” on
page 340.

� Branching and exiting from conditional assembly loops. See “Branching” on
page 342.

The conditional assembly language can also be used in open code with few
restrictions. See “Open Code” on page 309.

The conditional assembly language provides instructions for evaluating conditional
assembly expressions used as values for substitution, as subscripts for variable
symbols, and as condition tests for branching. See “Conditional Assembly
Instructions” on page 310 for details about the syntax and usage rules of each
instruction.

 Copyright IBM Corp. 1982, 1998  287



 SET Symbols  
 

 SET Symbols
SET symbols are variable symbols that provide you with arithmetic, binary, or
character data, and whose values you can vary during conditional assembly
processing.

Use SET symbols as:

� Terms in conditional assembly expressions
� Counters, switches, and character strings
� Subscripts for variable symbols
� Values for substitution

Thus, SET symbols let you control your conditional assembly logic, and to generate
many different statements from the same model statement.

Subscripted SET Symbols
You can use a SET symbol to represent a one-dimensional array of many values.
You can then refer to any one of the values of this array by subscripting the SET
symbol.

Scope of SET Symbols
The scope of a SET symbol is that part of a program for which the SET symbol has
been declared. Local SET symbols need not be declared by explicit declarations.
The assembler considers any undeclared variable symbol found in the name field of
a SETx instruction as a local SET symbol.

If you declare a SET symbol to have a local scope, you can use it only in the
statements that are part of either:

� The same macro definition, or
 � Open code

If you declare a SET symbol to have a global scope, you can use it in the
statements that are part of any one of:

� The same macro definition
� A different macro definition

 � Open code

You must, however, declare the SET symbol as global for each part of the program
(a macro definition or open code) in which you use it.

You can change the value assigned to a SET symbol without affecting the scope of
this symbol.

Scope of Symbolic Parameters
A symbolic parameter has a local scope. You can use it only in the statements that
are part of the macro definition for which the parameter is declared. You declare a
symbolic parameter in the prototype statement of a macro definition.

The scope of system variable symbols is described in Figure 74 on page 289.

288 HLASM V1R3 Language Reference  



  SET Symbols
 

SET Symbol Specifications
SET symbols can be used in model statements, from which assembler language
statements are generated, and in conditional assembly instructions. The three
types of SET symbols are: SETA, SETB, and SETC. A SET symbol must be a
valid variable symbol.

The rules for creating a SET symbol are:

� The first character must be an ampersand (&)
� The second character must be an alphabetic character
� The remaining characters must be 0 to 61 alphanumeric
� The first four characters should not be &SYS, which are used for system

variable symbols

Examples:

&ARITHMETICVALUE439
&BOOLEAN
&C
&EASY─TO─READ

Local SET symbols need not be declared by explicit declarations. The assembler
considers any undeclared variable symbol found in the name field of a SETx
instruction as a local SET symbol. The instruction that declares a SET symbol
determines its scope and type.

The features of SET symbols and other types of variable symbols are compared in
Figure 74.

Figure 74 (Page 1 of 3). Features of SET Symbols and Other Types of Variable Symbols

 
Features

SETA, SETB,
SETC symbols

Symbolic
Parameters

System Variable
Symbols

Can be used in:
 Open code

 Macro definitions

Yes

Yes

No

Yes

&SYSASM
&SYSDATC
&SYSDATE
&SYSJOB

| &SYSM_HSEV
| &SYSM_SEV

&SYSOPT_DBCS
&SYSOPT_OPTABLE
&SYSOPT_RENT

| &SYSOPT_XOBJECT
&SYSPARM
&SYSSTEP
&SYSSTMT
&SYSSTEM_ID
&SYSTIME
&SYSVER

All

  Chapter 9. How to Write Conditional Assembly Instructions 289



 SET Symbols  
 

Figure 74 (Page 2 of 3). Features of SET Symbols and Other Types of Variable Symbols

 
Features

SETA, SETB,
SETC symbols

Symbolic
Parameters

System Variable
Symbols

Scope:
 Local

 Global

Yes

Yes

Yes

No

&SYSADATA_DSN
&SYSADATA_MEMBER
&SYSADATA_VOLUME

| &SYSCLOCK
&SYSECT
&SYSIN_DSN
&SYSIN_MEMBER
&SYSIN_VOLUME
&SYSLIB_DSN
&SYSLIB_MEMBER
&SYSLIB_VOLUME
&SYSLIN_DSN
&SYSLIN_MEMBER
&SYSLIN_VOLUME
&SYSLIST
&SYSLOC

| &SYSMAC
&SYSNDX
&SYSNEST
&SYSPRINT_DSN
&SYSPRINT_MEMBER
&SYSPRINT_VOLUME
&SYSPUNCH_DSN
&SYSPUNCH_MEMBER
&SYSPUNCH_VOLUME
&SYSSEQF
&SYSTERM_DSN
&SYSTERM_MEMBER
&SYSTERM_VOLUME

&SYSASM
&SYSDATC
&SYSDATE
&SYSJOB

| &SYSM_HSEV
| &SYSM_SEV

&SYSOPT_DBCS
&SYSOPT_OPTABLE
&SYSOPT_RENT

| &SYSOPT_XOBJECT
&SYSPARM
&SYSSTEP
&SYSSTMT
&SYSSTEM_ID
&SYSTIME
&SYSVER

290 HLASM V1R3 Language Reference  



  SET Symbols
 

Figure 74 (Page 3 of 3). Features of SET Symbols and Other Types of Variable Symbols

 
Features

SETA, SETB,
SETC symbols

Symbolic
Parameters

System Variable
Symbols

Values can be
changed within
scope of symbol

Yes] No, read only
value^

No, read only
value^

Notes: 

1. The value assigned to a SET symbol can be changed by using the SETA, SETAF, SETB, SETC, or
SETCF instruction within the declared scope of the SET symbol.

| 2. A symbolic parameter and the system variable symbols (except for &SYSSTMT, &SYSM_HSEV,
| and &SYSM_SEV) are assigned values that remain fixed throughout their scope. Wherever a SET

symbol appears in a statement, the assembler replaces the symbol with the last value assigned to
the symbol.

SET symbols can be used in the name, operation, and operand fields of macro
instructions. The value thus passed through the name field symbolic parameter
into a macro definition is considered as a character string and is generated as
such. If the COMPAT(SYSLIST) assembler option is specified, the value passed
through an operand field symbolic into a macro definition is also considered a
character string and is generated as such. However, if the COMPAT(SYSLIST)
assembler option is not specified, SET symbols can be used to pass sublists into a
macro definition.

Subscripted SET Symbols Specifications
The format of a subscripted SET symbol is shown below.

 

��─ ──&symbol(subscript) ────────────────────────────────────────────��

&symbol
is a variable symbol.

subscript
is an arithmetic expression with a value greater than or equal to 1.

Example:

&ARRAY(2K)

The subscript can be any arithmetic expression allowed in the operand field of a
SETA instruction (see “Arithmetic (SETA) Expressions” on page 315).

A subscripted SET symbol can be used anywhere an unsubscripted SET symbol is
allowed. However, subscripted SET symbols must be declared as subscripted by a
previous local or global declaration instruction.

The subscript refers to one of the many positions in an array of values identified by
the SET symbol.

The dimension (the maximum value of the subscript) of a subscripted SET symbol
is not determined by the explicit or implicit declaration of the symbol. The
dimension specified can be exceeded in later SETx instructions.

  Chapter 9. How to Write Conditional Assembly Instructions 291



 Data Attributes  
 

The subscript can be a subscripted SET symbol.

Created SET Symbols
The assembler can create SET symbols during conditional assembly processing
from other variable symbols and character strings. A SET symbol thus created has
the form &(e), where e represents one or more of the following:

� Variable symbols, optionally subscripted
� Strings of alphanumeric characters
� Other created SET symbols

After substitution and concatenation, e must consist of a string of up to 62
alphanumeric characters, the first of which is alphabetic. The assembler considers
the preceding ampersand and this string as the name of a SET variable.

You can use created SET symbols wherever ordinary SET symbols are permitted,
including declarations. You can also nest them in other created SET symbols.

Consider the following example:

&ABC(1) SETC 'MKT','27','$5'

Let &(e) equal &(&ABC(&I)QUA&I).

&I &ABC(&I) Created SET Symbol Comment

1 MKT &MKTQUA1 Valid
2 27 &27QUA2 Invalid: character after '&' not alphabetic
3 $5 &$5QUA3 Valid
4 &QUA4 Valid

The created SET symbol can be thought of as a form of indirect addressing. With
nested created SET symbols, you can get this kind of indirect addressing to any
level.

In another sense, created SET symbols offer an associative storage facility. For
example, a symbol table of numeric attributes can be referred to by an expression
of the form &(&SYM)(&I) to yield the Ith attribute of the symbol name in &SYM.

Created SET symbols also enable you to get some of the effect of
multiple-dimensioned arrays by creating a separate name for each element of the
array. For example, a 3-dimensional array of the form &X(&I,&J,&K) could be
addressed as &(X&I.$&J.$&K). Thus, &X(2,3,4) would be represented by &X2$3$4.
The $ separators guarantee that &X(2,33,55) and &X(23,35,5) are unique:

&X(2,33,55) becomes &X2$33$55
&X(23,35,5) becomes &X23$35$5

 Data Attributes
The data, such as instructions, constants, and areas, that you define in a source
module, can be described by its:

� Type, which distinguishes one form of named object from another; for example,
fixed-point constants from floating-point constants, or machine instructions from
macro instructions

292 HLASM V1R3 Language Reference  



  Data Attributes
 

� Length, which gives the number of bytes occupied by the object code of the
data

� Scaling, which shows the number of positions occupied by the fractional portion
of fixed-point, floating-point, and decimal constants in their object code form

� Integer, which shows the number of positions occupied by the integer portion of
fixed-point and decimal constants in their object code form

� Count, which gives the number of characters that would be required to
represent the data, such as a macro instruction operand, as a character string

� Number, which gives the number of sublist entries in a macro instruction
operand

� Defined, which determines whether a symbol has been defined prior to the
point where the attribute reference is coded

� Operation Code, which shows if an operation code, such as a macro definition
or machine instruction, is defined prior to the point where the attribute reference
is coded

These characteristics are called the attributes of the symbols naming the data. The
assembler assigns attribute values to the ordinary symbols and variable symbols
that represent the data.

Specifying attributes in conditional assembly instructions allows you to control
conditional assembly logic, which, in turn, can control the sequence and contents of
the statements generated from model statements. The specific purpose for which
you use an attribute depends on the kind of attribute being considered. The
attributes and their main uses are shown below:

Figure 75 (Page 1 of 2). Data Attributes

Attribute Purpose Main Uses

Type Gives a letter that identifies
type of data represented

� In tests to distinguish between
different data types

� For value substitution
� In macros to discover missing

operands

Length Gives number of bytes that
data occupies in storage

� For substitution into length fields
� For computation of storage

requirements

Scaling Refers to the position of the
decimal point in fixed-point,
floating-point and decimal
constants

� For testing and regulating the
position of decimal points

� For substitution into a scale
modifier

Integer Is a function of the length and
scaling attributes of decimal,
fixed-point, and floating-point
constants

� To keep track of significant digits
(integers)

Count Gives the number of
characters required to
represent data

� For scanning and decomposing
character strings

� As indexes in substring notation

Number] Gives the number of sublist
entries in a macro instruction
operand sublist

� For scanning sublists
� As a counter to test for end of

sublist

  Chapter 9. How to Write Conditional Assembly Instructions 293



 Data Attributes  
 

 Attribute Reference 

��─ ──attribute_notation' ──┬ ┬─ordinary_symbol─ ──────────────────────��
 ├ ┤─variable_symbol─
 ├ ┤─literal─────────
 └ ┘─character_value─

attribute_notation'
is the attribute whose value you want, followed by a single quotation mark.

ordinary_symbol
is an ordinary symbol that represents the data that possesses the attribute. An
ordinary symbol cannot be specified with the operation code attribute.

variable_symbol
is a variable symbol that represents the data that possesses the attribute.

literal
is a literal that represents the data that possesses the attribute. A literal cannot
be specified with the operation code attribute.

character_string
is a character string that represents the operation code in the operation code
attribute.

Examples:

T'SYMBOL
L'&VAR
K'&PARAM
O'MVC
S'=P'975.32'

| The last example fails with an error ASM099W if the literal has not been previously
| defined.

The assembler substitutes the value of the attribute for the attribute reference.

Reference to the count (K'), defined (D'), number (N'), and operation code (O')
attributes can be used only in conditional assembly instructions or within macro
definitions. The length (L'), type (T'), integer (I'), and scaling (S') attribute

Figure 75 (Page 2 of 2). Data Attributes

Attribute Purpose Main Uses

Defined Shows whether the symbol
referenced has been defined
prior to the attribute reference

� To avoid assembling a statement
again if the symbol referenced has
been previously defined

Operation
Code

Shows whether a given
operation code has been
defined prior to the attribute
reference

� To avoid assembling a macro, or
instruction if it does not exist.

Notes: 

1. The number attribute of &SYSLIST(n) and &SYSLIST(n,m) is described in “&SYSLIST
System Variable Symbol” on page 247.

294 HLASM V1R3 Language Reference  



  Data Attributes
 

references can be in conditional assembly instructions, machine instructions,
assembler instructions, and the operands of macro instructions.

Combining with Symbols
Figure 76 shows all the attributes, and identifies the types of symbols they can be
combined with.

Figure 76. Attributes and Related Symbols

Symbols
Specified

Type
T'

Length
L'

Scaling
S'

Integer
I'

Count
K'

Number
N'

Defined
D'

Operation
Code O'

In open code:
 Ordinary
 symbols
 
 SET symbols
 
 
 System variable
 symbols with
 global scope
 
 Literals

 
Yes
 
 
Yes
 
 
Yes
 
 
 
Yes]

 
Yes
 
 
SETC
only
 
No
 
 
 
Yes]

 
Yes
 
 
SETC
only
 
No
 
 
 
Yes]

 
Yes
 
 
SETC
only
 
No
 
 
 
Yes

 
No
 
 
Yes
 
 
Yes
 
 
 
No

 
No
 
 
Yes
subscripted
 
Yes
 
 
 
No

 
Yes
 
 
SETC
only
 
No
 
 
 
Yes

 
No
 
 
SETC
only
 
No
 
 
 
No

In macro
definitions:
 
 Ordinary
 symbols
 
 SET symbols
 
 
 Symbolic
 parameters
 
 System variable
 symbols:
 
 &SYSLIST
 
 All others
 
 Literals

 
 
 
Yes
 
 
Yes
 
 
Yes
 
 
 
 
 
Yes
 
Yes
 
Yes

 
 
 
Yes
 
 
SETC
only
 
Yes
 
 
 
 
 
Yes
 
No
 
Yes]

 
 
 
Yes
 
 
SETC
only
 
Yes
 
 
 
 
 
Yes
 
No
 
Yes]

 
 
 
Yes
 
 
SETC
only
 
Yes
 
 
 
 
 
Yes
 
No
 
Yes]

 
 
 
No
 
 
Yes
 
 
Yes
 
 
 
 
 
Yes
 
Yes
 
No

 
 
 
No
 
 
Yes
subscripted
 
Yes
 
 
 
 
 
Yes
 
Yes
 
No

 
 
 
Yes
 
 
SETC
only
 
Yes
 
 
 
 
 
Yes
 
No
 
Yes

 
 
 
No
 
 
SETC
only
 
Yes
 
 
 
 
 
No
 
No
 
No

| Note: 

| 1. The literal must also be defined.

The value of an attribute for an ordinary symbol specified in an attribute reference
comes from the data represented by the symbol. The symbol must appear in the
name field of an assembler or machine instruction, or in the operand field of an
EXTRN or WXTRN instruction.

Notes:

1. You cannot refer to the names of instructions generated by conditional
assembly substitution or macro generation until the instruction is generated.

2. If you use a symbol qualifier to qualify an ordinary symbol in an attribute
reference, the qualifier is ignored.

  Chapter 9. How to Write Conditional Assembly Instructions 295



 Data Attributes  
 

The value of an attribute for a variable symbol specified in an attribute reference
comes from the value substituted for the variable symbol as follows:

SET Symbols and System Variable Symbols:  For SET symbols and all system
variable symbols other than &SYSLIST, the attribute values come from the current
data value of these symbols.

Symbolic Parameters and &SYSLIST:  For symbolic parameters and the system
variable symbol, &SYSLIST, the values of the count and number attributes come
from the operands of macro instructions. The values of the type, length, scaling,
and integer attributes, however, come from the values represented by the macro
instruction operands, as follows:

1. If the operand is a sublist, the entire sublist and each entry of the sublist can
possess attributes; all the individual entries and the whole sublist have the
same attributes as those of the first suboperand in the sublist (except for the
count attribute, which can be different, and the number attribute which is
relevant only for the whole sublist).

2. If the first character or characters of the operand (or sublist entry) constitute an
ordinary symbol, and this symbol is followed by either an arithmetic operator (+,
−, *, or /), a left parenthesis, a comma, or a blank, then the value of the
attributes for the operand are the same as for the ordinary symbol.

3. If the operand (or sublist entry) is a character string other than a sublist or the
character string described in (b) above, the type attribute is undefined (U) and
the length, scaling, and integer attributes are invalid.

Because the count(K'), number(N'), and defined(D') attribute references are
allowed only in conditional assembly instructions, their values are available only
during conditional assembly processing. They are not available at assembly time.

The system variable symbol, &SYSLIST, can be used in an attribute reference to
refer to a macro instruction operand, and, in turn, to an ordinary symbol. Thus, any
of the attribute values for macro instruction operands and ordinary symbols listed
below can also be substituted for an attribute reference containing &SYSLIST.

Type Attribute (T')
The type attribute has a value of a single alphabetic character that shows the type
of data represented by:

� An ordinary symbol
� A macro instruction operand
� A SET symbol

 � A literal

The type attribute can change during an assembly. The lookahead search might
assign one attribute, whereas the symbol table at the end of the assembly might
display another.

The type attribute reference can be used in the operand field of the SETC
instruction or as one of the values used for comparison in the operand field of a
SETB or AIF instruction.

296 HLASM V1R3 Language Reference  



  Data Attributes
 

The type attribute can also be specified outside conditional assembly instructions.
Then, the type attribute value is not available for conditional assembly processing,
but is used as a value at assembly time.

The following letters are used for the type attribute of data represented by ordinary
symbols and outer macro instruction operands that are symbols that name DC or
DS statements.

A A-type address constant, implied length, aligned (also CXD instruction label)
B Binary constant
C Character constant
D Long floating-point constant, implicit length, aligned
E Short floating-point constant, implicit length, aligned
F Fullword fixed-point constant, implicit length, aligned
G Fixed-point constant, explicit length
H Halfword fixed-point constant, implicit length, aligned
K Floating-point constant, explicit length
L Extended floating-point constant, implicit length, aligned
P Packed decimal constant
Q Q-type address constant, implicit length, aligned

| R A-, S-, Q-, J-, V-, or Y-type address constant, explicit length
S S-type address constant, implicit length, aligned
V V-type address constant, implicit length, aligned
X Hexadecimal constant
Y Y-type address constant, implicit length, aligned
Z Zoned decimal constant
@ Graphic (G) constant

When a literal is specified as the name field on a macro call instruction, and if the
literal has previously been used in a machine instruction, the type attribute of the
literal is the same as for data represented by ordinary symbols or outer macro
instructions operands.

The following letters are used for the type attribute of data represented by ordinary
symbols (and outer macro instruction operands that are symbols) that name
statements other than DC or DS statements, or that appear in the operand field of
an EXTRN or WXTRN statement:

I Machine instruction
J Identified as a control section name
M The name field on a macro instruction, when the name field is:

� a valid symbol not previously defined
� a valid literal not previously defined

T Identified as an external symbol by EXTRN instruction
W CCW, CCW0, or CCW1 instruction
$ Identified as an external symbol by WXTRN instruction

The following letters are used for the type attribute of data represented by inner
and outer macro instruction operands only.

N Self-defining term or the value of a SETA or SETB variable
O Omitted operand (has a value of a null character string)

The following letter is used for symbols or macro instruction operands that cannot
be assigned any of the above letters:

  Chapter 9. How to Write Conditional Assembly Instructions 297



 Data Attributes  
 

| U Undefined, unknown, or unassigned

The common use of the U type attribute is to describe a valid symbol that has
not been assigned any of the type attribute values described above. If the
assembler is not able to determine what the named symbol represents, it also
assigns the U type attribute. Thus, the U type attribute can mean undefined, or

| unknown, or unassigned at the time of the reference. Consider the following
macro definition:

Name Operation Operand
 macro
 MAC1 &op1,&op2
&A setc T'&op1
&B setc T'&op2

DC C'&A' DC containing type attribute for op1
DC C'&B' DC containing type attribute for op2

 mend

When the macro MAC1 is called in Figure 77, neither of the operands has
previously been defined, however GOOD_SYMBOL is a valid symbol name, whereas
?BAD_SYMBOL? is a not valid symbol name. The type attribute for both operands
is U, meaning GOOD_SYMBOL is undefined, and ?BAD_SYMBOL? is unknown.

KKKKKK KKKKK KKKK4 8 a csect
 9 mac1 GOOD_SYMBOL,?BAD_SYMBOL?
KKKKKK E4 1K+ DC C'U' DC containing type attribute for op1
KKKKK1 E4 11+ DC C'U' DC containing type attribute for op2
KKKKK2 E4 12 DC C'U' DC containing type attribute for op1
KKKKK3 E4 13 DC C'U' DC containing type attribute for op2
 14 end

Figure 77. Undefined and Unknown Type Attributes

When the macro MAC1 is called in Figure 78, GOOD_SYMBOL is a valid symbol
name, and has been defined in the DC instruction at statement 12.
?BAD_SYMBOL? is a not valid symbol name, and the assembler issues an error
message at statement 13. The type attribute for GOOD_SYMBOL is C, meaning the
symbol represents a character constant. The type attribute for ?BAD_SYMBOL? is
U, meaning the type is unknown.

KKKKKK KKKKK KKKK6 8 a csect
 9 mac1 GOOD_SYMBOL,?BAD_SYMBOL?
KKKKKK C3 1K+ DC C'C' DC containing type attribute for op1
KKKKK1 E4 11+ DC C'U' DC containing type attribute for op2
KKKKK2 C3 12 DC C'C' DC containing type attribute for op1
KKKKK3 E4 13 DC C'U' DC containing type attribute for op2
KKKKK4 A9 14 GOOD_SYMBOL dc cl1'z'
KKKKK5 A9 15 ?BAD_SYMBOL? dc cl1'z'
DD ASMA147E Symbol too long, or first character not a letter - ?BAD_SYMBOL?
 16 end

Figure 78. Unknown Type Attribute for Invalid Symbol

| The type attribute value U, meaning undefined, unknown, or unassigned, is
assigned to the following:

� Ordinary symbols used as labels:

– For the LTORG instruction

– For the EQU instruction without a third operand

298 HLASM V1R3 Language Reference  



  Data Attributes
 

– For DC and DS statements that contain variable symbols, for example,
U1 DC &X'1'

– That are defined more than once, even though only one label is
generated due to conditional assembly statements

� SETC variable symbols that have a value other than a null character string
or the name of an instruction that can be referred to be a type attribute
reference

� System variable symbols except:

| – &SYSDATC, &SYSM_HSEV, &SYSM_SEV, &SYSNDX, &SYSNEST,
| &SYSOPT_DBCS, &SYSOPT_RENT, &SYSOPT_XOBJECT, and
| &SYSSTMT, which always have a type attribute value of N

| – Some other character type system variable symbols which may be
| assigned a value of a null string, when they have a type attribute value
| of O

� Macro instruction operands that specify a literal that is not a duplicate of a
literal used in a machine instruction

� Inner macro instruction operands that are ordinary symbols

Notes:

1. Ordinary symbols used in the name field of an EQU instruction have the type
attribute value U. However, the third operand of an EQU instruction can be
used explicitly to assign a type attribute value to the symbol in the name field.

2. The type attribute of a sublist is set to the same value as the type attribute of
the first element of the sublist.

3. High Level Assembler and earlier assemblers treat the type attribute differently:

� Because High Level Assembler allows attribute references to statements
generated through substitution, certain cases in which a type attribute of U

| (undefined, unknown, or unassigned) or M (macro name field) is given
under the DOS/VSE Assembler, may give a valid type attribute under High
Level Assembler. If the value of the SETC symbol is equal to the name of
an instruction that can be referred to by the type attribute, High Level
Assembler lets you use the type attribute with a SETC symbol.

� Because High Level Assembler allows attribute references to literals,
| certain cases in which a type attribute of U (undefined, unknown, or
| unassigned) is given by Assembler F and Assembler H for a macro

operand that specifies a literal, may give a valid type attribute under High
Level Assembler. If the literal specified in the macro instruction operand is
a duplicate of a literal specified in open code, or previously generated by
conditional assembly processing or macro generation, High Level
Assembler gives a type attribute that shows the type of data specified in

| the literal. The COMPAT(LITTYPE) option causes High Level Assembler to
| behave like Assembler H, always giving a type attribute of U for the T'
| literal.

  Chapter 9. How to Write Conditional Assembly Instructions 299



 Data Attributes  
 

Length Attribute (L')
The length attribute has a numeric value equal to the number of bytes occupied by
the data that is named by the symbol specified in the attribute reference.

If the length attribute value is desired for conditional assembly processing, the
symbol specified in the attribute reference must ultimately represent the name entry
of a statement in open code. In such a statement, the length modifier (for DC and
DS instructions) or the length field (for a machine instruction), if specified, must be
a self-defining term. The length modifier or length field must not be coded as a
multiterm expression, because the assembler does not evaluate this expression
until assembly time.

The assembler lets you use the length attribute with a SETC symbol, if the value of
the SETC symbol is an ordinary symbol that can be referenced by the length
attribute.

The length attribute can also be specified outside conditional assembly instructions.
Then, the length attribute value is not available for conditional assembly processing,
but is used as a value at assembly time.

| Figure 79 is an example showing the evaluation of the length attribute for an
| assembler instruction in statement 1 and for a conditional assembly instruction in
| statement 8.

| KKKKKK E74K 1 CSYM DC CL(L'ZLOOKAHEAD)'X' Length resolved later
| 2 &LEN SETA L'CSYM
| DD ASMAK42E Length attribute of symbol is unavailable; default=1
| 3 DC C'&LEN ' REAL LENGTH NOT AVAILABLE
| KKKKK2 F14K + DC C'1 ' REAL LENGTH NOT AVAILABLE
| 4 &TYP SETC T'CSYM
| 5 DC C'&TYP ' TYPE IS KNOWN
| KKKKK4 C34K + DC C'C ' TYPE IS KNOWN
| 6 &DEF SETA D'CSYM
| 7 DC C'&DEF ' SYMBOL IS DEFINED
| KKKKK6 F14K + DC C'1 ' SYMBOL IS DEFINED
| 8 &LEN SETA L'zlookahead Length resolved immediately
| 9 CSYM2 DC CL(&len)'X'
| KKKKK8 E74K +CSYM2 DC CL(2)'X'
| 1K &LEN SETA L'CSYM2
| 11 DC C'&LEN ' REAL LENGTH NOW AVAILABLE
| KKKKKA F24K + DC C'2 ' REAL LENGTH NOW AVAILABLE
| KKKKKC KKK1 12 ZLOOKAHEAD DC H'1'
|  13 END

| Figure 79. Evaluation of Length Attribute References

| In statement 2 the length of CSYM has not been established because the definition of
| CSYM in statement 1 is not complete. The reference to the length attribute results in
| a length of 1 and error message ASMA042E. However, statement 5 shows that the
| type attribute is assigned, and statement 7 shows that the defined attribute is
| assigned. In comparison, the length attribute for symbol CSYM2 is available
| immediately, as it was retrieved indirectly using the conditional assembly instruction
| in statement 8.

During conditional assembly, an ordinary symbol used in the name field of an EQU
instruction has a length attribute value of 1. At assembly time, the symbol has the
same length attribute value as the first symbol of the expression in the first operand
of the EQU instruction. However, the second operand of an EQU instruction can

300 HLASM V1R3 Language Reference  



  Data Attributes
 

be used to assign a length attribute value to the symbol in the name field. This
second operand can not be a forward reference to another EQU instruction.

Notes:

1. The length attribute reference, when used in conditional assembly processing,
can be specified only in arithmetic expressions.

2. When used in conditional assembly processing, a length attribute reference to a
symbol with the type attribute value of M, N, O, T, U, or $ is flagged. The
length attribute for the symbol has the default value of 1.

Scaling Attribute (S')
The scaling attribute can be used only when referring to fixed-point, floating-point,
or decimal constants. The following table shows the numeric value assigned to the
scaling attribute:

The scaling attribute can also be specified outside conditional assembly
instructions. Then, the scaling attribute value is not available for conditional
assembly processing, but is used as a value at assembly time.

Notes:

1. The scaling attribute reference can be used only in arithmetic expressions.

2. When no scaling attribute value can be determined, the reference is flagged
and the scaling attribute is 1.

3. If the value of the SETC symbol is equal to the name of an instruction that can
be referenced by the scaling attribute, the assembler lets you use the scaling
attribute with a SETC symbol.

4. Binary floating-point constants return an attribute of 0.

Constant
Types
Allowed

 
Type of DC
Allowed

 
Value of Scaling
Attribute Assigned

Fixed-Point H, F, and G Equal to the value of the scale modifier
(−187 through +346)

Floating Point D, E, and L Equal to the value of the scale modifier
(0 through 14 — D, E)
(0 through 28 — L)

Decimal P and Z Equal to the number of decimal digits
specified to the right of the decimal
point
(0 through 31 — P)
(0 through 16 — Z)

Integer Attribute (I')
The integer attribute has a numeric value that depends on the length and scaling
attribute values of the data being referred to by the attribute reference. The
formulas relating the integer attribute to the length and scaling attributes are given
in Figure 80 on page 302.

  Chapter 9. How to Write Conditional Assembly Instructions 301



 Data Attributes  
 

The integer attribute can also be specified outside conditional assembly
instructions. Then, the integer attribute value is not available for conditional
assembly processing, but is used as a value at assembly time.

Figure 80. Relationship of Integer to Length and Scaling Attributes

Constant Type3

Formula Relating Integer
to Length and Scaling
Attributes7 Examples

Values of the
Integer Attribute

Fixed-point
(H, F, and G)

I' = 8DL'−S'−1 HALFCON DC HS6'−25.93'
 
 
ONECON DC FS8'1KK.3E–2'

I' = 8D2−6−1
 = 9
 
I' = 8D4–8–1
 = 23

Floating-point
(D, E, and L)
 
 
 
 
 
L-type only

when L' ≤ 8
I' = 2D(L'–1)–S'
 
 
 
 
 
when L' > 8
I' = 2D(L'–1)–S'–2

 
SHORT DC ES2'46.415'
 
 
LONG DC DS5'–3.729'
 
 
 
EXTEND DC LS1K'5.312'

 
I' = 2D(4–1)–2
 = 4
 
I' = 2D(8–1)–5
 = 9
 
 
I' = 2D(16–1)–1K–2
 = 18

Decimalb
Packed (P)
 
 
Zoned (Z)

 
I' = 2DL'–S'–1
 
 
I' = L'–S'

 
PACK DC P'+3.513'
 
 
ZONE DC Z'3.513'

 
I' = 2D3–3–1
 = 2
 
I' = 4–3
 = 1

Notes: 

1. If the value of a SETC symbol is equal to the name of an instruction that can be referenced by the
integer attribute, you can use the integer attribute reference with the SETC symbol.

2. The integer attribute reference can only be used in arithmetic expressions in conditional assembly
instructions, and in absolute and relocatable expressions in assembler and machine instructions.

3. The value of the integer attribute is equal to the number of digits to the left of the assumed decimal
place after the constant is assembled.

Count Attribute (K')
The count attribute applies only to macro instruction operands, to SET symbols,
and to the system variable symbols. It has a numeric value equal to the number of
characters:

� That constitute the macro instruction operand, or

� That would be required to represent as a character string the current value of
the SET symbol or the system variable symbol.

302 HLASM V1R3 Language Reference  



  Data Attributes
 

Notes:

1. The count attribute reference can be used only in arithmetic expressions.

2. The count attribute of an omitted macro instruction operand has a value of 0.

3. Doubled quotes ('') count as one character. Doubled ampersands (&&) count
as two characters. For more information about character pairs see “Evaluation
of Character Expressions” on page 333.

Number Attribute (N')
The number attribute applies to the operands of macro instructions and subscripted
SET symbols.

When applied to a macro operand, the number attribute is a numeric value equal to
the number of sublist entries.

When applied to a subscripted SET symbol, the number attribute is equal to the
highest element to which a value has been assigned in a SETx instruction.
Consider the example in Figure 81.

 1 macro
 2 MAC1 &op1
 3 lcla &SETSUB(1KK)

4 &SETSUB(5) seta 2K,,,7K
 5 &B seta N'&SETSUB
 6 &C seta N'&op1

7 DC C'Highest referenced element of SETSUB = &B'
8 DC C'Number of sublist entries in OP1 = &C'

 9 mend
KKKKKK KKKKK KKK4C 1K a csect
 11 MAC1 (1,(3),(4))
KKKKKK C889878885A2A34K 12+ DC C'Highest referenced element of SETSUB = 8'
KKKK28 D5A4948285994K96 13+ DC C'Number of sublist entries in OP1 = 3'
 14 end

Figure 81. Number Attribute Reference

N'&op1 is equal to 3 because there are three subscripts in the macro operand in
statement 11: 1, (3), and (4).

N'&SETSUB is equal to 8 because &SETSUB(8), assigned the value 70 in statement 4,
is the highest referenced element of the &SETSUB sublist entries.

Notes:

1. The number attribute reference can be used only in arithmetic expressions.

2. N'&SYSLIST refers to the number of positional operands in a macro
instruction, and N'&SYSLIST(n) refers to the number of sublist entries in the
n-th operand.

3. For all other system variable symbols, the number attribute value is always one.
This is also true for &SYSMAC. The range of the subscript for &SYSMAC is
zero to &SYSNEST inclusive.

4. N' is always zero for unsubscripted set symbols.

  Chapter 9. How to Write Conditional Assembly Instructions 303



 Data Attributes  
 

Defined Attribute (D')
The defined attribute shows whether or not the symbol or literal referenced has
been defined prior to the attribute reference. A symbol is defined if it has been
encountered in the operand field of an EXTRN or WXTRN statement, or in the
name field of any other statement except a TITLE statement or a macro instruction.
A literal is defined if it has been encountered in the operand field of a machine
instruction. The value of the defined attribute is an arithmetic value that can be
assigned to a SETA symbol, and is equal to 1 if the symbol has been defined, or 0
if the symbol has not been defined.

The defined attribute can reference:

 � Ordinary symbols
� Macro instruction operands

 � SET symbols
 � Literals

The following is an example of how you can use the defined attribute:

Name Operation Operand

 AIF (D'A).AROUND
A LA 1,4
.AROUND ANOP

In this example, assuming there has been no previous definition of the symbol A,
the statement labeled A would be assembled, since the branch around it would not
be taken. However, if by a branch the same statement were processed again, the
statement at A would not be assembled:

Name Operation Operand

.UP AIF (D'A).AROUND
A LA 1,4
.AROUND ANOP
 .
 .
 AGO .UP

You can save assembly time using the defined attribute. Each time the assembler
finds a reference (attribute or branch) to an undefined symbol, it initiates a forward
scan until it finds that symbol or reaches the END statement. You can use the
defined attribute in your program to prevent the assembler from making this

| time-consuming forward scan. This attribute reference can be used in the operand
| field of a SETA instruction or as one of the values to be tested in the operand field
| of a SETB or AIF instruction.

Operation Code Attribute (O')
The operation code attribute shows whether a given operation code has been
defined prior to the attribute reference. The operation code can be represented by
a character string or by a variable symbol containing a character string. The
variable must be set using a SETC assembler instruction prior to being referenced
by the operation code (O') attribute.

The operation code attribute has a value of a single alphabetic character that
shows the type of operation represented.

304 HLASM V1R3 Language Reference  



  Data Attributes
 

This attribute reference can be used in the operand field of the SETC instruction or
as one of the values used for comparison in the operand field of a SETB or AIF
instruction.

The following letters are used for the operation code attribute:

A Assembler operation code
E Extended mnemonic operation code
M Macro definition
O Machine operation code
S Macro definition found in library

| U Undefined, unknown, unassigned, or deleted operation code

Notes:

1. The operation code (O') attribute can only be used on a conditional assembly
statement.

2. The assembler does not enter lookahead mode to resolve the operation code
type, therefore only operation codes defined at the time the attribute is
referenced return an operation code type value other than U.

3. When the operation code is not an assembler instruction or a machine
instruction, and the operation code is not a previously defined macro, then all
libraries in the library dataset definition list are searched. This may have an
adverse impact on the performance of the assembly, depending on the number
of libraries assigned in the assembly job and the number of times the operation
code attribute is used.

Examples:

Name Operation Operand

&A SETC O'MVC

&A contains the letter O, because MVC is a machine operation code:

Name Operation Operand

&A SETC 'DROP'
&B SETC O'&A

&B contains the letter A, because DROP is an assembler operation code.

The following example checks to see if the macro MAC1 is defined. If not, the
MAC1 macro instruction is bypassed. This prevents the assembly from failing
when the macro is not available.

Name Operation Operand

&CHECKIT SETC O'MAC1
AIF ('&CHECKIT' EQ 'U').NOMAC

 MAC1
.NOMAC ANOP
 .

Redefined Operation Codes:  If an operation code is redefined using the OPSYN
instruction then the value returned represents the new operation code. If the
operation code is deleted using the OPSYN instruction then the value returned is U.

  Chapter 9. How to Write Conditional Assembly Instructions 305



 Sequence Symbols  
 

 Sequence Symbols
You can use a sequence symbol in the name field of a statement to branch to that
statement during conditional assembly processing, thus altering the sequence in
which the assembler processes your conditional assembly and macro instructions.
You can select the model statements from which the assembler generates
assembler language statements for processing at assembly time.

A sequence symbol consists of a period (.) followed by an alphabetic character,
followed by 0 to 61 alphanumeric characters.

Examples:

.BRANCHING_LABEL#1

.A

Sequence symbols can be specified in the name field of assembler language
statements and model statements; however, sequence symbols must not be used
as name entries in the following assembler instructions:

ALIAS ICTL SETA
AREAD LOCTR SETB
DXD MACRO SETC
EQU OPSYN

Also, sequence symbols cannot be used as name entries in macro prototype
instructions, or in any instruction that already contains an ordinary or a variable
symbol in the name field.

Sequence symbols can be specified in the operand field of an AIF or AGO
instruction to branch to a statement with the same sequence symbol as a label.

Scope:  A sequence symbol has a local scope. Thus, if a sequence symbol is
used in an AIF or an AGO instruction, the sequence symbol must be defined as a
label in the same part of the program in which the AIF or AGO instruction appears;
that is, in the same macro definition or in open code.

Symbolic Parameters:  If a sequence symbol appears in the name field of a
macro instruction, and the corresponding prototype statement contains a symbolic
parameter in the name field, the sequence symbol does not replace the symbolic
parameter wherever it is used in the macro definition. The value of the symbolic
parameter is a null character string.

Example:

306 HLASM V1R3 Language Reference  



  Lookahead
 

 MACRO
 &NAME MOVE &TO,&FROM Statement 1
 &NAME ST 2,SAVEAREA Statement 2
 L 2,&FROM
 ST 2,&TO
 L 2,SAVEAREA
 MEND
 ------------------------------------------------------------------
 .SYM MOVE FIELDA,FIELDB Statement 3
 ------------------------------------------------------------------
+ ST 2,SAVEAREA Statement 4
+ L 2,FIELDB
+ ST 2,FIELDA
+ L 2,SAVEAREA

The symbolic parameter &NAME is used in the name field of the prototype statement
(Statement 1) and the first model statement (Statement 2). In the macro instruction
(Statement 3), a sequence symbol (.SYM) corresponds to the symbolic parameter
&NAME. &NAME is not replaced by .SYM and, therefore, the generated statement
(Statement 4) does not contain an entry in the name field.

 Lookahead
Symbol attributes are established in either definition mode or lookahead mode.

Definition mode occurs whenever a previously undefined symbol is encountered in
the name field of a statement, or in the operand field of an EXTRN or WXTRN
statement during open code processing. Symbols within a macro definition are
defined when the macro is expanded.

Lookahead mode is entered:

� When the assembler processes a conditional assembly instruction and
encounters an attribute reference (other than D' and O') to an ordinary symbol
that is not yet defined.

� When the assembler encounters a forward AGO or AIF branch in open code to
a sequence symbol that is not yet defined.

Lookahead is a sequential, statement-by-statement, forward scan over the source
text.

If the attribute reference is made in a macro, forward scan begins with the first
source statement following the outermost macro instruction. During lookahead the
assembler:

� Bypasses macro definition and generation
� Does not generate object text
� Does not perform open-code variable substitution
� Ignores AIF and AGO branch instructions
� Establishes interim data attributes for undefined symbols it encounters in

operand fields of instructions. The data attributes are replaced when a symbol
is subsequently encountered in definition mode.

Lookahead mode ends when the desired symbol or sequence symbol is found, or
when the END statement or end of file is reached. All statements read by

  Chapter 9. How to Write Conditional Assembly Instructions 307



 Lookahead  
 

lookahead are saved on an internal file, and are fully processed when the
lookahead scan ends.

If a COPY instruction is encountered during lookahead, it is fully processed at that
time, the assembler copies the statements from the library, scans them, and saves
them on the lookahead file. When lookahead mode has ended any COPY
instructions saved to the lookahead file are ignored, as the statements from the
copy member have already been read and saved to the lookahead file.

| If a variable symbol is used for the member name of a COPY that is expanded
| during lookahead, the value of the variable symbol at the time the COPY is
| expanded is used.

For purposes of attribute definition, a symbol is considered partially defined if it
depends in any way upon a symbol not yet defined. For example, if the symbol is
defined by a forward EQU that is not yet resolved, that symbol is assigned a type
attribute of U.

In this case, it is quite possible that, by the end of the assembly, the type attribute
has changed to some other value.

Generating END statements:  Because no variable symbol substitution is carried
out during lookahead, you should consider the following effects of using macro,

| AINSERT or open code substitution to generate END statements that separate
source modules assembled in one job step (BATCH assembler option). If a symbol
is undefined within a module, lookahead might read statements past the point
where the END statement is to be generated. Lookahead stops when:

1. It finds the symbol
2. It finds an END statement
3. It reaches the end of the source input data set

In the first two cases, the assembler begins the next module at the statement after
lookahead stopped, which could be after the point where you wanted to generate
the END statement.

 Lookahead Restrictions
The assembler analyzes the statements it processes during lookahead, only to
establish attributes of symbols in their name fields.

Variable symbols are not replaced. Modifier expressions are evaluated only if all
symbols involved were defined prior to lookahead. Possible multiple or inconsistent
definition of the same symbol is not diagnosed during lookahead because
conditional assembly may eliminate one (or more) of the definitions.

Lookahead does not check undefined operation codes against library macro names.
If the name field contains an ordinary symbol and the operation code cannot be
matched with one in the current operation code table, then the ordinary symbol is
assigned the type attribute of M. If the operation code contains special characters
or is a variable symbol, a type attribute of U is assumed. This may be wrong if the
undefined operation code is later defined by OPSYN. OPSYN statements are not
processed; thus, labels are treated in accordance with the operation code
definitions in effect at the time of entry to lookahead.

308 HLASM V1R3 Language Reference  



  Open Code
 

 Sequence Symbols
The conditional assembly instructions AGO and AIF in open code control the
sequence in which source statements are processed. Using these instructions it is
possible to branch back to a sequence symbol label and re-use previously
processed statements. Due to operating system restrictions, the primary input
source can only be read sequentially, and cannot be re-read. Whenever a
sequence symbol in the name field is encountered in open code, the assembler
must assume that all subsequent statements may need to be processed more than
once. The assembler uses the lookahead file to save the statement containing the
sequence symbol label and all subsequent statements as they are read and
processed. Any subsequent AGO or AIF to a previously encountered sequence
symbol will be resolved to an offset into the lookahead file and input will continue
from that point.

 Open Code
Conditional assembly instructions in open code let you:

� Select, during conditional assembly, statements or groups of statements from
the open code portion of a source module according to a predetermined set of
conditions. The assembler further processes the selected statements at
assembly time.

� Pass local variable information from open code through parameters into macro
definitions.

� Control the computation in and generation of macro definitions using global
SET symbols.

� Substitute values into the model statements in the open code of a source
module and control the sequence of their generation.

All the conditional assembly elements and instructions can be specified in open
code.

The specifications for the conditional assembly language described in this chapter
also apply in open code. However, the following restrictions apply:

To Attributes In Open Code:  For ordinary symbols, only references to the type,
length, scaling, integer, defined, and operation code attributes are allowed.

References to the number attribute have no meaning in open code, because
&SYSLIST is not allowed in open code, and symbolic parameters have no meaning
in open code.

To Conditional Assembly Expressions:  Figure 82 shows the restrictions for
different expression types.

Figure 82 (Page 1 of 2). Restrictions on Coding Expressions

Expression Must not contain

Arithmetic
(SETA)

 � &SYSLIST
 � Symbolic parameters
� Any attribute references to symbolic parameters, or system variable

symbols with local scope

  Chapter 9. How to Write Conditional Assembly Instructions 309



 Declaring SET Symbols  
 

Figure 82 (Page 2 of 2). Restrictions on Coding Expressions

Expression Must not contain

Character
(SETC)

� System variables with local scope
� Attribute references to system variables with local scope

 � Symbolic parameters

Logical
(SETB)

� Arithmetic expressions with the items listed above
� Character expressions with the items listed above

Conditional Assembly Instructions
The remainder of this chapter describes, in detail, the syntax and rules for use of
each conditional assembler instruction. The following table lists the conditional
assembler instructions by type, and provides the page number where the instruction
is described in detail.

Figure 83. Assembler Instructions

Type of Instruction Instruction Page No.

Establishing SET symbols GBLA 311 

GBLB 311 

GBLC 311 

LCLA 312 

LCLB 312 

LCLC 312 

SETA 314 

SETB 324 

SETC 329 

Branching ACTR 346 

AGO 345 

AIF 342 

ANOP 347 

External Function Calling SETAF 338 

SETCF 339 

Declaring SET Symbols
You must declare a global SET symbol before you can use it. The assembler
assigns an initial value to a global SET symbol at its point of declaration.

Local SET symbols need not be declared explicitly with LCLA, LCLB, or LCLC
statements. The assembler considers any undeclared variable symbol found in the
name field of a SETA, SETB, SETC, SETAF, or SETCF statement to be a local
SET symbol. It is given the initial value specified in the operand field. If the
symbol in the name field is subscripted, it is declared as a subscripted SET symbol.

310 HLASM V1R3 Language Reference  



  GBLA, GBLB, and GBLC Instructions
 

GBLA, GBLB, and GBLC Instructions
Use the GBLA, GBLB, and GBLC instructions to declare the global SETA, SETB,
and SETC symbols you need. The SETA, SETB, and SETC symbols are assigned
the initial values of 0, 0, and null character string, respectively.

 

 ┌ ┐─,───────────────
��─ ──┬ ┬───────────────── ──┬ ┬─GBLA─ ───+ ┴─variable_symbol─ ────────────��
 └ ┘ ─sequence_symbol─ ├ ┤─GBLB─
 └ ┘─GBLC─

sequence_symbol
is a sequence symbol.

variable_symbol
is a variable symbol, with or without the leading ampersand (&).

These instructions can be used anywhere in the body of a macro definition or in the
open code portion of a source module.

Any variable symbols declared in the operand field have a global scope. They can
be used as SET symbols anywhere after the pertinent GBLA, GBLB, or GBLC
instructions. However, they can be used only within those parts of a program in
which they have been declared as global SET symbols; that is, in any macro
definition and in open code.

The assembler assigns an initial value to the SET symbol only when it processes
the first GBLA, GBLB, or GBLC instruction in which the symbol appears. Later
GBLA, GBLB, or GBLC instructions do not reassign an initial value to the SET
symbol.

Multiple GBLx statements can declare the same variable symbol if only one
declaration for a given symbol is encountered during the expansion of a macro.

The following rules apply to the global SET variable symbol:

� Within a macro definition, it must not be the same as any symbolic parameter
declared in the prototype statement.

� It must not be the same as any local variable symbol declared within the same
local scope.

� The same variable symbol must not be declared or used as two different types
of global SET symbol; for example, as a SETA or SETB symbol.

� A global SET symbol should not begin with &SYS because these characters are
used for system variable symbols.

Subscripted Global SET Symbols
A global subscripted SET symbol is declared by the GBLA, GBLB, or GBLC
instruction.

  Chapter 9. How to Write Conditional Assembly Instructions 311



 LCLA, LCLB, and LCLC Instructions  
 

 

 ┌ ┐─,────────────────────────
��─ ──┬ ┬───────────────── ──┬ ┬─GBLA─ ───+ ┴variable_symbol(dimension) ───��
 └ ┘ ─sequence_symbol─ ├ ┤─GBLB─
 └ ┘─GBLC─

sequence_symbol
is a sequence symbol.

variable_symbol
is a variable symbol, with or without the leading ampersand (&).

dimension
is the dimension of the array. It must be an unsigned, decimal, self-defining
term greater than zero.

Example:

 GBLA &GA(25),&GA1(15)

There is no limit on the maximum subscript allowed. Also, the limit specified in the
global declaration (GBLx) can be exceeded. The dimension shows the number of
SET variables associated with the subscripted SET symbol. The assembler
assigns an initial value to every variable in the array thus declared.

Notes:

1. Global arrays are assigned initial values only by the first global declaration
processed, in which a global subscripted SET symbol appears.

2. A subscripted global SET symbol can be used only if the declaration has a
subscript, which represents a dimension; a nonsubscripted global SET symbol
can be used only if the declaration had no subscript.

3. Wherever a particular global SET symbol is declared with a dimension as a
subscript, the dimension must be the same in each declaration.

Alternative Format for GBLx Statements
The assembler permits the alternate statement format for GBLx instructions:

 Cont.

 GBLA &GLOBAL─SYMBOL─FOR─DC─GEN, X
 &LOOP─CONTRL─A, X
 &VALUE─PASSED─TO─FIDO, X
 &VALUE─RETURNED─FROM─FIDO

LCLA, LCLB, and LCLC Instructions
Use the LCLA, LCLB, and LCLC instructions to declare the local SETA, SETB, and
SETC symbols you need. The SETA, SETB, and SETC symbols are assigned the
initial values of 0, 0, and null character string, respectively.

 

 ┌ ┐─,───────────────
��─ ──┬ ┬───────────────── ──┬ ┬─LCLA─ ───+ ┴─variable_symbol─ ────────────��
 └ ┘ ─sequence_symbol─ ├ ┤─LCLB─
 └ ┘─LCLC─

312 HLASM V1R3 Language Reference  



  LCLA, LCLB, and LCLC Instructions
 

sequence_symbol
is a sequence symbol.

variable_symbol
is a variable symbol, with or without the leading ampersand (&).

These instructions can be used anywhere in the body of a macro definition or in the
open code portion of a source module.

Any variable symbols declared in the operand field have a local scope. They can
be used as SET symbols anywhere after the pertinent LCLA, LCLB, or LCLC
instructions, but only within the declared local scope. Multiple LCLx statements can
declare the same variable symbol if only one declaration for a given symbol is
encountered during the expansion of a macro.

The following rules apply to a local SET variable symbol:

� Within a macro definition, it must not be the same as any symbolic parameter
declared in the prototype statement.

� It must not be the same as any global variable symbol declared within the
same local scope.

� The same variable symbol must not be declared or used as two different types
of SET symbols; for example, as a SETA and a SETB symbol, within the same
local scope.

� A local SET symbol should not begin with &SYS because these characters are
used for system variable symbols.

Subscripted Local SET Symbols
A local subscripted SET symbol is declared by the LCLA, LCLB, or LCLC
instruction.

 

 ┌ ┐─,────────────────────────
��─ ──┬ ┬───────────────── ──┬ ┬─LCLA─ ───+ ┴variable_symbol(dimension) ───��
 └ ┘ ─sequence_symbol─ ├ ┤─LCLB─
 └ ┘─LCLC─

sequence_symbol
is a sequence symbol.

variable_symbol
is a variable symbol, with or without the leading ampersand (&).

dimension
is the dimension of the array. It must be an unsigned, decimal, self-defining
term greater than zero.

Example:

 LCLB &B(1K)

There is no limit to SET symbol dimensioning. The limit specified in the explicit
(LCLx) or implicit (SETx) declaration can also be exceeded by later SETx
statements. The dimension shows the number of SET variables associated with

  Chapter 9. How to Write Conditional Assembly Instructions 313



 SETA Instruction  
 

the subscripted SET symbol. The assembler assigns an initial value to every
variable in the array thus declared.

Subscripted Local SET Symbol:  A subscripted local SET symbol can be used
only if the declaration has a subscript, which represents a dimension; a
nonsubscripted local SET symbol can be used only if the declaration had no
subscript.

Alternative Format for LCLx Statements
The assembler permits an alternative statement format for LCLx instructions:

 Cont.

 LCLA &LOCAL_SYMBOL_FOR_DC_GEN, X
 &COUNTER_FOR_INNER_LOOP, X
 &COUNTER_FOR_OUTER_LOOP, X
 &COUNTER_FOR_TRAILING_LOOP

Assigning Values to SET Symbols
You can assign values to SET symbols by using the SETA, SETB, SETC, SETAF
and SETCF instructions (SETx). You can also use these instructions to implicitly
define local SET symbols. Local SET symbols need not be declared explicitly with
LCLA, LCLB, or LCLC statements. The assembler considers any undeclared
variable symbol found in the name field of a SETx statement to be a local SET
symbol. It is given the initial value specified in the operand field of SETA, SETB
and SETC instructions, and the value returned from the external function specified
in the operand of SETAF and SETCF instructions. If the symbol in the name field
is subscripted, it is declared as a subscripted SET symbol.

 SETA Instruction
The SETA instruction assigns an arithmetic value to a SETA symbol. You can
specify a single value or an arithmetic expression from which the assembler
computes the value to assign.

You can change the values assigned to an arithmetic or SETA symbol. This lets
you use SETA symbols as counters, indexes, or for other repeated computations
that require varying values.

 

��──variable_symbol──SETA──expression──────────────────────────────��

variable_symbol
is a variable symbol.

A global variable symbol in the name field must have been previously declared
as a SETA symbol in a GBLA instruction. Local SETA symbols need not be
declared in a LCLA instruction. The assembler considers any undeclared
variable symbol found in the name field of a SETA instruction as a local SET
symbol. The variable symbol is assigned a type attribute value of N.

314 HLASM V1R3 Language Reference  



  SETA Instruction
 

expression
is an arithmetic expression evaluated as a signed 32-bit arithmetic value that is
assigned to the SETA symbol in the name field. The minimum and maximum
allowable values of the expression are −2b] and +2b]−1, respectively.

Subscripted SETA Symbols
The SETA symbol in the name field can be subscripted, but only if the same SETA
symbol has been previously declared in a GBLA or LCLA instruction with an
allowable dimension.

The assembler assigns the value of the expression in the operand field to the
position in the declared array given by the value of the subscript. The subscript
expression must not be 0 or have a negative value.

Arithmetic (SETA) Expressions
Figure 84 shows how arithmetic expressions can be used.

When an arithmetic expression is used in the operand field of a SETC instruction
(see �1� in Figure 84), the assembler assigns the character value representing the
arithmetic expression to the SETC symbol, after substituting values (see �2� in
Figure 84) into any variable symbols. It does not evaluate the arithmetic
expression. The mathematical sign (+ or −) is not included in the substituted value
of a variable symbol (see �3� in Figure 84), and any leading zeros are removed.

| Built-in Functions for Arithmetic Expressions:  An arithmetic expression can
| consist of two expressions separated by a binary built-in function which returns an
| arithmetic value, or a single expression prefixed by a unary built-in function which
| returns an arithmetic value.

|  Unary Format|  

| ��──(──built-in function──operand2──)──────────────────────────────��

Figure 84. Use of Arithmetic Expressions

Used in Used as Example

SETA instruction Operand &A1 SETA &A1+2

AIF or SETB instruction Term in arithmetic
relation

AIF (&AD1K GT 3K).A

Subscripted SET symbols Subscript &ASYM(&A+1K−&C)

Substring notation Subscript 'STRING'(&AD2,&A−1)

Sublist notation Subscript Given sublist (A,B,C,D)
if &A=1 then &PARAM(&A+1)=B

&SYSLIST Subscript &SYSLIST(&M+1,&N−2)
&SYSLIST(N'&SYSLIST)

SETC instruction Character string in
operand

Given &C SETC '5−1KD&A' �1�
if &A=1K then
&C=5−1KD1K �2�
Given &D SETC '5−1KD&A' �1�
if &A=−1K then &D=5−1KD1K�3�

Built in functions Operand &VAR SETA (NOT &OP1)

  Chapter 9. How to Write Conditional Assembly Instructions 315



 SETA Instruction  
 

|  Binary Format|  

| ��──(──operand1──built-in function──operand2──)────────────────────��

operand1
| an expression of the type expected by the built-in function

operand2
| an expression of the type expected by the built-in function

built-in function
is one of the following:

AND a bit position in the result is set to 1 if the corresponding bit positions
in both operands contain 1, otherwise, the result bit is set to 0. After
the following statements &VAR contains the arithmetic value +2:

Name Operation Operand

&OP1 SETA 1K
&OP2 SETA 2
&VAR SETA (&OP1 AND &OP2)

| FIND Finds the first match of any character from the second operand
| character string within the first operand character string. Both

operands of FIND are character expressions.

FIND returns the offset of the matched character as an arithmetic
value. The returned offset must be assigned to a SETA variable.
After the following statements &VAR contains the arithmetic value 3:

Name Operation Operand

&OP1 SETC 'abcdef'
&OP2 SETC 'cde'
&VAR SETA ('&OP1' FIND '&OP2')

In the above example the character c in &OP2 is the first character
found in &OP1. Consider the following example where the character c,
in &OP1, has been replaced with the character g.

Name Operation Operand

&OP1 SETC 'abcdef'
&OP2 SETC 'gde'
&VAR SETA ('&OP1' FIND '&OP2')

&VAR contains the arithmetic value 4. The character d in &OP2 is the
first character found in &OP1.

| In the following example, the ordering of the characters in the second
| operand is changed to egd.

| Name Operation Operand

| &OP1 SETC 'abcdef'
| &OP2 SETC 'egd'
| &VAR SETA ('&OP1' FIND '&OP2')

| &VAR still contains the arithmetic value 4. Because FIND is looking for
| a single character from the character string, the order of the characters
| in the second operand string is irrelevant.

316 HLASM V1R3 Language Reference  



  SETA Instruction
 

INDEX Finds the first match of the second operand character string within the
first operand character string. Both operands of INDEX are character
expressions.

INDEX returns the offset of the matched character string as an
arithmetic value. The returned offset must be assigned to a SETA
variable. After the following statements &VAR contains the arithmetic
value 3:

Name Operation Operand

&OP1 SETC 'abcdef'
&OP2 SETC 'cde'
&VAR SETA ('&OP1' INDEX '&OP2')

Consider the following example where the character c, in &OP1, has
been replaced with the character g.

Name Operation Operand

&OP1 SETC 'abcdef'
&OP2 SETC 'gde'
&VAR SETA ('&OP1' INDEX '&OP2')

&VAR contains the arithmetic value K, meaning that the value in &OP2
was not found in &OP1.

NOT the result of a NOT function is the ones complement of the value
contained or evaluated in the operand. After the following statements
&VAR contains the arithmetic value −11:

Name Operation Operand

&OP1 SETA 1K
&VAR SETA (NOT &OP1)

OR a bit position in the result is set to 1 if the corresponding bit positions
in one or both operands contains a 1, otherwise the result bit is set to
0. After the following statements &VAR contains the arithmetic value
+1K:

Name Operation Operand

&OP1 SETA 1K
&OP2 SETA 2
&VAR SETA (&OP1 OR &OP2)

SLA the 31-bit numeric part of the signed first operand is shifted left the
number of bits specified in the rightmost six bits of the second
operand. The sign of the first operand remains unchanged. Zeros are
used to fill the vacated bit positions on the right. After the following
statements &VAR contains the arithmetic value +8:

Name Operation Operand

&OP1 SETA 2
&OP2 SETA 2
&VAR SETA (&OP1 SLA &OP2)

  Chapter 9. How to Write Conditional Assembly Instructions 317



 SETA Instruction  
 

SLL the 32-bit first operand is shifted left the number of bits specified in the
rightmost six bits of the second operand. Bits shifted out of bit position
0 are lost. Zeros are used to fill the vacated bit positions on the right.
After the following statements &VAR contains the arithmetic value +4K:

Name Operation Operand

&OP1 SETA 1K
&OP2 SETA 2
&VAR SETA (&OP1 SLL &OP2)

SRA the 31-bit numeric part of the signed first operand is shifted right the
number of bits specified in the rightmost six bits of the second
operand. The sign of the first operand remains unchanged. Bits shifted
out of bit position 31 are lost. Bits equal to the sign are used to fill the
vacated bit positions on the left. After the following statements &VAR
contains the arithmetic value +2:

Name Operation Operand

&OP1 SETA 1K
&OP2 SETA 2
&VAR SETA (&OP1 SRA &OP2)

After the following statements &VAR contains the arithmetic value −1:

Name Operation Operand

&OP1 SETA -344
&OP2 SETA 4K
&VAR SETA (&OP1 SRA &OP2)

Compare this result with the result in the second example under SRL
below.

SRL the 32-bit first operand is shifted right the number of bits specified in
the rightmost six bits of the second operand. Bits shifted out of bit
position 31 are lost. Zeros are used to fill the vacated bit positions on
the left. After the following statements &VAR contains the arithmetic
value +2:

Name Operation Operand

&OP1 SETA 1K
&OP2 SETA 2
&VAR SETA (&OP1 SRL &OP2)

After the following statements &VAR contains the arithmetic value K:

Name Operation Operand

&OP1 SETA -344
&OP2 SETA 4K
&VAR SETA (&OP1 SRL &OP2)

XOR a bit position in the result is set to 1 if the corresponding bit positions
in the two operands are unlike, otherwise the result bit is set to 0.
After the following statements &VAR contains the arithmetic value +8:

318 HLASM V1R3 Language Reference  



  SETA Instruction
 

Name Operation Operand

&OP1 SETA 1K
&OP2 SETA 2
&VAR SETA (&OP1 XOR &OP2)

Figure 85 defines an arithmetic expression.

┌───────────┐
│ │
│Arithmetic │
│Expression │
│ │
└─────┬─────┘
 │

+ Can be any of
 ├────────────┬──────────┬────────────────────────────┬─────────────────────┬──────────────────────────┬──────────┐
 + + + + + + +
┌─────┴─────┐ ┌────┴────┐ ┌───┴───┬─────────┬───────┐ ┌────┴─────┬────────┐ ┌────┴──┬─────────┬───────┐ ┌───┴────┐ ┌───┴────┐
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│Arithmetic │ │ (Arith. │ │ Arith.│ Binary │ Arith.│ │ Unary │ Funct. │ │ Funct.│ Binary │ Funct.│ │+Arith. │ │-Arith. │
│Term │ │ Exp.) │ │ Exp. │ Operator│ Exp. │ │ Built-in │ Oper. │ │ Oper. │ Built-in│ Oper. │ │< Exp. │ │< Exp. │
│ │ │ │ │ │ │ │ │ Function │ │ │ │ Function│ │ ││ │ ││ │
└─────┬─────┘ └─────────┘ └───────┴─────────┴───────┘ └──────────┴────────┘ └───────┴─────────┴───────┘ └┼───────┘ └┼───────┘
 │ └────┬─────┘

+ Can be any of │
 ├─────────────┬─────────────┬─────────────┐ unary operators

+ + + +
┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐
│ Variable │ │Predefined │ │ Self- │ │ Attribute │
│ Symbol │ │Absolute │ │ Defining │ │ Reference │
│ │ │Ordinary │ │ Term │ │ │
│ │ │Symbol │ │ │ │ │ Operators Allowed Built-in Functions
└───────────┘ └───────────┘ └───────────┘ └─────┬─────┘

│ Unary: + Positive Unary: NOT - Logical Not
 │ – Negative

│ Can Binary: AND - Logical And
+ only be Binary: + Addition OR - Logical Or

┌─────┴─────┐ – Subtraction SLA - Shift Left Arithmetic
│ Length │ D Multiplication SLL - Shift Left Logical
│ Scaling │ / Division SRA - Shift Right Arithmetic
│ Integer │ SRL - Shift Right Logical
│ Count │ XOR - Exclusive Or

Arith. Exp. = Arithmetic Expression │ Number │ FIND - Find Character
Funct. Oper. = Function Operand │ Defined │ INDEX - Find String
 └───────────┘

Figure 85. Defining Arithmetic (SETA) Expressions

Figure 86 shows the variable symbols that are allowed as terms in an arithmetic
expression.

Figure 86 (Page 1 of 2). Variable Symbols Allowed as Terms in Arithmetic Expressions

Variable symbol Restrictions Example Value

SETA None --- ---

SETB None --- ---

SETC| Value must evaluate to an
| unsigned binary,
| hexadecimal or decimal

self-defining term in the
range 0 to 2,147,483,647

&C 123

Symbolic parameters Value must be a
self-defining term

&PARAM
 
&SUBLIST(3)

X'A1'
 
C'Z'

  Chapter 9. How to Write Conditional Assembly Instructions 319



 SETA Instruction  
 

The following example shows a SETA statement with a valid self-defining term in its
operand field:

&ASYM1 SETA C'D' &ASYM1 has value 196 (C'D')

The second statement in the following example is valid because in the two
positions in the SETA operand where a term is required (either side of the + sign),
the assembler finds a valid self-defining term:

&CSYM2 SETC 'C''A''' &CSYM2 has value C'A'
&ASYM3 SETA &CSYM2+&CSYM2 &ASYM3 has value 386 (C'A' + C'A')

A SET statement is not rescanned by the assembler to see whether substitutions
might affect the originally-determined syntax. The original syntax of the
self-defining term must be correct. Therefore the assembler does not construct a
self-defining term in a SETA statement. The third statement of the next example
shows this:

&CSYM3 SETC '3' &CSYM has value 3 (C'3')
&ASYM3 SETA &CSYM3 &ASYM has value 3
&ASYM4 SETA C'&ASYM3' Invalid self-defining term

In this example C'&ASYM3' is not a valid term.

Rules for Coding Arithmetic Expressions:  The following is a summary of coding
rules for arithmetic expressions:

1. Both unary (operating on one value) and binary (operating on two values)
operators are allowed in arithmetic expressions.

2. An arithmetic expression can have one or more unary operators preceding any
term in the expression or at the beginning of the expression. The unary
operators are + (positive) and − (negative).

3. The binary operators that can be used to combine the terms of an expression
are + (addition), − (subtraction), D (multiplication), and / (division).

4. An arithmetic expression must not begin with a binary operator, and it must not
contain two binary operators in succession.

5. An arithmetic expression must not contain two terms in succession.

Figure 86 (Page 2 of 2). Variable Symbols Allowed as Terms in Arithmetic Expressions

Variable symbol Restrictions Example Value

&SYSLIST(n)
 
&SYSLIST(n,m)

Corresponding operand or
sublist entry must be a
self-defining term

&SYSLIST(3)
 
&SYSLIST(3,2)

24
 
B'1K1'

&SYSPARM Value must evaluate to an
unsigned decimal
self-defining term in the
range 0 to 2,147,483,647

&SYSPARM 2KKK

&SYSDATC
| &SYSM_HSEV
| &SYSM_SEV
| &SYSNDX

&SYSNEST
&SYSOPT_DBCS
&SYSOPT_RENT

| &SYSOPT_XOBJECT
&SYSSTMT

None --- ---

320 HLASM V1R3 Language Reference  



  SETA Instruction
 

6. An arithmetic expression must not contain blanks between an operator and a
term, nor between two successive operators.

7. Ordinary symbols specified in arithmetic expressions must be defined before
the arithmetic expression is encountered, and must have an absolute value.

8. An arithmetic expression can contain up to 24 unary and binary operators, and
is limited to 255 levels of parentheses. The parentheses required for sublist
notation, substring notation, and subscript notation count toward this limit.

Evaluation of Arithmetic Expressions:  The assembler evaluates arithmetic
expressions during conditional assembly processing as follows:

1. It evaluates each arithmetic term.

2. It carries out arithmetic operations from left to right. However,

a. It carries out unary operations before binary operations, and

b. It carries out the binary operations of multiplication and division before the
binary operations of addition and subtraction.

3. In division, it gives an integer result; any fractional portion is dropped. Division
by zero gives a 0 result.

4. In parenthesized arithmetic expressions, the assembler evaluates the innermost
expressions first, and then considers them as arithmetic terms in the next outer
level of expressions. It continues this process until the outermost expression is
evaluated.

5. The computed result, including intermediate values, must lie in the range −2b]
through +2b]−1.

SETC Variables in Arithmetic Expressions:  The assembler permits a SETC
variable to be used as a term in an arithmetic expression if the character string
value of the variable is a self-defining term. The value represented by the string is
assigned to the arithmetic term. A null string is treated as zero.

Examples:

 LCLC &C(5)
&C(1) SETC 'B''1K1'''
&C(2) SETC 'C''A'''
&C(3) SETC '23'
&A SETA &C(1)+&C(2)–&C(3)
&AA SETA &C(3)

In evaluating the arithmetic expression in the fifth statement, the first term, &C(1), is
assigned the binary value 1K1 (decimal 5). To that is added the value represented
by the EBCDIC character A (hexadecimal C1, which corresponds to decimal 193).
Then the value represented by the third term &C(3) is subtracted, and the value of
&A becomes 5+193−23=175.

This feature lets you associate numeric values with EBCDIC or hexadecimal
characters to be used in such applications as indexing, code conversion,
translation, and sorting.

Assume that &X is a character string with the value ABC.

&I SETC 'C'''.'&X'(1,1).''''
&VAL SETA &TRANS(&I)

  Chapter 9. How to Write Conditional Assembly Instructions 321



 SETA Instruction  
 

The first statement sets &I to C'A'. The second statement extracts the 193rd
element of &TRANS (C'A' = X'C1' = 193).

The following code converts a hexadecimal value in &H into a decimal value in
&VAL:

&X SETC 'X''&H'''
&VAL SETA &X

The following code converts the double-byte character Da into a decimal value in
&VAL. &VAL can then be used to find an alternative code in a subscripted SETC
variable:

&DA SETC 'G''<Da>'''
&VAL SETA &DA

DBCS Assembler Option:  The G-type self-defining term is valid only if the DBCS
assembler option is specified.

An arithmetic expression must not contain two terms in succession; however, any
term may be preceded by any number of unary operators. +&AD−&B is a valid
operand for a SETA instruction. The expression &FIELD+− is invalid because it has
no final term.

Using SETA symbols
The arithmetic value assigned to a SETA symbol is substituted for the SETA
symbol when it is used in an arithmetic expression. If the SETA symbol is not used
in an arithmetic expression, the arithmetic value is converted to a character string
containing its value as an unsigned integer, with leading zeros removed. If the
value is 0, it is converted to a single 0.

Example:

 MACRO
 &NAME MOVE &TO,&FROM
 LCLA &A,&B,&C,&D
 &A SETA 1K Statement 1
 &B SETA 12 Statement 2
 &C SETA &A–&B Statement 3
 &D SETA &A+&C Statement 4
 &NAME ST 2,SAVEAREA
 L 2,&FROM&C Statement 5
 ST 2,&TO&D Statement 6
 L 2,SAVEAREA
 MEND
 -------------------------------------------------------------------
 HERE MOVE FIELDA,FIELDB
 -------------------------------------------------------------------
+HERE ST 2,SAVEAREA
+ L 2,FIELDB2
+ ST 2,FIELDA8
+ L 2,SAVEAREA

Statements 1 and 2 assign the arithmetic values +1K and +12, respectively, to the
SETA symbols &A and &B. Therefore, statement 3 assigns the SETA symbol &C
the arithmetic value −2. When &C is used in statement 5, the arithmetic value −2 is
converted to the unsigned integer 2. When &C is used in statement 4, however, the
arithmetic value −2 is used. Therefore, &D is assigned the arithmetic value +8.

322 HLASM V1R3 Language Reference  



  SETA Instruction
 

When &D is used in statement 6, the arithmetic value +8 is converted to the
unsigned integer 8.

The following example shows how the value assigned to a SETA symbol may be
changed in a macro definition.

 MACRO
 &NAME MOVE &TO,&FROM
 LCLA &A
 &A SETA 5 Statement 1
 &NAME ST 2,SAVEAREA
 L 2,&FROM&A Statement 2
 &A SETA 8 Statement 3
 ST 2,&TO&A Statement 4
 L 2,SAVEAREA
 MEND
 -------------------------------------------------------------------
 HERE MOVE FIELDA,FIELDB
 -------------------------------------------------------------------
+HERE ST 2,SAVEAREA
+ L 2,FIELDB5
+ ST 2,FIELDA8
+ L 2,SAVEAREA

Statement 1 assigns the arithmetic value +5 to SETA symbol &A. In statement 2, &A
is converted to the unsigned integer 5. Statement 3 assigns the arithmetic value
+8 to &A. In statement 4, therefore, &A is converted to the unsigned integer 8,
instead of 5.

A SETA symbol may be used with a symbolic parameter to refer to an operand in
an operand sublist. If a SETA symbol is used for this purpose, it must have been
assigned a positive value.

Any expression that may be used in the operand field of a SETA instruction may be
used to refer to an operand in an operand sublist. Sublists are described in
“Sublists in Operands” on page 275.

The following macro definition adds the last operand in an operand sublist to the
first operand in an operand sublist and stores the result at the first operand. A
sample macro instruction and generated statements follow the macro definition.

 MACRO
 ADDX &NUMBER,&REG Statement 1
 LCLA &LAST
 &LAST SETA N'&NUMBER Statement 2
 L &REG,&NUMBER(1)

A &REG,&NUMBER(&LAST) Statement 3
 ST &REG,&NUMBER(1)
 MEND
 -------------------------------------------------------------------
 ADDX (A,B,C,D,E),3 Statement 4
 -------------------------------------------------------------------
+ L 3,A
+ A 3,E
+ ST 3,A

  Chapter 9. How to Write Conditional Assembly Instructions 323



 SETB Instruction  
 

&NUMBER is the first symbolic parameter in the operand field of the prototype
statement (statement 1). The corresponding characters (A,B,C,D,E) of the macro
instruction (statement 4) are a sublist. Statement 2 assigns to &LAST the arithmetic
value +5, which is equal to the number of operands in the sublist. Therefore, in
statement 3, &NUMBER(&LAST) i replaced by the fifth operand of the sublist.

 SETB Instruction
Use the SETB instruction to assign a bit value to a SETB symbol. You can assign
the bit values, 0 or 1, to a SETB symbol directly and use it as a switch.

If you specify a logical (Boolean) expression in the operand field, the assembler
evaluates this expression to determine whether it is true or false, and then assigns
the value 1 or 0, respectively, to the SETB symbol. You can use this computed
value in condition tests or for substitution.

 

��──variable_symbol──SETB──binary_value────────────────────────────��

variable_symbol
is a variable symbol.

A global variable symbol in the name field must have been previously declared
as a SETB symbol in a GBLB instruction. Local SETB symbols need not be
declared in a LCLB instruction. The assembler considers any undeclared
variable symbol found in the name field of a SETB instruction as a local SET
symbol. The variable symbol is assigned a type attribute value of N.

binary_value
is a binary bit value that may be specified as:

� A binary value (0 or 1)

� A binary value enclosed in parentheses

An arithmetic value enclosed in parentheses is allowed. This value can be
represented by:

– An unsigned, decimal, self-defining term
– A SETA symbol
– A previously defined ordinary symbol with an absolute value
– An attribute reference other than the type attribute reference.

If the value is 0, the assembler assigns a value of 0 to the symbol in the
name field. If the value is not 0, the assembler assigns a value of 1.

� A logical expression enclosed in parentheses

A logical expression is evaluated to determine if it is true or false; the SETB
symbol in the name field is then assigned the binary value 1 or 0,
corresponding to true or false, respectively. The assembler assigns the
explicitly specified binary value (0 or 1) or the computed logical value (0 or
1) to the SETB symbol in the name field.

324 HLASM V1R3 Language Reference  



  SETB Instruction
 

Subscripted SETB Symbols
The SETB symbol in the name field can be subscripted, but only if the same SETB
symbol has been previously declared in a GBLB or LCLB instruction with an
allowable dimension.

The assembler assigns the binary value explicitly specified, or implicit in the logical
expression present in the operand field, to the position in the declared array given
by the value of the subscript. The subscript expression must not be 0 or have a
negative value.

Logical (SETB) Expressions
You can use a logical expression to assign a binary value to a SETB symbol. You
can also use a logical expression to represent the condition test in an AIF
instruction. This use lets you code a logical expression whose value (0 or 1) varies
according to the values substituted into the expression and thereby determine
whether or not a branch is to be taken.

A logical expression can consist of a logical expression and a logical term
separated by a logical operator. The logical operators are:

AND the value is 1, if the logical expression and the logical term each
contain or evaluate to 1, otherwise the value is 0.

AND NOT the value in the logical term is inverted, and the expression is
evaluated as though the AND operator was specified. For example, 1
AND NOT K is equivalent to 1 AND 1.

OR the value is 1, if either the logical expression or the logical term
contain or evaluate to 1. If they both contain or evaluate to 0 then the
value is 0.

OR NOT the value in the logical term is inverted, and the expression is
evaluated as though the OR operator was specified. For example, 1
OR NOT 1 is equivalent to 1 OR K.

XOR the value is 1, if the logical expression and the logical term contain or
evaluate to opposite bit values. If they both contain or evaluate to the
same bit value, the result is 0.

| XOR NOT the value in the logical term is inverted, and the expression is
| evaluated as though the XOR operator was specified. For example, 1
| XOR NOT 1 is equivalent to 1 XOR K.

Figure 87 on page 327 defines a logical expression.

| Relational Operators:  Relational operators provide the means for comparing two
| items. A relational operator plus the items form a relation. Thus an arithmetic
| relation is two arithmetic expressions separated by a relational operator, and a
| character relation is two character strings (for example, a character expression and

a type attribute reference) separated by a relational operator.

The relational operators are:

EQ equal
NE not equal
LE less than or equal
LT less than
GE greater than or equal

  Chapter 9. How to Write Conditional Assembly Instructions 325



 SETB Instruction  
 

GT greater than

Rules for Coding Logical Expressions:  The following is a summary of coding
rules for logical expressions:

� A logical expression must not contain two logical terms in succession.

� A logical expression can begin with the logical unary operator NOT.

� A logical expression can contain two logical operators in succession; however,
the only allowed combinations are OR NOT, XOR NOT and AND NOT. The
two operators must be separated from each other by one or more blanks.

� Any logical term, relation, or inner logical expression can be optionally enclosed
in parentheses.

� The relational and logical operators must be immediately preceded and
followed by at least one blank or other special character.

� A logical expression can contain up to 18 logical operators. The relational and
other operators used by the arithmetic and character expressions in relations
do not count toward this total.

� Up to 255 levels of nested parentheses are allowed.

� Absolute ordinary symbols specified in logical expressions must be defined
before the logical expression is encountered.

� The assembler determines the type of a logical relation by the first comparand.
If the first comparand is a character expression that begins with a single
quotation mark, then the logical relation is a character relation, otherwise the
assembler treats it as an arithmetic relation. In this example:

YES EQU C'Y'
&reply SETC 'Y'
&valid SETB ('&reply' EQ YES)
&illegal SETB (YES EQ '&C')

the assembler assigns the binary value 1 (true) to the symbol &valid, however,
it flags the the statement containing &illegal, as a syntax error.

326 HLASM V1R3 Language Reference  



  SETB Instruction
 

┌───────────┐
│ │
│Logical] │
│Expression │
│ │
└─────┬─────┘
 │

+ Can be any of
├─────────────┬─────────────────────────────────────────────────┐ Logical Operators Allowed

 + + +
┌─────┴─────┐ ┌─────┴─────┬───────────┬───────────┐ ┌───────────┬─────┴─────┐ OR Intersection
│ │ │ │ OR │ │ │ │ │ AND Union
│ Logical^ │ │Logical^ │ OR NOT │ Logical │ │ NOT │Logical^ │ NOT Negation
│ Term │ │Expression │ AND │ Term │ │ │Expression │ XOR Exclusive OR
│ │ │ │ AND NOT │ │ │ │ │
│ │ │ │ XOR │ │ │ │ │
│ │ │ │ XOR NOT │ │ │ │ │
└─────┬─────┘ └───────────┴───────────┴───────────┘ └───────────┴───────────┘
 │

+ Can be any of
 ├─────────────┬─────────────┬─────────────┬─────────────┐

+ + + + +
┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐
│ │ │ SETB^ │ │ │ │ │ │ │
│ Logical^ │ │ Variable │ │Arithmetic^│ │ K^ │ │ 1^ │
│ Relation │ │ Symbol │ │Value │ │ │ │ │
│ │ │ │ │ │ │ │ │ │
└─────┬─────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘
 │

+ Can be any of
 ├─────────────────────────────────────────┐
 + +
┌─────┴─────┐ ┌─────┴─────┐
│ │ │ │
│Arithmetic │ │ Character │
│Relation │ │ Relation │
│ │ │ │
└─────┬─────┘ └─────┬─────┘

│ │ Relational Operators Allowed
+ Which is + Which is

┌─────┴─────┬───────────┬───────────┐ ┌─────┴─────┬───────────┬───────────┐ EQ Equal
│ │ EQ, NE │ │ │ │ EQ, NE │ │ NE Not equal
│Arithmetic │ LE, LT │Arithmetic │ │ Characterb│ LE, LT │ Characterb│ LE Less than or equal
│Comparand │ GE, GT │Comparand │ │ Comparand │ GE, GT │ Comparand │ LT Less than
│ │ │ │ │ │ │ │ GE Greater than or equal
└─────┬─────┴───────────┴───────────┘ └─────┬─────┴───────────┴───────────┘ GT Greater than
 │ │

+ Which can be + Can be any of
 │ ├─────────────┬─────────────┬─────────────┐

│ + + + +
┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐
│ │ │ │ │ │ │ Typec │ │Character │
│Arithmetic │ │Character │ │ Substring │ │ Attribute │ │Exp. and │
│Expression │ │Expression │ │ Notation │ │ Reference │ │Substring │
│ │ │ │ │ │ │ │ │Notation │
└───────────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘

Notes:

1. Outermost expression must be enclosed in parentheses in SETB and AIF instructions.

2. Optional parentheses around terms and expressions at this level.

3. Must be in the range 0 through 255 characters.

4. Must stand alone and not be enclosed in single quotation marks.

Figure 87. Defining Logical Expressions

Evaluation of Logical Expressions:  The assembler evaluates logical
expressions as follows:

1. It evaluates each logical term, which is given a binary value of 0 or 1.

2. If the logical term is an arithmetic or character relation, the assembler
evaluates:

a. The arithmetic or character expressions specified as values for comparison
in these relations

b. The arithmetic or character relation

  Chapter 9. How to Write Conditional Assembly Instructions 327



 SETB Instruction  
 

c. The logical term, which is the result of the relation. If the relation is true,
the logical term it represents is given a value of 1; if the relation is false,
the term is given a value of 0.

The two comparands in a character relation are compared, character by
character, according to binary (EBCDIC) representation of the characters. If
two comparands in a relation have character values of unequal length, the
assembler always takes the shorter character value to be less.

3. The assembler carries out logical operations from left to right. However,

| a. It carries out logical NOTs before logical ANDs, ORs and XORs
b. It carries out logical ANDs before logical ORs and XORs
c. It carries out logical ORs before logical XORs

4. In parenthesized logical expressions, the assembler evaluates the innermost
expressions first, and then considers them as logical terms in the next outer
level of expressions. It continues this process until it evaluates the outermost
expression.

Using SETB Symbols:  The logical value assigned to a SETB symbol is used for
the SETB symbol appearing in the operand field of an AIF instruction or another
SETB instruction.

If a SETB symbol is used in the operand field of a SETA instruction, or in arithmetic
relations in the operand fields of AIF and SETB instructions, the binary values 1
(true) and 0 (false) are converted to the arithmetic values +1 and +0, respectively.

If a SETB symbol is used in the operand field of a SETC instruction, in character
relations in the operand fields of AIF and SETB instructions, or in any other
statement, the binary values 1 (true) and 0 (false), are converted to the character
values '1' and 'K', respectively.

The following example illustrates these rules. It assumes that L'&TO EQ 4 is true,
and S'&TO EQ K is false.

 MACRO
 &NAME MOVE &TO,&FROM
 LCLA &A1
 LCLB &B1,&B2
 LCLC &C1
 &B1 SETB (L'&TO EQ 4) Statement 1
 &B2 SETB (S'&TO EQ K) Statement 2
 &A1 SETA &B1 Statement 3
 &C1 SETC '&B2' Statement 4
 ST 2,SAVEAREA
 L 2,&FROM&A1
 ST 2,&TO&C1
 L 2,SAVEAREA
 MEND
 -------------------------------------------------------------------
 HERE MOVE FIELDA,FIELDB
 -------------------------------------------------------------------
+HERE ST 2,SAVEAREA
+ L 2,FIELDB1
+ ST 2,FIELDAK
+ L 2,SAVEAREA

328 HLASM V1R3 Language Reference  



  SETC Instruction
 

Because the operand field of statement 1 is true, &B1 is assigned the binary value
1. Therefore, the arithmetic value +1 is substituted for &B1 in statement 3.
Because the operand field of statement 2 is false, &B2 is assigned the binary value
K. Therefore, the character value K is substituted for &B2 in statement 4.

 SETC Instruction
The SETC instruction assigns a character value to a SETC symbol. You can
assign whole character strings, or concatenate several smaller strings together.
The assembler assigns the composite string to your SETC symbol. You can also
assign parts of a character string to a SETC symbol by using the substring
notation; see “Substring Notation” on page 340.

You can change the character value assigned to a SETC symbol. This lets you
use the same SETC symbol with different values for character comparisons in
several places, or for substituting different values into the same model statement.

 

��──variable_symbol──SETC──character_value─────────────────────────��

variable symbol
is a variable symbol.

A global variable symbol in the name field must have been previously declared
as a SETC symbol in a GBLC instruction. Local SETC symbols need not be
declared in a LCLC instruction. The assembler considers any undeclared
variable symbol found in the name field of a SETC instruction as a local SET
symbol. The variable symbol is assigned a type attribute value of U.

character_value
is a character value that may be specified by one of the following:

� A type attribute reference
� A character expression
� A substring notation
� A previously defined ordinary symbol with an absolute value
� A concatenation of one or more of the above

The assembler assigns the character string value represented in the operand field
to the SETC symbol in the name field. The string length must be in the range 0
(null character string) through 255 characters.

When a SETA or SETB symbol is specified in a character expression, the unsigned
decimal value of the symbol (with leading zeros removed) is the character value
given to the symbol.

A duplication factor can precede any of the first three options, or any of the parts
(character expression or substring notation) that make up the fifth option of the
SETC instruction operand. The duplication factor can be any arithmetic expression
allowed in the operand of a SETA instruction. For example:

&C1 SETC (3)'ABC'

assigns the value 'ABCABCABC' to &C1.

  Chapter 9. How to Write Conditional Assembly Instructions 329



 SETC Instruction  
 

Notes:

1. The assembler evaluates the represented character string (in particular, the
substring) before applying the duplication factor. The resulting character string
is then assigned to the SETC symbol in the name field. For example:

&C2 SETC 'ABC'.(3)'ABCDEF'(4,3)

assigns the value 'ABCDEFDEFDEF' to &C2.

2. If the character string contains double-byte data, then redundant SI/SO pairs
are not removed on duplication. For example:

&C3 SETC (3)'<.A.B>'

assigns the value '<.A.B><.A.B><.A.B>' to &C3.

3. To duplicate double-byte data, without including redundant SI/SO pairs, use the
substring notation. For example:

&C4 SETC (3)'<.A.B>'(2,4)

assigns the value '.A.B.A.B.A.B' to &C4.

4. To duplicate the arithmetic value of a previously defined ordinary symbol with
an absolute value, first assign the arithmetic value to a SETA symbol. For
example:

A EQU 123
&A1 SETA A
&C5 SETC (3)'&A1'

assigns the value '123123123' to &C5.

Subscripted SETC Symbols
The SETC symbol (see �1� in Figure 88) in the name field can be subscripted, but
only if the same SETC symbol has been previously declared (see �2� in Figure 88)
in a GBLC or an LCLC instruction with an allowable dimension.

The assembler assigns the character value represented in the operand field to the
position in the declared array (see �3� in Figure 88) given by the value of the
subscript. The subscript expression must not be 0 or have a negative value.

 LCLC &C1,&C2
 LCLC &SUBSCRC(2K)
 . <
┌─── �1� . └─── �2�
+ .
&SUBSCRC(1K) SETC 'ABCDE'
 . │
 . │
 . │
────────────────────────┼──────────────────────────────────────────────
 �3�─────┐
&SUBSCRC Array: │
 +
┌─────┬─────┬─────┬────/ /────┬─────┬─────┬─────┬────/ /────┬─────┐
│ │ │ │ │ABCDE│ │ │ │ │
└─────┴─────┴─────┴────/ /────┴─────┴─────┴─────┴────/ /────┴─────┘
< < < < < < < < <
1 2 3 4 1K 11 12 13 2K

Figure 88. Subscripted SETC Symbols

330 HLASM V1R3 Language Reference  



  SETC Instruction
 

Character (SETC) Expressions
The main purpose of a character expression is to assign a character value to a
SETC symbol. You can then use the SETC symbol to substitute the character
string into a model statement.

You can also use a character expression as a value for comparison in condition
tests and logical expressions. Also, a character expression provides the string from
which characters can be selected by the substring notation.

Substitution of one or more character values into a character expression lets you
use the character expression wherever you need to vary values for substitution or
to control loops.

Character (SETC) expressions can be used only in conditional assembly
instructions. Figure 89 shows examples of using character expressions.

A character expression consists of any combination of characters enclosed in single
quotation marks. Variable symbols are allowed. The assembler substitutes the
representation of their values as character strings into the character expression
before evaluating the expression. Up to 255 characters are allowed in a character
expression.

Attribute references are not allowed in character expressions.

| Built-in Functions for Character Expressions:  A character expression can
| consist of a single expression prefixed by a unary built-in function.

 

��──built-in function──operand─────────────────────────────────────��

operand
is an arithmetic expression (for BYTE and SIGNED) or character expression
(for DOUBLE, LOWER, and UPPER)

built-in function
is one of the following:

| BYTE Converts a single byte arithmetic value to its equivalent EBCDIC
| character expression. After the following statements &VAR contains
| the character value '%':

| Name Operation Operand

| &percent SETA 1K8
| &VAR SETC (BYTE &percent)

Figure 89. Use of Character Expressions

Used in Used as Example

SETC instruction Operand &C SETC 'STRINGK'

AIF or SETB instruction Character string in
character relation

AIF ('&C' EQ 'STRING1').B

Substring notation First part of notation 'SELECT'(2,5)='ELECT'

Built in functions Operand &VAR SETC (LOWER '&twenty.&six')

  Chapter 9. How to Write Conditional Assembly Instructions 331



 SETC Instruction  
 

| This function might be used to introduce characters which are not
| on the keyboard.

DOUBLE Doubles any quotes and ampersands contained or evaluated in the
character expression. After the following statements &VAR contains
the character value '&&S''TUV':

Name Operation Operand

&amper SETC '&&'(1,1)
&quote SETC ''''
&OP2 SETC '&amper.S&quote.TUV'
&VAR SETC (DOUBLE '&OP2')

LOWER Converts the characters contained or evaluated in the character
expression in the operand to lowercase. After the following
statements &VAR contains the character string 'twentysix'.

Name Operation Operand

&twenty SETC 'Twenty'
&six SETC 'SIX'
&VAR SETC (LOWER '&twenty.&six')

The characters A through Z are converted from uppercase to
lowercase.

| SIGNED Converts an arithmetic value to the character representation
| maintaining the signed value. After the following statements &VAR
| contains the character string '99 is greater than -99 but equals
| 99':

| &num SETA 99
| &plus SETC (SIGNED &num)
| &num SETA -99
| &minus SETC (SIGNED &num)
| &VAR SETC '&plus is greater than &minus but equals &num'

UPPER Converts the characters contained or evaluated in the character
expression in the operand to uppercase. After the following
statements &VAR contains the character string 'FINE':

Name Operation Operand

&weather SETC 'Weather'
&fine SETC 'Fine'
&VAR SETC (UPPER '&weather.&fine'(8,4))

 The character expression includes the substring notation

The characters a through z are converted from lowercase to
uppercase.

332 HLASM V1R3 Language Reference  



  SETC Instruction
 

┌───────────┐
│ │
│Character │
│Expression │
│ │
└─────┬─────┘
 │

+ Can be any of
 ├─────────────┬─────────────────┐
 + + +
┌─────┴─────┐ ┌─────┴──────┐ ┌────┴─────┬──────────┐ Built-in Functions
│ │ │ │ │ │ │
│ Character │ │ CharExpr │ │ Built-in │ │ BYTE - Convert number to character
│ Value │ │ . �──┐ │ │ Function │ CharExpr │ DOUBLE - Double ampersands and quotes
│ │ │ CharExpr │ │ │ │ │ LOWER - Convert to lowercase
└─────┬─────┘ └──────────┼─┘ └──────────┴──────────┘ SIGNED - Convert number to string

│ │ UPPER - Convert to uppercase
│ └── Period (.) = Concatenation Character
+ Can be any of

 ├─────────────┬─────────────┬─────────────┬─────────────┐
+ + + + +

┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐
│ Substring │ │ Variable │ │Predefined │ │ Self- │ │ Attribute │
│ │ │ Symbol │ │Absolute │ │ Defining │ │ Reference │
│ │ │ │ │Ordinary │ │ Term │ │ │
│ │ │ │ │Symbol │ │ │ │ │
└───────────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘

Figure 90. Defining Character (SETC) Expressions

Evaluation of Character Expressions:  The value of a character expression is
the character string within the enclosing single quotation marks, after the assembler
carries out any substitution for variable symbols.

Character strings, including variable symbols, can be concatenated to each other
within a character expression. The resultant string is the value of the expression
used in conditional assembly operations; for example, the value assigned to a
SETC symbol.

Notes:

1. Use two single quotation marks to generate a single quotation mark as part of
the value of a character expression.

The following statement assigns the character value L'SYMBOL to the SETC
symbol &LENGTH:

&LENGTH SETC 'L''SYMBOL'

2. A double ampersand generates a double ampersand as part of the value of a
character expression. To generate a single ampersand in a character
expression, use the substring notation; for example:

&AMP SETC '&&'(1,1)

The following statement assigns the character value HALF&& to the SETC
symbol &AND:

&AND SETC 'HALF&&'

This is the only instance when the assembler does not pair ampersands to
produce a single ampersand. However, if you substitute a SETC symbol with
such a value into the nominal value in a DC instruction operand, or the operand
of an MNOTE instruction, when the assembler processes the DC or MNOTE
instruction, it pairs the ampersands and produces a single ampersand.

  Chapter 9. How to Write Conditional Assembly Instructions 333



 SETC Instruction  
 

3. To generate a period, two periods must be specified after a variable symbol, or
the variable symbol must have a period as part of its value.

For example, if &ALPHA has been assigned the character value AB%4, the
following statement can be used to assign the character value AB%4.RST to the
variable symbol &GAMMA:

&GAMMA SETC '&ALPHA..RST'

4. Double-byte data can appear in the character string if the assembler is invoked
with the DBCS option. The double-byte data must be bracketed by the SO and
SI delimiters, and the double-byte data must be valid.

5. The DBCS ampersand and apostrophe are not recognized as delimiters.

6. A double-byte character that contains the value of an EBCDIC ampersand or
apostrophe in either byte is not recognized as a delimiter when enclosed by SO
and SI.

Concatenation of Character String Values:  Character expressions can be
concatenated to each other or to substring notations in any order. The resulting
value is a character string composed of the concatenated parts. This concatenated
string can then be used in the operand field of a SETC instruction, or as a value for
comparison in a logical expression.

You need the concatenation character (a period) to separate the single quotation
mark that ends one character expression from the single quotation mark that begins
the next.

For example, either of the following statements may be used to assign the
character value ABCDEF to the SETC symbol &BETA:

&BETA SETC 'ABCDEF'
&BETA SETC 'ABC'.'DEF'

Concatenation of strings containing double-byte data: If the assembler is invoked
with the DBCS option, then the following additional considerations apply:

� When a variable symbol adjoins double-byte data, the SO delimiting the
double-byte data is not a valid delimiter of the variable symbol. The variable
symbol must be terminated by a period.

� The assembler checks for SI and SO at concatenation points. If the byte to the
left of the join is SI and the byte to the right of the join is SO, then the SI/SO
pair are considered redundant and are removed.

� To create redundant SI/SO pairs at concatenation points, use the substring
notation and SETC expressions to create additional SI and SO characters. By
controlling the order of concatenation, you can leave a redundant SI/SO pair at
a concatenation point.

Examples:

334 HLASM V1R3 Language Reference  



  SETC Instruction
 

&DBDA SETC '<Da>'
&SO SETC '&DBDA'(1,1)
&SI SETC '&DBDA'(4,1)
&DBCS1A SETC '&DBDA.<Db>'
&DBCS1E SETC '&DBDA<Db>'
&DBCS2 SETC '&DBDA'.'<Db>'
&DBCS2A SETC '&DBDA'.'<Db>'.'&DBDA
&DBCS3 SETC '&DBDA'.'&SI'.'&SO'.'<Db>'
&DBCS3P SETC '&DBDA'.'&SI'
&DBCS3Q SETC '&SO'.'<Db>'
&DBCS3R SETC '&DBCS3P'.'&DBCS3Q'

These examples use the substring notation to create variables &SO and &SI, which
have the values of SO and SI, respectively. The variable &DBCS1A is assigned the
value <DaDb> with the SI/SO pair at the join removed. The assignment to variable
&DBCS1E fails with error ASMAK35E Invalid delimiter, because the symbol &DBDA is
terminated by SO and not by a period. The variable &DBCS2 is assigned the value
<DaDb>. The variable &DBCS2A is assigned the value <DaDbDa>. As with &DBCS1A,
redundant SI/SO pairs are removed at the joins. The variable &DBCS3 is assigned
the value <DaDb>. Although SI and SO have been added at the join, the
concatenation operation removes two SI and two SO characters, since redundant
SI/SO pairs are found at the second and third concatenations. However, by using
intermediate variables &DBCS3P and &DBCS3Q to change the order of concatenation,
the string <Da><Db> can be assigned to variable &DBCS3R.

Using SETC Symbols
The character value assigned to a SETC symbol is substituted for the SETC
symbol when it is used in the name, operation, or operand field of a statement.

For example, consider the following macro definition, macro instruction, and
generated statements:

 MACRO
 &NAME MOVE &TO,&FROM
 LCLC &PREFIX
 &PREFIX SETC 'FIELD' Statement 1
 &NAME ST 2,SAVEAREA
 L 2,&PREFIX&FROM Statement 2
 ST 2,&PREFIX&TO Statement 3
 L 2,SAVEAREA
 MEND
 -------------------------------------------------------------------
 HERE MOVE A,B
 -------------------------------------------------------------------
+HERE ST 2,SAVEAREA
+ L 2,FIELDB
+ ST 2,FIELDA
+ L 2,SAVEAREA

Statement 1 assigns the character value FIELD to the SETC symbol &PREFIX. In
statements 2 and 3, &PREFIX is replaced by FIELD.

The following example shows how the value assigned to a SETC symbol may be
changed in a macro definition.

  Chapter 9. How to Write Conditional Assembly Instructions 335



 SETC Instruction  
 

 MACRO
 &NAME MOVE &TO,&FROM
 LCLC &PREFIX
 &PREFIX SETC 'FIELD' Statement 1
 &NAME ST 2,SAVEAREA
 L 2,&PREFIX&FROM Statement 2
 &PREFIX SETC 'AREA' Statement 3
 ST 2,&PREFIX&TO Statement 4
 L 2,SAVEAREA
 MEND
 -------------------------------------------------------------------
 HERE MOVE A,B
 -------------------------------------------------------------------
+HERE ST 2,SAVEAREA
+ L 2,FIELDB
+ ST 2,AREAA
+ L 2,SAVEAREA

Statement 1 assigns the character value FIELD to the SETC symbol &PREFIX.
Therefore, &PREFIX is replaced by FIELD in statement 2. Statement 3 assigns the
character value AREA to &PREFIX. Therefore, &PREFIX is replaced by AREA, instead
of FIELD, in statement 4.

The following example uses the substring notation in the operand field of a SETC
instruction.

 MACRO
 &NAME MOVE &TO,&FROM
 LCLC &PREFIX
 &PREFIX SETC '&TO'(1,5) Statement 1
 &NAME ST 2,SAVEAREA
 L 2,&PREFIX&FROM Statement 2
 ST 2,&TO
 L 2,SAVEAREA
 MEND
 -------------------------------------------------------------------
 HERE MOVE FIELDA,B
 -------------------------------------------------------------------
+HERE ST 2,SAVEAREA
+ L 2,FIELDB
+ ST 2,FIELDA
+ L 2,SAVEAREA

Statement 1 assigns the substring character value FIELD (the first five characters
corresponding to symbolic parameter &TO to the SETC symbol &PREFIX. Therefore,
FIELD replaces &PREFIX in statement 2.

Notes:

1. If the COMPAT(SYSLIST) assembler option is not specified, you can pass a
sublist into a macro definition by assigning the sublist to a SETC symbol, and
then specifying the SETC symbol as an operand in a macro instruction.
However, if the COMPAT(SYSLIST) assembler option is specified, sublists
assigned to SETC symbols are treated as a character string, not as a sublist.

2. Regardless of the setting of the COMPAT(SYSLIST) assembler option, you can
not pass separate (as opposed to a sublist of) parameters into a macro

336 HLASM V1R3 Language Reference  



  Extended SET Statements
 

definition, by specifying a string of values separated by commas as the
operand of a SETC instruction and then using the SETC symbol as an operand
in the macro instruction. If you attempt to do this, the operand of the SETC
instruction is passed to the macro instruction as one parameter, not as a list of
parameters.

Concatenating Substring Notations and Character Expressions:  Substring
notations can be concatenated with character expressions in the operand field of a
SETC instruction. If a substring notation follows a character expression, the two
can be concatenated by placing a period between the terminating single quotation
mark of the character expression and the opening single quotation mark of the
substring notation.

For example, if &ALPHA has been assigned the character value AB%4, and &BETA has
been assigned the character value ABCDEF, the following statement assigns &GAMMA
the character value AB%4BCD:

&GAMMA SETC '&ALPHA'.'&BETA'(2,3)

If a substring notation precedes a character expression or another substring
notation, the two can be concatenated by writing the opening single quotation mark
of the second item immediately after the closing parenthesis of the substring
notation.

Optionally, you can place a period between the closing parenthesis of a substring
notation and the opening single quotation mark of the next item in the operand
field.

If &ALPHA has been assigned the character value AB%4, and &ABC has been assigned
the character value 5RS, either of the following statements can be used to assign
&WORD the character value AB%45RS:

&WORD SETC '&ALPHA'(1,4).'&ABC'
&WORD SETC '&ALPHA'(1,4)'&ABC'(1,3)

If a SETC symbol is used in the operand field of a SETA instruction, the character
value assigned to the SETC symbol must be 1-to-10 decimal digits (not greater
than 2147483647), or a valid self-defining term.

If a SETA symbol is used in the operand field of a SETC statement, the arithmetic
value is converted to an unsigned integer with leading zeros removed. If the value
is 0, it is converted to a single 0.

Extended SET Statements
As well as assigning single values to SET symbols, you can assign values to
multiple elements in an array of a subscripted SET symbol with one single SETx
instruction. Such an instruction is called an extended SET statement.

 

 ┌ ┐─,───────
��─ ──variable_symbol(subscript) ──┬ ┬─SETA─ ───+ ┴─operand─ ─────────────��
 ├ ┤─SETB─
 └ ┘─SETC─

  Chapter 9. How to Write Conditional Assembly Instructions 337



 SETAF Instruction  
 

variable_symbol(subscript)
is a variable symbol and a subscript that shows the position in the SET symbol
array to which the first operand is to be assigned.

operand
is the arithmetic value, binary value, or character value to be assigned to the
corresponding SET symbol array element.

The first operand is assigned to the SET symbol denoted by
variable_symbol(subscript). Successive operands are then assigned to successive
positions in the SET symbol array. If an operand is omitted, the corresponding
element of the array is unchanged. Consider the following example:

 LCLA &LIST(5K)
&LIST(3) SETA 5,1K,,2K,25,3K

The first instruction declares &LIST as a subscripted local SETA symbol. The
second instruction assigns values to certain elements of the array &LIST. Thus, the
instruction does th same as the following sequence:

&LIST(3) SETA 5
&LIST(4) SETA 1K
&LIST(6) SETA 2K
&LIST(7) SETA 25
&LIST(8) SETA 3K

Alternative Statement Format:  You can use the alternative statement format for
extended SETx statements. The above coding could then be written as follows:

&LIST(3) SETA 5, THIS IS X
 1K,, AN ARRAY X
 2K,25,3K SPECIFICATION

 SETAF Instruction
Use the SETAF instruction to call an external function to assign any number of

| arithmetic values to a SETA symbol. You can assign a large number of
| parameters—the exact number depending on factors such as the size of the
| program and of virtual storage—to pass to the external function routine.

The SETAF instruction can be used anywhere that a SETA instruction can be used.

 

��──variable_symbol──SETAF─ ──'function─name' ──┬ ┬───────────────── ──��
 │ │┌ ┐───────────────
 └ ┘───+ ┴──,expression

variable symbol
is a variable symbol.

A global variable symbol in the name field must have been previously declared
as a SETA symbol in a GBLA instruction. Local SETA symbols need not be
declared in a LCLA instruction. The assembler considers any undeclared
variable symbol found in the name field of a SETA instruction as a local SET
symbol.

The variable symbol is assigned a type attribute value of N.

338 HLASM V1R3 Language Reference  



  SETCF Instruction
 

function_name
the name of an external function load module. The name must be specified as
a character expression, and must evaluate to a valid module name no longer
than 8 bytes.

Refer to Chapter 5,"Providing External Functions for Conditional Assembly" in
the High Level Assembler Programmer's Guide for information about external
function load modules.

expression
is an arithmetic expression evaluated as a signed 32-bit arithmetic value. The
minimum and maximum allowable values of the expression are −2b] and
+2b]−1, respectively.

See “SETA Instruction” on page 314 for further information about setting SETA
symbols, and ways to specify arithmetic expressions.

| The function name must be enclosed in single quotes. Without quotes, the function
| name refers to a symbol whose value is used for the function name. For example:

| &MAX_VAL SETAF 'MAX',7,4 Calls the external function X
| MAX, passing values 7 and X
| 4 as operands.

| FUNCTION EQU C'MIN'
| &MIN_VAL SETAF FUNCTION,5D2 Calls the external function X
| MIN, passing expression X
| '1K' as an operand.

 SETCF Instruction
Use the SETCF instruction to call an external function to assign a character value

| to a SETC symbol. You can specify a large number of parameters—the exact
| number depending on factors such as the size of the program and of virtual
| storage—to pass to the external function routine.

The SETCF instruction can be used anywhere that a SETC instruction can be
used.

 

��──variable_symbol──SETCF─ ──'function─name' ────────────────────────�

�─ ──┬ ┬────────────────────── ───────────────────────────────────────��
  │ │┌ ┐────────────────────
  └ ┘───+ ┴──,character_value

variable symbol
is a variable symbol.

A global variable symbol in the name field must have been previously declared
as a SETC symbol in a GBLC instruction. Local SETC symbols need not be
declared in a LCLC instruction. The assembler considers any undeclared
variable symbol found in the name field of a SETC instruction as a local SET
symbol. The variable symbol is assigned a type attribute value of U.

The character value assigned to the variable symbol can have a string length in
the range 0 (for a null character string) through 255.

  Chapter 9. How to Write Conditional Assembly Instructions 339



 Substring Notation  
 

function_name
the name of an external function load module. The name must be specified as
a character expression, and must evaluate to a valid module name no longer
than 8 bytes.

Refer to Chapter 5,"Providing External Functions for Conditional Assembly" in
the High Level Assembler Programmer's Guide for information about external
function load modules.

character_value
is a character value that may be specified by one of the following:

� A type attribute reference
� A character expression
� A substring notation
� A previously defined ordinary symbol with an absolute value
� A concatenation of one or more of the above

The character value can have a string length in the range 0 (for a null character
string) through 255.

When a SETA or SETB symbol is specified in a character expression, the unsigned
decimal value of the symbol (with leading zeros removed) is the character value
given to the symbol.

See “SETC Instruction” on page 329 for further information about setting SETC
symbols, and ways to specify character expressions.

 Substring Notation
The substring notation lets you refer to one or more characters within a character
string. You can, therefore, either select characters from the string and use them for
substitution or testing, or scan through a complete string, inspecting each character.
By concatenating substrings with other substrings or character strings, you can
rearrange and build your own strings.

The substring notation can be used only in conditional assembly instructions.
Figure 91 shows how to use the substring notation.

The substring notation must be specified as follows:

'CHARACTER STRING'(e1,e2)

where the CHARACTER STRING is a character expression from which the substring is
to be extracted. The first subscript (e1) shows the first character that is to be
extracted from the character string. The second subscript (e2) shows the number

Figure 91. Substring Notation in Conditional Assembly Instructions

 
 
Used in

 
 
Used as

 
 
Example

Value
assigned to
SETC Symbol

SETC instruction
operand

Operand
 
Part of
operand

&C1 SETC 'ABC'(1,3)
 
&C2 SETC '&C1'(1,2).'DEF'

ABC
 
ABDEF

AIF or SETB
instruction operand
(logical expression)

Character value
in comparand of
character relation

AIF ('&STRING'(1,4) EQ 'AREA').SEQ
&B SETB ('&STRING'(1,4).'9' EQ 'FULL9')

---

340 HLASM V1R3 Language Reference  



  Substring Notation
 

of characters to be extracted from the character string, starting with the character
indicated by the first subscript. Thus, the second subscript specifies the length of
the resulting substring.

The second subscript value of the substring notation can be specified as an (D).
This shows that the length of the extracted string is equal to the length of the
character expression, less the number of characters before the starting character.

The character string must be a valid character expression with a length, n, in the
range 1 through 255 characters. The length of the resulting substring must be in
the range 0 through 255.

The subscripts, e1 and e2, must be arithmetic expressions.

Evaluation of Substrings:  The following examples show how the assembler
processes substrings depending on the value of the elements n, e1, and e2:

� In the usual case, the assembler generates a correct substring of the specified
length:

Value of Variable Character Value
Notation Symbol of Substring

'ABCDE'(1,5) ABCDE
'ABCDE'(2,3) BCD
'ABCDE'(2,D) BCDE
'ABCDE'(4,D) DE
'&C'(3,3) ABCDE CDE
'&PARAM'(3,3) ((A+3)D1K) A+3

� When e1 has a value of 0 or a negative value, the assembler generates a null
string and issues error message ASMAK93E:

Value of Variable Character Value
Notation Symbol of Substring

'ABCDE'(K,5) null character string
'ABCDE'(K,D) null character string

� When the value of e1 exceeds n, the assembler generates a null string and
issues error message ASMAK92E:

Value of Variable Character Value
Notation Symbol of Substring

'ABCDE'(7,3) null character string
'ABCDE'(6,D) null character string

� When e2 has a value less than one, the assembler generates the null character
string. If e2 is negative, the assembler also issues error message ASMAK95W:

Value of Variable Character Value
Notation Symbol of Substring

'ABCDE'(4,K) null character string

'ABCDE'(3,-2) null character string

� When e2 indexes past the end of the character expression (that is, e1+e2 is
greater than n+1), the assembler issues warning message ASMAK94I, and
generates a substring that includes only the characters up to the end of the

  Chapter 9. How to Write Conditional Assembly Instructions 341



 AIF Instruction  
 

character expression specified. You can use the FLAG(NOSUBSTR)
assembler option to suppress message ASMAK94I.

Value of Variable Character Value
Notation Symbol of Substring

'ABCDE'(3,5) CDE

Figure 92 shows the results of an assembly of SETC instructions with different
substring notations. Each subscript value in the substring notation is first assigned
to a SETA symbol. Using symbols to represent subscript values is a common
cause for miscalculating the subscript values.

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.K 1998/K9/25 11.38
1 &STARTK SETA K KKKK1KKK
2 &START3 SETA 3 KKKK2KKK
3 &START7 SETA 7 KKKK3KKK

 4 &LENK SETA K KKKK4KKK
 5 &LEN_2 SETA -2 KKKK5KKK
 6 &LEN4 SETA 4 KKKK6KKK
 7 &LEN5 SETA 5 KKKK7KKK

8 &STRING SETC 'STRING' KKKK8KKK
9 &SUBSTR1 SETC '&STRING'(&STARTK,&LEN4) KKKK9KKK

DD ASMAK93E Substring expression 1 less than 1; default=null - OPENC
1K &SUBSTR2 SETC '&STRING'(&START7,&LEN4) KKK1KKKK

DD ASMAK92E Substring expression 1 points past string end; default=null - OPENC
11 &SUBSTR3 SETC '&STRING'(&START3,&LENK) KKK11KKK
12 &SUBSTR4 SETC '&STRING'(&START3,&LEN_2) KKK12KKK

DD ASMAK95W Substring expression 2 less than K; default=null - OPENC
13 &SUBSTR5 SETC '&STRING'(&START3,&LEN4) KKK13KKK
14 &SUBSTR6 SETC '&STRING'(&START3,&LEN5) KKK14KKK

DD ASMAK94I Substring goes past string end; default=remainder
 15 END KKK15KKK

Figure 92. Sample Assembly Using Substring Notation

 Branching
You can control the sequence in which source program statements are processed
by the assembler by using the conditional assembly branch instructions described
in this section.

 AIF Instruction
Use the AIF instruction to branch according to the results of a condition test. You
can thus alter the sequence in which source program statements or macro
definition statements are processed by the assembler.

The AIF instruction also provides loop control for conditional assembly processing,
which lets you control the sequence of statements to be generated.

It also lets you check for error conditions and thereby to branch to the appropriate
MNOTE instruction to issue an error message.

 

��─ ──┬ ┬───────────────── ─AIF─ ──(logical_expression)sequence_symbol ─��
 └ ┘ ─sequence_symbol─

342 HLASM V1R3 Language Reference  



  AIF Instruction
 

sequence_symbol
is a sequence symbol

logical_expression
is a logical expression (see “Logical (SETB) Expressions” on page 325) the
assembler evaluates during conditional assembly time to determine if it is true
or false. If the expression is true (logical value=1), the statement named by the
sequence symbol in the operand field is the next statement processed by the
assembler. If the expression is false (logical value=0), the next sequential
statement is processed by the assembler.

In the following example, the assembler branches to the label .OUT if &C = YES:

AIF ('&C' EQ 'YES').OUT
.ERROR ANOP
 .
 .
 .
.OUT ANOP

The sequence symbol in the operand field is a conditional assembly label that
represents a statement number during conditional assembly processing. It is the
number of the statement that is branched to if the logical expression preceding the
sequence symbol is true.

The statement identified by the sequence symbol referred to in the AIF instruction
can appear before or after the AIF instruction. However, the statement must
appear within the local scope of the sequence symbol. Thus, the statement
identified by the sequence symbol must appear:

� In open code, if the corresponding AIF instruction appears in open code

� In the same macro definition in which the corresponding AIF instruction
appears.

You cannot branch from open code into a macro definition or between macro
definitions, regardless of nested calls to other macro definitions.

The following macro definition generates the statements needed to move a fullword
fixed-point number from one storage area to another. The statements are
generated only if the type attribute of both storage areas is the letter F.

 MACRO
&N MOVE &T,&F

AIF (T'&T NE T'&F).END Statement 1
AIF (T'&T NE 'F').END Statement 2

&N ST 2,SAVEAREA Statement 3
 L 2,&F
 ST 2,&T
 L 2,SAVEAREA
.END MEND Statement 4

The logical expression in the operand field of Statement 1 has the value true if the
type attributes of the two macro instruction operands are not equal. If the type
attributes are equal, the expression has the logical value false.

Therefore, if the type attributes are not equal, Statement 4 (the statement named
by the sequence symbol .END) is the next statement processed by the assembler.

  Chapter 9. How to Write Conditional Assembly Instructions 343



 AIF Instruction  
 

If the type attributes are equal, Statement 2 (the next sequential statement) is
processed.

The logical expression in the operand field of Statement 2 has the value true if the
type attribute of the first macro instruction operand is not the letter F. If the type
attribute is the letter F, the expression has the logical value false.

Therefore, if the type attribute is not the letter F, Statement 4 (the statement named
by the sequence symbol .END) is the next statement processed by the assembler.
If the type attribute is the letter F, Statement 3 (the next sequential statement) is
processed.

Extended AIF Instruction
The extended AIF instruction combines several successive AIF statements into one
statement.

 

��─ ──┬ ┬───────────────── ─AIF────────────────────────────────────────�
 └ ┘ ─sequence_symbol─

  ┌ ┐─,─────────────────────────────────
�─ ───+ ┴(logical_expression)sequence_symbol ──────────────────────────��

sequence_symbol
is a sequence symbol

logical_expression
is a logical expression the assembler evaluates during conditional assembly
time to determine if it is true or false. If the expression is true (logical value=1),
the statement named by the sequence symbol in the operand field is the next
statement processed by the assembler. If the expression is false (logical
value=0), the next logical expression is evaluated.

The extended AIF instruction is exactly equivalent to n successive AIF statements.
The branch is taken to the first sequence symbol (scanning left to right) whose
corresponding logical expression is true. If none of the logical expressions is true,
no branch is taken.

Example:

 Cont.
AIF ('&L'(&C,1) EQ '$').DOLR, X

('&L'(&C,1) EQ '#').POUND, X
('&L'(&C,1) EQ '@').AT, X
('&L'(&C,1) EQ '=').EQUAL, X
('&L'(&C,1) EQ '(').LEFTPAR, X
('&L'(&C,1) EQ '+').PLUS, X
('&L'(&C,1) EQ '-').MINUS

This statement looks for the occurrence of a $, #, @, =, (, +, and -, in that order;
and causes control to branch to .DOLR, .POUND, .AT, .EQUAL, .LEFTPAR, .PLUS, and 
.MINUS, respectively, if the string being examined contains any of these characters
at the position designated by &C.

344 HLASM V1R3 Language Reference  



  AGO Instruction
 

Alternative Format for AIF Statement
The alternative statement format is allowed for extended AIF instructions. This
format is illustrated in the above example.

AIFB—Synonym of the AIF Instruction
For compatibility with some earlier assemblers, High Level Assembler supports the
AIFB symbolic operation code as a synonym of the AIF instruction. However, you
should not use the AIFB instruction in new applications as support for it might be
removed in the future.

 AGO Instruction
The AGO instruction branches unconditionally. You can thus alter the sequence in
which your assembler language statements are processed. This provides you with
final exits from conditional assembly loops.

 

��─ ──┬ ┬───────────────── ─AGO──sequence_symbol──────────────────────��
 └ ┘ ─sequence_symbol─

sequence_symbol
is a sequence symbol.

The statement named by the sequence symbol in the operand field is the next
statement processed by the assembler.

The statement identified by a sequence symbol referred to in the AGO instruction
can appear before or after the AGO instruction. However, the statement must
appear within the local scope of the sequence symbol. Thus, the statement
identified by the sequence symbol must appear:

� In open code, if the corresponding AGO instruction appears in open code

� In the same macro definition in which the corresponding AGO instruction
appears.

Example:

 MACRO
&NAME MOVE &T,&F

AIF (T'&T EQ 'F').FIRST Statement 1
 AGO .END Statement 2
.FIRST AIF (T'&T NE T'&F).END Statement 3
&NAME ST 2,SAVEAREA
 L 2,&F
 ST 2,&T
 L 2,SAVEAREA
.END MEND Statement 4

Statement 1 determines if the type attribute of the first macro instruction operand is
the letter F. If the type attribute is the letter F, Statement 3 is the next statement
processed by the assembler. If the type attribute is not the letter F, Statement 2 is
the next statement processed by the assembler.

Statement 2 indicates to the assembler that the next statement to be processed is
Statement 4 (the statement named by sequence symbol .END).

  Chapter 9. How to Write Conditional Assembly Instructions 345



 ACTR Instruction  
 

Computed AGO Instruction
The computed AGO instruction makes branches according to the value of an
arithmetic expression specified in the operand.

 

��─ ──┬ ┬───────────────── ─AGO────────────────────────────────────────�
 └ ┘ ─sequence_symbol─

 ┌ ┐─,───────────────
�─ ──(arithmetic_expression) ───+ ┴─sequence_symbol─ ───────────────────��

sequence_symbol
is a sequence symbol.

arithmetic_expression
is an arithmetic expression the assembler evaluates to k, where k lies between
1 and n (the number of occurrences of sequence_symbol in the operand field)
inclusive. The assembler branches to the k-th sequence symbol in the list. If k
is outside that range, no branch is taken.

In the following example, control passes to the statement at .THIRD if &I= 3.
Control passes through to the statement following the AGO if &I is less than 1 or
greater than 4.

 Cont.
 AGO (&I).FIRST,.SECOND, X
 .THIRD,.FOURTH

Alternative Format for AGO Statement
The alternative statement format is allowed for computed AGO instructions. The
above example could be coded as follows:

 Cont.
 AGO (&I).FIRST, X
 .SECOND, X
 .THIRD, X
 .FOURTH

AGOB—Synonym of the AGO Instruction
For compatibility with some earlier assemblers, High Level Assembler supports the
AGOB symbolic operation code as a synonym of the AGO instruction. However,
you should not use the AGOB instruction in new applications as support for it might
be removed in the future.

 ACTR Instruction
The ACTR instruction sets a conditional assembly loop counter either within a
macro definition or in open code. The ACTR instruction can appear anywhere in
open code or within a macro definition.

Each time the assembler processes an AIF or AGO branching instruction in a
macro definition or in open code, the loop counter for that part of the program is
decremented by one. When the number of conditional assembly branches reaches
the value assigned to the loop counter by the ACTR instruction, the assembler exits
from the macro definition or stops processing statements in open code.

346 HLASM V1R3 Language Reference  



  ANOP Instruction
 

By using the ACTR instruction, you avoid excessive looping during conditional
assembly processing.

 

��─ ──┬ ┬───────────────── ─ACTR──arithmetic_expression───────────────��
 └ ┘ ─sequence_symbol─

sequence_symbol
is a sequence symbol.

arithmetic_expression
is an arithmetic expression used to set or reset a conditional assembly loop
counter.

A conditional assembly loop counter has a local scope; its value is decremented
only by AGO and AIF instructions, and reassigned only by ACTR instructions that
appear within the same scope. Thus, the nesting of macros has no effect on the
setting of individual loop counters.

The assembler sets its own internal loop counter both for open code and for each
macro definition, if neither contains an ACTR instruction. The assembler assigns a
standard value of 4096 to each of these internal loop counters.

Loop Counter Operations
Within the local scope of a particular loop counter (including the internal counters
run by the assembler), the following occurs:

1. Each time an AGO or AIF branch is executed, the assembler checks the loop
counter for zero or a negative value.

2. If the count is not zero or negative, it is decremented by one.

3. If the count is zero, before decrementing, the assembler takes one of two
actions:

a. If it is processing instructions in open code, the assembler processes the
remainder of the instructions in the source module as comments. Errors
discovered in these instructions during previous passes are flagged.

b. If it is processing instructions inside a macro definition, the assembler
terminates the expansion of that macro definition and processes the next
sequential instruction after the calling macro instruction. If the macro
definition is called by an inner macro instruction, the assembler processes
the next sequential instruction after this inner call; that is, it continues
processing at the next outer level of nested macros.

The assembler halves the ACTR counter value when it encounters serious syntax
errors in conditional assembly instructions.

 ANOP Instruction
You can specify a sequence symbol in the name field of an ANOP instruction, and
use the symbol as a label for branching purposes.

The ANOP instruction carries out no operation itself, but you can use it to allow
conditional assembly to skip to an instruction that does not have a sequence
symbol in its name field. For example, if you wanted to branch to a SETA, SETB,

  Chapter 9. How to Write Conditional Assembly Instructions 347



 ANOP Instruction  
 

or SETC assignment instruction, which requires a variable symbol in the name field,
you could insert a labeled ANOP instruction immediately before the assignment
instruction. By branching to the ANOP instruction with an AIF or AGO instruction,
you would, in effect, be branching to the assignment instruction.

 

��──sequence_symbol──ANOP──────────────────────────────────────────��

sequence_symbol
is a sequence symbol.

No operation is carried out by an ANOP instruction. Instead, if a branch is taken to
the ANOP instruction, the assembler processes the next sequential instruction.

Example:

 MACRO
&NAME MOVE &T,&F
 LCLC &TYPE

AIF (T'&T EQ 'F').FTYPE Statement 1
&TYPE SETC 'E' Statement 2
.FTYPE ANOP Statement 3
&NAME ST&TYPE 2,SAVEAREA Statement 4
 L&TYPE 2,&F
 ST&TYPE 2,&T
 L&TYPE 2,SAVEAREA
 MEND

Statement 1 determines if the type attribute of the first macro instruction operand is
the letter F. If the type attribute is not the letter F, Statement 2 is the next
statement processed by the assembler. If the type attribute is the letter F,
Statement 4 should be processed next. However, because there is a variable
symbol (&NAME) in the name field of Statement 4, the required sequence symbol
(.FTYPE) cannot be placed in the name field. Therefore, an ANOP instruction
(Statement 3) must be placed before Statement 4.

Then, if the type attribute of the first operand is the letter F, the next statement
processed by the assembler is the statement named by sequence symbol .FTYPE.
The value of &TYPE retains its initial null character value because the SETC
instruction is not processed. Because .FTYPE names an ANOP instruction, the next
statement processed by the assembler is Statement 4, the statement following the
ANOP instruction.

348 HLASM V1R3 Language Reference  



  MHELP Instruction
 

 Chapter 10. MHELP Instruction

The MHELP instruction controls a set of trace and dump facilities. MHELP
statements can occur anywhere in open code or in macro definitions. MHELP
options remain in effect until superseded by another MHELP statement.

 MHELP Options
Options are selected by an absolute expression in the MHELP operand field.

 

��─ ──┬ ┬───────────────── ─MHELP──options────────────────────────────��
 └ ┘ ─sequence_symbol─

sequence_symbol
is a sequence symbol.

options
is the sum of the binary or decimal options described below.

MHELP B'1' or MHELP 1, Macro Call Trace:  This option provides a one-line
trace listing for each macro call, giving the name of the called macro, its nested
depth, and its &SYSNDX value. The trace is provided only upon entry into the
macro. No trace is provided if error conditions prevent entry into the macro.

MHELP B'10' or MHELP 2, Macro Branch Trace:  This option provides a
one-line trace-listing for each AGO and AIF conditional assembly branch within a
macro. It gives the model statement numbers of the “branched from” and the
“branched to” statements, and the name of the macro in which the branch occurs.
This trace option is suppressed for library macros.

MHELP B'100' or MHELP 4, Macro AIF Dump:  This option dumps
undimensioned SET symbol values from the macro dictionary immediately before
each AIF statement that is encountered.

MHELP B'1000' or MHELP 8, Macro Exit Dump:  This option dumps
undimensioned SET symbols from the macro dictionary whenever an MEND or
MEXIT statement is encountered.

MHELP B'10000' or MHELP 16, Macro Entry Dump:  This option dumps
parameter values from the macro dictionary immediately after a macro call is
processed.

MHELP B'100000' or MHELP 32, Global Suppression:  This option suppresses
global SET symbols in two preceding options, MHELP 4 and MHELP 8.

MHELP B'1000000' or MHELP 64, Macro Hex Dump:  This option, when used
with the Macro AIF dump, the Macro Exit dump, or the Macro Entry dump, dumps
the parameter and SETC symbol values in EBCDIC and hexadecimal formats.
Only positional and keyword parameters are dumped in hexadecimal; system
parameters are dumped in EBCDIC. The full value of SETC variables or
parameters is dumped in hexadecimal.

 Copyright IBM Corp. 1982, 1998  349



 MHELP Instruction  
 

MHELP B'10000000' or MHELP 128, MHELP Suppression:  This option
suppresses all currently active MHELP options.

MHELP Control on &SYSNDX:  The maximum value of the &SYSNDX system
variable can be controlled by the MHELP instruction. The limit is set by specifying a
number in the operand of the MHELP instruction that is not one of the MHELP
codes defined above, and is in the following number ranges:

� 256 to 65535

� Most numbers in the range 65792 to 9999999. Refer to MHELP Operand
Mapping below for details.

When the &SYSNDX limit is reached, message ASMAK13S ACTR counter exceeded is
issued, and the assembler in effect ignores all further macro calls.

MHELP Operand Mapping
The MHELP operand field is actually mapped into a fullword. The predefined
MHELP codes correspond to the fourth byte of this fullword, while the &SYSNDX
limit is controlled by setting any bit in the third byte to 1. If all bits in the third byte
are 0, then the &SYSNDX limit is not set.

The bit settings for bytes 3 and 4 are shown in Figure 93.

Figure 93. &SYSNDX Control Bits

Byte Description

Byte 3 - &SYSNDX control 1... .... Bit 0 = 1. Value=32768. Limit &SYSNDX to 32768.
.1.. .... Bit 1 = 1. Value=16384. Limit &SYSNDX to 16384.
..1. .... Bit 2 = 1. Value=8192. Limit &SYSNDX to 8192.
...1 .... Bit 3 = 1. Value=4096. Limit &SYSNDX to 4096.
.... 1... Bit 4 = 1. Value=2048. Limit &SYSNDX to 2048.
.... .1.. Bit 5 = 1. Value=1024. Limit &SYSNDX to 1024.
.... ..1. Bit 6 = 1. Value=512. Limit &SYSNDX to 512.
.... ...1 Bit 7 = 1. Value=256. Limit &SYSNDX to 256.

Byte 4 1... .... Bit 0 = 1. Value=128. MHELP Suppression.
.1.. .... Bit 1 = 1. Value=64. Macro Hex Dump.
..1. .... Bit 2 = 1. Value=32. Global Suppression.
...1 .... Bit 3 = 1. Value=16. Macro Entry Dump.
.... 1... Bit 4 = 1. Value=8. Macro Exit Dump.
.... .1.. Bit 5 = 1. Value=4. Macro AIF Dump.
.... ..1. Bit 6 = 1. Value=2. Macro Branch Trace.
.... ...1 Bit 7 = 1. Value=1. Macro Call Trace.

Note:  You can use any combination of bit settings in any byte of the MHELP
fullword to set the limit, provided at least one bit in byte 3 is set. This explains why
not all values between 65792 and 9999999 can be used to set the limit. For
example, the number 131123 does not set the &SYSNDX limit because none of the
bits in byte 3 are set to 1.

Examples:

MHELP 256 Limit &SYSNDX to 256
MHELP 1 Trace macro calls
MHELP 65536 No effect. No bits in bytes 3,4
MHELP 65792 Limit &SYSNDX to 65792

350 HLASM V1R3 Language Reference  



  MHELP Instruction
 

See Figure 94 on page 351 for more examples.

 Combining Options
More than one MHELP option, including the limit for &SYSNDX, can be specified at
the same time by combining the option codes in one MHELP operand. For
example, call and branch traces can be invoked by:

MHELP B'11'
MHELP 2+1
MHELP 3

Substitution by variable symbols may also be used.

┌────────────────────────┬───────────────────────────────────┬───────────────────────────────────┐
│ MHELP Instruction │ MHELP Operand │ MHELP Effect │
├────────────────────────┼──────────┬────────────────────────┤ │
│ │ Decimal │ Hexadecimal │ │
│ │ ├──────┬─────────┬───────┤ │
│ │ │ │ &SYSNDX │ MHELP │ │
├────────────────────────┼──────────┼──────┼─────────┼───────┼───────────────────────────────────┤
│ MHELP 4869 │ 4869 │ KKKK │ 13 │ K5 │ Macro call trace and AIF dump; │
│ │ │ │ │ │ &SYSNDX limited to 4869 │
├────────────────────────┼──────────┼──────┼─────────┼───────┼───────────────────────────────────┤
│ MHELP 65536 │ 65536 │ KKK1 │ KK │ KK │ No effect │
├────────────────────────┼──────────┼──────┼─────────┼───────┼───────────────────────────────────┤
│ MHELP 16777232 │ 16777232 │ KK1K │ KK │ 1K │ Macro entry dump │
├────────────────────────┼──────────┼──────┼─────────┼───────┼───────────────────────────────────┤
│ MHELP 28678 │ 28678 │ KKKK │ 7K │ K6 │ Macro branch trace and AIF dump; │
│ │ │ │ │ │ &SYSNDX limited to 28678 │
├────────────────────────┼──────────┼──────┼─────────┼───────┼───────────────────────────────────┤
│ MHELP 256+1 │ 257 │ KKKK │ K1 │ K1 │ Macro call trace; │
│ │ │ │ │ │ &SYSNDX limited to 257 │
├────────────────────────┼──────────┼──────┼─────────┼───────┼───────────────────────────────────┤
│ MHELP B'11' │ 3 │ KKKK │ KK │ K3 │ Macro call trace, and │
│ │ │ │ │ │ macro branch trace │
└────────────────────────┴──────────┴──────┴─────────┴───────┴───────────────────────────────────┘

Figure 94. MHELP Control on &SYSNDX

  Chapter 10. MHELP Instruction 351



  
 

352 HLASM V1R3 Language Reference  



  Appendixes
 

 Part 4. Appendixes

Appendix A. Assembler Instructions  . . . . . . . . . . . . . . . . . . . . . . . 354

Appendix B. Summary of Constants . . . . . . . . . . . . . . . . . . . . . . .  359

Appendix C. Macro and Conditional Assembly Language Summary . . . .  361

Appendix D. Standard Character Set Code Table . . . . . . . . . . . . . . .  372

 Copyright IBM Corp. 1982, 1998  353



 Assembler Instructions and Statements  
 

 Appendix A. Assembler Instructions

Figure 95 summarizes the basic formats of assembler instructions, and Figure 96
on page 357 summarizes assembler statements.

Figure 95 (Page 1 of 4). Assembler Instructions

Operation
Entry Name Entry Operand Entry

| ACONTROL| A sequence symbol or blank| One or more operands, separated by
| commas

ACTR A sequence symbol or blank An arithmetic SETA expression

ADATA A sequence symbol or blank One-to-four decimal, self-defining terms,
and one character string, separated by
commas.

AEJECT^ A sequence symbol or blank Taken as a remark

AGO A sequence symbol or blank A sequence symbol

AIF A sequence symbol or blank A logical expression enclosed in
parentheses, immediately followed by a
sequence symbol

| AINSERT| A sequence symbol or blank| A character string, followed by FRONT or
| BACK

AMODE Any symbol or blank 24, 31, or ANY

ALIAS A symbol A character string or a hexadecimal string

ANOP A sequence symbol or blank Taken as a remark

AREAD^ Any SETC symbol NOPRINT, NOSTMT, CLOCKB, CLOCKD,
or blank

ASPACE A sequence symbol or blank An absolute expression

CATTR
(MVS and
CMS Only)

A valid program object
external class name

One or more attributes

CCWc Any symbol or blank Four operands, separated by commas

CCW0c Any symbol or blank Four operands, separated by commas

CCW1c Any symbol or blank Four operands, separated by commas

CEJECT A sequence symbol or blank An absolute expression or blank

CNOPc Any symbol or blank Two absolute expressions, separated by a
comma

COM Any symbol or blank Taken as a remark

COPY A sequence symbol or blank An ordinary symbol, or, for open code
statements, a variable symbol

CSECT Any symbol or blank Taken as a remark

CXDc Any symbol or blank Taken as a remark

DCc Any symbol or blank One or more operands, separated by
commas

DROP A sequence symbol or blank One or more absolute expressions and
symbols, separated by commas, or blank

354  Copyright IBM Corp. 1982, 1998



  Assembler Instructions and Statements
 

Figure 95 (Page 2 of 4). Assembler Instructions

Operation
Entry Name Entry Operand Entry

DSc Any symbol or blank One or more operands, separated by
commas

DSECT A symbol or blank Taken as a remark

DXDc A symbol One or more operands, separated by
commas

EJECT A sequence symbol or blank Taken as a remark

END A sequence symbol or blank A relocatable expression or blank

ENTRY A sequence symbol or blank One or more relocatable symbols,
separated by commas

EQU A variable symbol or an
ordinary symbol

One to three operands, separated by
commas

EXITCTL A sequence symbol or blank A character-string operand followed by one
to four decimal self-defining terms,
separated by commas

EXTRN A sequence symbol or blank One or more relocatable symbols,
separated by commas

GBLA A sequence symbol or blank One or more variable symbols that are to
be used as SET symbols, separated by
commas]

GBLB A sequence symbol or blank One or more variable symbols that are to
be used as SET symbols, separated by
commas]

GBLC A sequence symbol or blank One or more variable symbols that are to
be used as SET symbols, separated by
commas]

ICTL Blank One to three decimal self-defining terms,
separated by commas

ISEQ A sequence symbol or blank Two decimal self-defining terms, separated
by a comma, or blank

LCLA A sequence symbol or blank One or more variable symbols that are to
be used as SET symbols, separated by
commas]

LCLB A sequence symbol or blank One or more variable symbols that are to
be used as SET symbols, separated by
commas]

LCLC A sequence symbol or blank One or more variable symbols separated
by commas]

LOCTR A variable or ordinary symbol Blank

LTORG Any symbol or blank Taken as a remark

MACRO^ Blank Taken as a remark

MEND^ A sequence symbol or blank Taken as a remark

MEXIT^ A sequence symbol or blank Taken as a remark

MHELP A sequence symbol or blank Absolute expression, binary or decimal
options

  Appendix A. Assembler Instructions 355



 Assembler Instructions and Statements  
 

Figure 95 (Page 3 of 4). Assembler Instructions

Operation
Entry Name Entry Operand Entry

MNOTE A sequence symbol or blank A severity code, followed by a comma,
followed by a 1-to-256-character string
enclosed in single quotation marks.
Double-byte characters are permitted if the
DBCS assembler option is specified.

OPSYN An ordinary symbol
 
 
 
 
An operation code mnemonic

An machine instruction mnemonic
or an operation code defined by
a previous macro definition or
OPSYN instruction
 
Blank

ORG A sequence symbol or blank A relocatable expression or blank

POP A sequence symbol or blank One or more operands, separated by
commas

PRINT A sequence symbol or blank One or more operands, separated by
commas

PUNCH A sequence symbol or blank A 1-to-80-character string enclosed in
single quotation marks. Double-byte
characters are permitted if the DBCS
assembler option is specified.

PUSH A sequence symbol or blank One or more operands, separated by
commas

REPRO A sequence symbol or blank Taken as a remark

RMODE Any symbol or blank 24 or ANY

RSECT Any symbol or blank Taken as a remark

SETA A SETA symbol An arithmetic expression

SETAF A SETA symbol An external function module, and the
arithmetic expressions it requires,
separated by commas

SETB A SETB symbol A 0 or a 1, or a logical expression
enclosed in parentheses

SETC A SETC symbol A type attribute, a character expression, a
substring notation, or a concatenation of
character expressions and substring
notations. Double-byte characters are
permitted if the DBCS assembler option is
specified.

SETCF A SETC symbol An external function module, and the
character expressions it requires,
separated by commas

SPACE A sequence symbol or blank An absolute expression

START Any symbol or blank An absolute expression or blank

TITLEb A 1-to-8-character string, a
variable symbol, a
combination of character
string or variable symbol, a
sequence symbol, or blank

A 1-to-100-character string enclosed in
single quotation marks. Double-byte
characters are permitted if the DBCS
assembler option is specified.

356 HLASM V1R3 Language Reference  



  Assembler Instructions and Statements
 

Figure 95 (Page 4 of 4). Assembler Instructions

Operation
Entry Name Entry Operand Entry

USING A symbol or blank Either a single absolute or relocatable
expression or a pair of absolute or
relocatable expressions enclosed in
parentheses and followed by 1 to 16
absolute expressions, separated by
commas, or followed by a relocatable
expression

WXTRN A sequence symbol or blank One or more relocatable symbols,
separated by commas

Notes: 

1. SET symbols may be defined as subscripted SET symbols.
2. May only be used as part of a macro definition.
3. See “TITLE Instruction” on page 189 for a description of the name entry.

| 4. These instructions start a private section.

Figure 96 (Page 1 of 2). Assembler Statements

Instruction Entry Name Entry Operand Entry

Model
Statements1 and 2

An ordinary symbol, variable
symbol, sequence symbol, or a
combination of variable
symbols and other characters
that is equivalent to a symbol,
or blank

Any combination of characters
(including variable symbols)

Prototype
Statementb

A symbolic parameter or blank Zero or more operands that are
symbolic parameters (separated
by commas), and zero or more
operands (separated by
commas) of the form: symbolic
parameter, equal sign, optional
standard value

Macro Instruction
Statementb

An ordinary symbol, a variable
symbol, or a combination of
variable symbols and other
characters that is equivalent to
a symbol, any character string,
a sequence symbolc or blank

Zero or more positional
operands (separated by
commas), and zero or more
keyword operands (separated by
commas) of the form keyword,
equal sign, valuek

  Appendix A. Assembler Instructions 357



 Assembler Instructions and Statements  
 

Figure 96 (Page 2 of 2). Assembler Statements

Instruction Entry Name Entry Operand Entry

Assembler
Language
Statement] ^

An ordinary symbol, a variable
symbol, a sequence symbol, or
a combination of variable
symbols and other characters
that is equivalent to a symbol,
or blank

Any combination of characters
(including variable symbols)

Notes: 

1. Variable symbols may be used to generate assembler language mnemonic operation
codes (listed in Chapter 5, “Assembler Instruction Statements” on page 90), except
COPY, ICTL, ISEQ, and REPRO. Variable symbols may not be used in the name and
operand entries of COPY, ICTL, and ISEQ instructions, except for the COPY instruction
in open code, where a variable symbol is allowed for the operand entry.

2. No substitution is done for variables in the line following a REPRO statement.

3. May only be used as part of a macro definition.

4. When the name field of a macro instruction contains a sequence symbol, the sequence
symbol is not passed as a name field parameter. It only has meaning as a possible
branch target for conditional assembly.

5. Variable symbols appearing in a macro instruction are replaced by their values before
the macro instruction is processed.

358 HLASM V1R3 Language Reference  



  Summary of Constants
 

Appendix B. Summary of Constants

Figure 97 and Figure 98 on page 360 summarize the types of assembler
constants.

Figure 97. Summary of Constants (Part 1 of 2)

Constant Type

Implicit
Length
(Bytes) Alignment

Length
Modifier
Range Specified By

Address A 4 Fullword .1 to 4] Any expression

Binary B As needed Byte .1 to 256 Binary digits

Character C As needed Byte .1 to 256^ Characters

Floating Point Hex D 8 Doubleword .1 to 8 Decimal digits

| Floating Point Hex| DH| 8| Doubleword| .12 to 8| Decimal digits

| Floating Point Binary| DB| 8| Doubleword| .12 to 8| Decimal digit

Floating Point Hex E 4 Fullword .1 to 8 Decimal digits

| Floating Point Hex| EH| 4| Fullword| .12 to 8| Decimal digits

| Floating Point Binary| EB| 4| Fullword| .9 to 8| Decimal digits

Fixed Point F 4 Fullword .1 to 8 Decimal digits

Graphic (DBCS) G As needed Byte 2 to 256b DBCS characters

Fixed Point H 2 Halfword .1 to 8 Decimal digits

| Length| J| 4| Fullword| 1 to 4

| Class name or
| external DSECT
| namec

Floating Point Hex L 16 Doubleword .1 to 16 Decimal digits

| Floating Point Hex| LH| 16| Doubleword| .12 to 16| Decimal digit

| Floating Point Binary| LB| 16| Doubleword| .16 to 16| Decimal digit

Decimal P As needed Byte .1 to 16 Decimal digits

Offset Q 4 Fullword 1 to 4 Symbol naming a DXD or DSECT

Address S 2 Halfword 2 only One absolute or relocatable expression, or
two absolute expressions:
exp(exp)

Address V 4 Fullword 3, 4 Relocatable symbol

Hexadecimal X As needed Byte .1 to 256^ Hex digits

Address Y 2 Halfword .1 to 2] Any expression

Decimal Z As needed Byte .1 to 16 Decimal digits

Notes: 

1. Bit length specification permitted with absolute expressions only; relocatable A-type constants, 2, 3, or 4 bytes only; relocatable
Y-type constants, 2 bytes only.

2. In a DS assembler instruction, C-and-X type constants can have length specification to 65535.

3. The length modifier must be a multiple of 2, and may be up to 65534 in a DS assembler instruction.

 4. XOBJECT only.

 Copyright IBM Corp. 1982, 1998  359



 Summary of Constants  
 

Figure 98. Summary of Constants (Part 2 of 2)

Constant Type

No. of
Constants
per
Operand

Range for
Exponents

Range for
Scale Truncation or Padding Side

Address A Multiple Left

Binary B Multiple Left

Character C One Right

Floating Point Hex D Multiple −85 to +75 0 to 14 Right]

| Floating Point Hex| DH| Multiple| −2b] to 2b]−1| 0 to 14| Right]

| Floating Point Binary| DB| Multiple| −2b] to 2b]−1| N/A| Right]

Floating Point Hex E Multiple −85 to +75 0 to 14 Right]

| Floating Point Hex| EH| Multiple| −2b] to 2b]−1| 0 to 14| Right]

| Floating Point Binary| EB| Multiple| −2b] to 2b]−1| N/A| Right]

Fixed Point F Multiple −85 to +75 −187 to +346 Left]

Graphic (DBCS) G One Right

Fixed Point H Multiple −85 to +75 −187 to +346 Left]

| Length| J| Multiple| Left]

Floating Point Hex L Multiple −85 to +75 0 to 28 Right]

| Floating Point Hex| LH| Multiple| −2b] to 2b]−1| 0 to 28| Right]

| Floating Point Binary| LB| Multiple| −2b] to 2b]−1| N/A| Right]

Floating Point L Multiple −85 to +75 0 to 28 Right]

Decimal P Multiple Left

Offset Q Multiple Left

Address S Multiple

Address V Multiple Left

Hexadecimal X Multiple Left

Address Y Multiple Left

Decimal Z Multiple Left

Notes: 

1. Errors are flagged if significant bits are truncated or if the value specified cannot be contained in the implicit length of the
constant.

360 HLASM V1R3 Language Reference  



  Macro and Conditional Assembly Language Summary
 

Appendix C. Macro and Conditional Assembly Language
Summary

This appendix summarizes the macro and conditional assembly language described
in Part 3 of this publication. Figure 99 indicates which macro and conditional
assembly language elements may be used in the name and operand entries of
each statement. Figure 100 on page 364 summarizes the expressions that may
be used in macro instruction statements. Figure 101 on page 365 summarizes the
attributes that may be used in each expression. Figure 102 on page 366
summarizes the variable symbols that may be used in each expression.
Figure 103 on page 367 summarizes the system variable symbols that may be
used in each expression.

 Copyright IBM Corp. 1982, 1998  361



 Macro and Conditional Assembly Language Summary  
 

S
eq

u
en

ce
S

ym
b

o
l

N
am

e

N
am

e

N
am

e

N
am

e

N
am

e

N
am

e

N
am

e

N
am

e

N
am

e

N
am

e
O

pe
ra

nd

N
am

e
O

pe
ra

nd

N
am

e

N
am

e

N
am

e

N
am

e

N
am

e

N
am

e

N
u

m
b

er

 O
pe

ra
nd

 O
pe

ra
nd

]b

 O
pe

ra
nd

j

O
pe

ra
nd

 O
pe

ra
nd

j

O
pe

ra
nd

C
o

u
n

t

 O
pe

ra
nd

 O
pe

ra
nd

]b

 O
pe

ra
nd

j

O
pe

ra
nd

 O
pe

ra
nd

j

O
pe

ra
nd

In
te

g
er

 O
pe

ra
nd

 O
pe

ra
nd

]b

 O
pe

ra
nd

j

O
pe

ra
nd

 O
pe

ra
nd

j

O
pe

ra
nd

S
ca

lin
g

 O
pe

ra
nd

 O
pe

ra
nd

]b

 O
pe

ra
nd

j

O
pe

ra
nd

 O
pe

ra
nd

j

O
pe

ra
nd

L
en

g
th

 O
pe

ra
nd

 O
pe

ra
nd

]b

 O
pe

ra
nd

j

O
pe

ra
nd

 O
pe

ra
nd

j

O
pe

ra
nd

A
tt

ri
b

u
te

s

T
yp

e

   O
pe

ra
nd

k

 O
pe

ra
nd

 O
pe

ra
nd

]b

 O
pe

ra
nd

k

S
E

T
C

O
pe

ra
nd

]]

O
pe

ra
nd

]]

O
pe

ra
nd

]]

O
pe

ra
nd

]]

O
pe

ra
nd

]]

O
pe

ra
nd

N
am

e
O

pe
ra

tio
n

O
pe

ra
nd

N
am

e]
^

O
pe

ra
nd

]v

N
am

e]
v,
]^

O
pe

ra
nd

]b

N
am

e]
^

O
pe

ra
nd

l

N
am

e
O

pe
ra

nd

N
am

e
O

pe
ra

nd
]b

O
pe

ra
nd

b

 O
pe

ra
nd

l

N
am

e

O
pe

ra
nd

b

O
pe

ra
nd

N
am

e
O

pe
ra

nd

S
E

T
B

O
pe

ra
nd

]]

O
pe

ra
nd

]]

O
pe

ra
nd

]]

O
pe

ra
nd

]]

O
pe

ra
nd

O
pe

ra
nd

]]

N
am

e
O

pe
ra

tio
n

O
pe

ra
nd

N
am

e]
^

O
pe

ra
nd

c

N
am

e]
^

O
pe

ra
nd

c,
]b

N
am

e
O

pe
ra

nd

N
am

e]
^

O
pe

ra
nd

w

N
am

e]
^

O
pe

ra
nd

w,
]b

O
pe

ra
nd

c

 O
pe

ra
nd

N
am

e]
^

O
pe

ra
nd

c

O
pe

ra
nd

N
am

e
O

pe
ra

nd

L
o

ca
l 

S
E

T
 S

ym
b

o
ls
7

S
E

T
A

O
pe

ra
nd

]]

O
pe

ra
nd

]]

O
pe

ra
nd

]]

O
pe

ra
nd

O
pe

ra
nd

]]

O
pe

ra
nd

]]

N
am

e
O

pe
ra

tio
n

O
pe

ra
nd

N
am

e
O

pe
ra

nd

N
am

e
O

pe
ra

nd
]b

N
am

e]
^

O
pe

ra
nd

l

N
am

e]
^

O
pe

ra
nd

x

N
am

e]
^

O
pe

ra
nd

x,
]b

O
pe

ra
nd

 O
pe

ra
nd

l

N
am

e]
^

O
pe

ra
nd

O
pe

ra
nd

N
am

e
O

pe
ra

nd

S
E

T
C

O
pe

ra
nd

]]

O
pe

ra
nd

]]

O
pe

ra
nd

O
pe

ra
nd

]]

O
pe

ra
nd

]]

O
pe

ra
nd

]]

N
am

e
O

pe
ra

tio
n

O
pe

ra
nd

N
am

e]
^

O
pe

ra
nd

]v

N
am

e]
v,
]^

O
pe

ra
nd

]b

N
am

e]
^

O
pe

ra
nd

l

N
am

e
O

pe
ra

nd

N
am

e
O

pe
ra

nd
]b

O
pe

ra
nd

b

 O
pe

ra
nd

l

N
am

e

O
pe

ra
nd

b

O
pe

ra
nd

N
am

e
O

pe
ra

nd

S
E

T
B

O
pe

ra
nd

]]

O
pe

ra
nd

O
pe

ra
nd

]]

O
pe

ra
nd

]]

O
pe

ra
nd

]]

O
pe

ra
nd

]]

N
am

e
O

pe
ra

tio
n

O
pe

ra
nd

N
am

e]
^

O
pe

ra
nd

c

N
am

e]
^

O
pe

ra
nd

c,
]b

N
am

e
O

pe
ra

nd

N
am

e]
^

O
pe

ra
nd

w

N
am

e]
^

O
pe

ra
nd

w,
]b

O
pe

ra
nd

c

 O
pe

ra
nd

N
am

e]
^

O
pe

ra
nd

c

O
pe

ra
nd

N
am

e
O

pe
ra

nd

G
lo

b
al

 S
E

T
 S

ym
b

o
ls
7

S
E

T
A

O
pe

ra
nd

O
pe

ra
nd

]]

O
pe

ra
nd

]]

O
pe

ra
nd

]]

O
pe

ra
nd

]]

O
pe

ra
nd

]]

N
am

e
O

pe
ra

tio
n

O
pe

ra
nd

N
am

e
O

pe
ra

nd

N
am

e
O

pe
ra

nd
]b

N
am

e]
^

O
pe

ra
nd

l

N
am

e]
^

O
pe

ra
nd

x

N
am

e]
^

O
pe

ra
nd

x,
]b

O
pe

ra
nd

 O
pe

ra
nd

l

N
am

e]
^

O
pe

ra
nd

O
pe

ra
nd

N
am

e
O

pe
ra

nd

V
ar

ia
b

le
 S

ym
b

o
ls

S
ym

b
o

lic
P

ar
am

et
er

N
am

e
O

pe
ra

nd

O
pe

ra
nd

]]

O
pe

ra
nd

]]

O
pe

ra
nd

]]

O
pe

ra
nd

]]

O
pe

ra
nd

]]

O
pe

ra
nd

]]

N
am

e
O

pe
ra

tio
n

O
pe

ra
nd

N
am

e]
^

O
pe

ra
nd

b

N
am

e]
^

O
pe

ra
nd

b,
]b

N
am

e]
^

O
pe

ra
nd

l

N
am

e]
^

O
pe

ra
nd

N
am

e]
^

O
pe

ra
nd

]b

O
pe

ra
nd

b

 O
pe

ra
nd

l

N
am

e]
^

O
pe

ra
nd

b

O
pe

ra
nd

 

F
ig

ur
e 

99
 (

P
ag

e 
1 

of
 2

).
 M

ac
ro

La
ng

ua
ge

E
le

m
en

ts

S
ta

te
m

en
t

M
A

C
R

O

P
ro

to
ty

pe
S

ta
te

m
en

t

G
B

LA

G
B

LB

G
B

LC

LC
LA

LC
LB

LC
LC

M
od

el
S

ta
te

m
en

t

S
E

T
A

S
E

T
A

F

S
E

T
B

S
E

T
C

S
E

T
C

F

A
C

T
R

A
E

JE
C

T

A
G

O

A
IF

A
N

O
P

A
R

E
A

D

A
S

P
A

C
E

M
E

X
IT

M
N

O
T

E

M
E

N
D

O
ut

er
M

ac
ro

362 HLASM V1R3 Language Reference  



  Macro and Conditional Assembly Language Summary
 

S
eq

u
en

ce
S

ym
b

o
l

N
am

e

N
u

m
b

er
C

o
u

n
t

In
te

g
er

S
ca

lin
g

L
en

g
th

A
tt

ri
b

u
te

s

T
yp

e
S

E
T

C

N
am

e
O

pe
ra

nd

S
E

T
B

N
am

e
O

pe
ra

nd

L
o

ca
l 

S
E

T
 S

ym
b

o
ls
7

S
E

T
A

N
am

e
O

pe
ra

nd

S
E

T
C

N
am

e
O

pe
ra

nd

S
E

T
B

N
am

e
O

pe
ra

nd

G
lo

b
al

 S
E

T
 S

ym
b

o
ls
7

S
E

T
A

N
am

e
O

pe
ra

nd

V
ar

ia
b

le
 S

ym
b

o
ls

S
ym

b
o

lic
P

ar
am

et
er

N
am

e
O

pe
ra

nd

F
ig

ur
e 

99
 (

P
ag

e 
2 

of
 2

).
 M

ac
ro

La
ng

ua
ge

E
le

m
en

ts

S
ta

te
m

en
t

In
ne

r
M

ac
ro

N
o

te
s:

 

1.
V

ar
ia

bl
e 

sy
m

bo
ls

 in
 m

ac
ro

 in
st

ru
ct

io
ns

 a
re

 r
ep

la
ce

d 
by

 t
he

ir 
va

lu
es

 b
ef

or
e 

pr
oc

es
si

ng
.

2.
D

ep
en

di
ng

 u
po

n 
th

ei
r 

va
lu

es
, 

sy
st

em
 v

ar
ia

bl
e 

sy
m

bo
ls

 w
ith

 g
lo

ba
l s

co
pe

 c
an

 b
e 

us
ed

 in
 t

he
 s

am
e 

w
ay

 a
s 

gl
ob

al
 S

E
T

 s
ym

bo
ls

, 
an

d 
sy

st
em

 v
ar

ia
bl

e 
sy

m
bo

ls
 w

ith
 lo

ca
l s

co
pe

 c
an

 b
e 

us
ed

 in
 t

he
 s

am
e 

w
ay

 a
s 

lo
ca

l S
E

T
 s

ym
bo

ls
.

3.
O

nl
y 

if 
va

lu
e 

is
 s

el
f-

de
fin

in
g 

te
rm

.
4.

C
on

ve
rt

ed
 t

o 
ar

ith
m

et
ic

 +
0 

or
 +

1.
5.

O
nl

y 
in

 c
ha

ra
ct

er
 r

el
at

io
ns

.
6.

O
nl

y 
in

 a
rit

hm
et

ic
 r

el
at

io
ns

.
7.

O
nl

y 
in

 a
rit

hm
et

ic
 o

r 
ch

ar
ac

te
r 

re
la

tio
ns

.
8.

C
on

ve
rt

ed
 t

o 
an

 u
ns

ig
ne

d 
nu

m
be

r.
9.

C
on

ve
rt

ed
 t

o 
ch

ar
ac

te
r 

0 
or

 1
.

10
.

O
nl

y 
if 

on
e 

to
 t

en
 d

ec
im

al
 d

ig
its

, 
no

t 
gr

ea
te

r 
th

an
 2

14
74

83
64

7.
11

.
O

nl
y 

in
 c

re
at

ed
 S

E
T

 s
ym

bo
ls

 if
 v

al
ue

 o
f 

pa
re

nt
he

si
ze

d 
ex

pr
es

si
on

 is
 a

n 
al

ph
ab

et
ic

 c
ha

ra
ct

er
 f

ol
lo

w
ed

 b
y 

1 
to

 6
1 

al
ph

an
um

er
ic

 c
ha

ra
ct

er
s.

12
.

O
nl

y 
in

 c
re

at
ed

 S
E

T
 s

ym
bo

ls
 (

as
 d

es
cr

ib
ed

 a
bo

ve
) 

an
d 

in
 s

ub
sc

rip
ts

 (
se

e 
S

E
T

A
 s

ta
te

m
en

t)
.

13
.

T
he

 f
irs

t 
op

er
an

d 
of

 a
 S

E
T

A
F

 o
r 

S
E

T
C

F
 in

st
ru

ct
io

n 
m

us
t 

be
 a

 c
ha

ra
ct

er
 (

S
E

T
C

) 
ex

pr
es

si
on

 c
on

ta
in

in
g 

or
 e

va
lu

at
in

g 
to

 a
n 

ei
gh

t 
by

te
 m

od
ul

e 
na

m
e.

  Appendix C. Macro and Conditional Assembly Language Summary 363



 Macro and Conditional Assembly Language Summary  
 

Figure 100 (Page 1 of 2). Conditional Assembly Expressions

Expression
Arithmetic
Expressions

Character
Expressions

Logical
Expressions

Can
contain

Self-defining terms
 
Absolute, predefined
ordinary symbols
 
Length, scaling,
integer, count, and
number attributes
 
SETA and SETB
symbols
 
SETC symbols whose
values are a
self-defining term
 
Symbolic parameters if
the corresponding
operand is a decimal
self-defining term
 
Built-in Functions
 
&SYSDATC
 
&SYSLIST(n) if the
corresponding operand
is a decimal
self-defining term
 
&SYSLIST (n,m) if the
corresponding operand
is a decimal
self-defining term
 

| &SYSOPT_DBCS,
| &SYSOPT_RENT, and
| &SYSOPT_XOBJECT

 
| &SYSM_HSEV and
| &SYSM_SEV

 
&SYSPARM if its value
is a decimal
self-defining term
 
&SYSNDX,
&SYSNEST, and
&SYSSTMT

Any combination of
characters (including
double-byte characters, if
the DBCS assembler
option is specified)
enclosed in single
quotation marks
 
Any absolute, predefined
ordinary symbols not
enclosed in single
quotation marks
 
Any variable symbol
enclosed in single
quotation marks
 
A concatenation of variable
symbols and other
characters enclosed in
single quotation marks
 
Built-in Functions
 
A type attribute reference

A 0 or a 1
 
Absolute, predefined
ordinary symbols used
in arithmetic relations
or character relations
 
SETB symbols
 
Arithmetic relations
 
Character relations
 
Arithmetic value

Operations +, − (unary and binary),
*, and /;
 
Parentheses permitted

Concatenation, with a
period (.), or by
juxtaposition

AND, OR, NOT, XOR
 
Parentheses permitted

Range
of values

−2b] to +2b]−1 0 through 255 characters 0 (false) or 1 (true)

Built-in
Functions

AND, FIND, INDEX,
NOT, OR, SLA, SLL,
SRA, SRL, XOR

| BYTE, DOUBLE, LOWER,
| SIGNED, UPPER

See Operations above

364 HLASM V1R3 Language Reference  



  Macro and Conditional Assembly Language Summary
 

Figure 100 (Page 2 of 2). Conditional Assembly Expressions

Expression
Arithmetic
Expressions

Character
Expressions

Logical
Expressions

Used in SETA operands
 
Arithmetic relations
 
Created SET symbols
 
Subscripted SET
symbols
 
&SYSLIST subscript(s)
 
Substring notation
 
Sublist notation

SETC operands
 
Character relations
 
Created SET symbols

SETB operands
 
AIF operands
 
Created SET symbols

Figure 101 (Page 1 of 2). Attributes

Attribute
Nota-
tion Can be used with:

Can be used only if
Type Attribute is: Can be used in:

Type T' Ordinary symbols
defined in open code;
symbolic parameters
inside macro
definitions;
&SYSLIST(n),
&SYSLIST(n,m) inside
macro definitions; SET
symbols; all system
variable symbols

Any letter SETC operand fields
 
Character relations

Length L' Ordinary symbols
defined in open code;
symbolic parameters
inside macro
definitions;
&SYSLIST(n), and
&SYSLIST(n,m) inside
macro definitions

Any letter except M,
N, O, T, U

Arithmetic
expressions

Scaling S' Ordinary symbols
defined in open code;
symbolic parameters
inside macro
definitions;
&SYSLIST(n), and
&SYSLIST(n,m) inside
macro definitions

H,F,G,D,E,L,K,P, and
Z

Arithmetic
expressions

Integer I' Ordinary symbols
defined in open code;
symbolic parameters
inside macro
definitions;
&SYSLIST(n), and
&SYSLIST(n,m) inside
macro definitions

H,F,G,D,E,L,K,P, and
Z

Arithmetic
expressions

  Appendix C. Macro and Conditional Assembly Language Summary 365



 Macro and Conditional Assembly Language Summary  
 

Refer to Chapter 9, “How to Write Conditional Assembly Instructions” on page 287
for usage restrictions of the attributes in Figure 101.

Figure 101 (Page 2 of 2). Attributes

Attribute
Nota-
tion Can be used with:

Can be used only if
Type Attribute is: Can be used in:

Count K' Symbolic parameters
inside macro
definitions;
&SYSLIST(n), and
&SYSLIST(n,m) inside
macro definitions; SET
symbols; all system
variable symbols

Any letter Arithmetic
expressions

Number N' Symbolic parameters,
&SYSLIST and
&SYSLIST(n) inside
macro definitions

Any letter Arithmetic
expressions

Defined D' Ordinary symbols
defined in open code;
symbolic parameters
inside macro
definitions; &SYSLIST
and &SYSLIST(n)
inside macro
definitions

Any letter Arithmetic
expressions

Operation
Code

O' A character string, or
variable symbol
containing a character
string.

Any letter SETC operand fields
Character relations

Figure 102 (Page 1 of 2). Variable Symbols

Variable
Symbol

Declared
by:

Initialized
or set to:

Value changed
by:

May be used
in:

Symbolic] parameter Prototype
statement

Corresponding
macro instruction
operand

Constant
throughout
definition

Arithmetic
expressions if
operand is
self-defining term

Character
expressions

SETA LCLA or
GBLA
instruction

0 SETA
instruction

Arithmetic
expressions

Character
expressions

Logical
expressions

SETB LCLB or
GBLB
instruction

0 SETB
instruction

Arithmetic
expressions

Character
expressions

Logical
expressions

366 HLASM V1R3 Language Reference  



  Macro and Conditional Assembly Language Summary
 

 set by'

Figure 102 (Page 2 of 2). Variable Symbols

Variable
Symbol

Declared
by:

Initialized
or set to:

Value changed
by:

May be used
in:

SETC LCLC or
GBLC
instruction

String of length 0
(null)

SETC
instruction

Arithmetic
expressions if
value is
self-defining term

Character
expressions

Logical
expressions if
value is
self-defining term

Notes: 

1. Can be used only in macro definitions.

Figure 103 (Page 1 of 5). System Variable Symbols

System Variable Symbol
Avail-
ability7 Type9

Type
Attr.: Scope Initialized or set to

Value
changed
by

May
be
used
in

&SYSADATA_DSN3 HLA2 C U L Current associated
data file

Constant
throughout
assembly

Character
expressions

&SYSADATA_MEMBER3 HLA2 C U,O L Current associated
data file member name

Constant
throughout
assembly

Character
expressions

&SYSADATA_VOLUME3 HLA2 C U,O L Current associated
data file volume
identifier

Constant
throughout
assembly

Character
expressions

&SYSASM HLA1 C U G Assembler name Constant
throughout
assembly

Character
expression

| &SYSCLOCK| HLA3| C| U| L| Current date and time| Constant
| throughout
| macro
| expansion

| Character
| expressions

&SYSDATC HLA1 C,A N G Assembly date (with
century)

Constant
throughout
assembly

Arithmetic
expressions

Character
expressions

&SYSDATE AsmH C U G Assembly date Constant
throughout
assembly

Character
expressions

&SYSECT3 All C U L Name of control
section in effect where
macro instruction
appears

Constant
throughout
definition;
set by
START,
CSECT,
RSECT,
DSECT, or
COM

Character
expressions

  Appendix C. Macro and Conditional Assembly Language Summary 367



 Macro and Conditional Assembly Language Summary  
 

Figure 103 (Page 2 of 5). System Variable Symbols

System Variable Symbol
Avail-
ability7 Type9

Type
Attr.: Scope Initialized or set to

Value
changed
by

May
be
used
in

&SYSIN_DSN3 HLA1 C U L Current primary input
data set name

Constant
throughout
definition

Character
expressions

&SYSIN_MEMBER3 HLA1 C U,O L Current primary input
member name

Constant
throughout
definition

Character
expressions

&SYSIN_VOLUME3 HLA1 C U,O L Current primary input
volume identifier

Constant
throughout
definition

Character
expressions

&SYSJOB HLA1 C U G Source module
assembly jobname

Constant
throughout
assembly

Character
expressions

&SYSLIB_DSN3 HLA1 C U L Current macro library
filename

Constant
throughout
definition

Character
expressions

&SYSLIB_MEMBER3 HLA1 C U,O L Current macro library
member name

Constant
throughout
definition

Character
expressions

&SYSLIB_VOLUME3 HLA1 C U,O L Current macro library
volume identifier

Constant
throughout
definition

Character
expressions

&SYSLIN_DSN3 HLA2 C U L Current object data set
name

Constant
throughout
assembly

Character
expressions

&SYSLIN_MEMBER3 HLA2 C U,O L Current object data set
member name

Constant
throughout
assembly

Character
expressions

&SYSLIN_VOLUME3 HLA2 C U,O L Current object data set
volume identifier

Constant
throughout
assembly

Character
expressions

&SYSLIST3 All C any L Not applicable Not
applicable

N'&SYSLIST
in
arithmetic
expressions

&SYSLIST(n)3
&SYSLIST(n,m)3

All C any L Corresponding macro
instruction operand

Constant
throughout
definition

Arithmetic
expressions
if
operand
is
self-defining
term

Character
expressions

&SYSLOC3 AsmH C U L Location counter in
effect where macro
instruction appears

Constant
throughout
definition;
set by
START,
CSECT,
RSECT,
DSECT,
COM, and
LOCTR

Character
expressions

368 HLASM V1R3 Language Reference  



  Macro and Conditional Assembly Language Summary
 

Figure 103 (Page 3 of 5). System Variable Symbols

System Variable Symbol
Avail-
ability7 Type9

Type
Attr.: Scope Initialized or set to

Value
changed
by

May
be
used
in

| &SYSMAC;| HLA3| C| U,O| L| Macro name| Constant
| throughout
| definition

| Arithmetic
| expressions

| &SYSMAC(n);| HLA3| C| U,O| L| Ancestor macro name| Constant
| throughout
| definition

| Arithmetic
| expressions

| &SYSM_HSEV| HLA3| A| N| G| 0| Mnote| Arithmetic
| expressions

| &SYSM_SEV| HLA3| A| N| G| 0| At nesting
| and
| unnesting
| of macros,
| from
| MNOTE

| Arithmetic
| expressions

&SYSNDX3 All C N L Macro instruction index Constant
throughout
definition;
unique for
each
macro
instruction

Arithmetic
expressions

Character
expressions

&SYSNEST3 HLA1 A N L Macro instruction
nesting level

Constant
throughout
definition;
unique for
each
macro
nesting
level

Arithmetic
expressions

Character
expressions

&SYSOPT_DBCS HLA1 B N G DBCS assembler
option indicator

Constant
throughout
assembly

Arithmetic
expressions

Character
expressions

Logical
expressions

&SYSOPT_OPTABLE HLA1 C U G OPTABLE assembler
option value

Constant
throughout
assembly

Character
expressions

&SYSOPT_RENT HLA1 B N G RENT assembler
option indicator

Constant
throughout
assembly

Arithmetic
expressions

Character
expressions

Logical
expressions

| &SYSOPT_XOBJECT| HLA3| B| N| G| XOBJECT assembler
| option indicator
| Constant
| throughout
| assembly

| Arithmetic
| expressions

| Character
| expressions

| Logical
| expressions

  Appendix C. Macro and Conditional Assembly Language Summary 369



 Macro and Conditional Assembly Language Summary  
 

Figure 103 (Page 4 of 5). System Variable Symbols

System Variable Symbol
Avail-
ability7 Type9

Type
Attr.: Scope Initialized or set to

Value
changed
by

May
be
used
in

&SYSPARM All C U,O G User defined or null Constant
throughout
assembly

Arithmetic
expressions
if
value
is
self-defining
term

Character
expressions

&SYSPRINT_DSN3 HLA2 C U L Current assembler
listing data set name

Constant
throughout
assembly

Character
expressions

&SYSPRINT_MEMBER3 HLA2 C U,O L Current assembler
listing data set
member name

Constant
throughout
assembly

Character
expressions

&SYSPRINT_VOLUME3 HLA2 C U,O L Current assembler
listing data set volume
identifier

Constant
throughout
assembly

Character
expressions

&SYSPUNCH_DSN3 HLA2 C U L Current object data set
name

Constant
throughout
assembly

Character
expressions

&SYSPUNCH_MEMBER3 HLA2 C U,O L Current object data set
member name

Constant
throughout
assembly

Character
expressions

&SYSPUNCH_VOLUME3 HLA2 C U,O L Current object data set
volume identifier

Constant
throughout
assembly

Character
expressions

&SYSSEQF3 HLA1 C U,O L Outer-most macro
instruction
identification-
sequence field

Constant
throughout
definition

Character
expressions

&SYSSTEP HLA1 C U G Source module
assembly job name

Constant
throughout
assembly

Character
expressions

&SYSSTMT HLA1 C,A N G Next statement
number

Assembler
increments
each time
a
statement
is
processed

Arithmetic
expressions

Character
expressions

&SYSSTYP3 HLA1 C U,O L Type of control section
in effect where macro
instruction appears

Constant
throughout
definition;
set by
START,
CSECT,
RSECT,
DSECT, or
COM

Character
expressions

&SYSTEM_ID HLA1 C U G Assembly operating
system environment
identifier

Constant
throughout
assembly

Character
expressions

370 HLASM V1R3 Language Reference  



  Macro and Conditional Assembly Language Summary
 

Figure 103 (Page 5 of 5). System Variable Symbols

System Variable Symbol
Avail-
ability7 Type9

Type
Attr.: Scope Initialized or set to

Value
changed
by

May
be
used
in

&SYSTERM_DSN3 HLA2 C U L Current terminal data
set name

Constant
throughout
assembly

Character
expressions

&SYSTERM_MEMBER3 HLA2 C U,O L Current terminal data
set member name

Constant
throughout
assembly

Character
expressions

&SYSTERM_VOLUME3 HLA2 C U,O L Current terminal data
set volume identifier

Constant
throughout
assembly

Character
expressions

&SYSTIME AsmH C U G Source module
assembly time

Constant
throughout
assembly

Character
expressions

&SYSVER HLA1 C U G Assembler release
level

Constant
throughout
assembly

Character
expressions

Notes: 

 1. Macro only
Can be used only in macro definitions.

 2. Availability:

All All assemblers, including the DOS/VSE Assembler
AsmH Assembler H Version 2 and High Level Assembler
HLA1 High Level Assembler Release 1
HLA2 High Level Assembler Release 2
HLA3 High Level Assembler Release 3

 3. Type:

A Arithmetic
B Boolean
C Character

 4. Type Attr:

N Numeric (self-defining term)
O Omitted

| U Undefined, unknown, deleted or unassigned

 5. Scope:

L Local - only in macro
G Global - in entire program

  Appendix C. Macro and Conditional Assembly Language Summary 371



 Standard Character Set Code Table  
 

Appendix D. Standard Character Set Code Table

Figure 104. Standard Character Set Code Table - From Code Page 00037

Hex. Dec. EBCDIC Binary Hex. Dec. EBCDIC Binary

KK  K KKKK KKKK 2K  32 KK1K KKKK

K1  1 KKKK KKK1 21  33 KK1K KKK1

K2  2 KKKK KK1K 22  34 KK1K KK1K

K3  3 KKKK KK11 23  35 KK1K KK11

K4  4 KKKK K1KK 24  36 KK1K K1KK

K5  5 KKKK K1K1 25  37 KK1K K1K1

K6  6 KKKK K11K 26  38 KK1K K11K

K7  7 KKKK K111 27  39 KK1K K111

K8  8 KKKK 1KKK 28  4K KK1K 1KKK

K9  9 KKKK 1KK1 29  41 KK1K 1KK1

KA  1K KKKK 1K1K 2A  42 KK1K 1K1K

KB  11 KKKK 1K11 2B  43 KK1K 1K11

KC  12 KKKK 11KK 2C  44 KK1K 11KK

KD  13 KKKK 11K1 2D  45 KK1K 11K1

KE  14 KKKK 111K 2E  46 KK1K 111K

KF  15 KKKK 1111 2F  47 KK1K 1111

1K  16 KKK1 KKKK 3K  48 KK11 KKKK

11  17 KKK1 KKK1 31  49 KK11 KKK1

12  18 KKK1 KK1K 32  5K KK11 KK1K

13  19 KKK1 KK11 33  51 KK11 KK11

14  2K KKK1 K1KK 34  52 KK11 K1KK

15  21 KKK1 K1K1 35  53 KK11 K1K1

16  22 KKK1 K11K 36  54 KK11 K11K

17  23 KKK1 K111 37  55 KK11 K111

18  24 KKK1 1KKK 38  56 KK11 1KKK

19  25 KKK1 1KK1 39  57 KK11 1KK1

1A  26 KKK1 1K1K 3A  58 KK11 1K1K

1B  27 KKK1 1K11 3B  59 KK11 1K11

1C  28 KKK1 11KK 3C  6K KK11 11KK

1D  29 KKK1 11K1 3D  61 KK11 11K1

1E  3K KKK1 111K 3E  62 KK11 111K

1F  31 KKK1 1111 3F  63 KK11 1111

372  Copyright IBM Corp. 1982, 1998



  Standard Character Set Code Table
 

Hex. Dec. EBCDIC Binary Hex. Dec. EBCDIC Binary

4K  64 SPACE K1KK KKKK 6K  96 - K11K KKKK

41  65 K1KK KKK1 61  97 / K11K KKK1

42  66 K1KK KK1K 62  98 K11K KK1K

43  67 K1KK KK11 63  99 K11K KK11

44  68 K1KK K1KK 64 1KK K11K K1KK

45  69 K1KK K1K1 65 1K1 K11K K1K1

46  7K K1KK K11K 66 1K2 K11K K11K

47  71 K1KK K111 67 1K3 K11K K111

48  72 K1KK 1KKK 68 1K4 K11K 1KKK

49  73 K1KK 1KK1 69 1K5 K11K 1KK1

4A  74 K1KK 1K1K 6A 1K6 K11K 1K1K

4B  75 . K1KK 1K11 6B 1K7 , K11K 1K11

4C  76 K1KK 11KK 6C 1K8 K11K 11KK

4D  77 ( K1KK 11K1 6D 1K9 _ K11K 11K1

4E  78 + K1KK 111K 6E 11K K11K 111K

4F  79 K1KK 1111 6F 111 K11K 1111

5K  8K & K1K1 KKKK 7K 112 K111 KKKK

51  81 K1K1 KKK1 71 113 K111 KKK1

52  82 K1K1 KK1K 72 114 K111 KK1K

53  83 K1K1 KK11 73 115 K111 KK11

54  84 K1K1 K1KK 74 116 K111 K1KK

55  85 K1K1 K1K1 75 117 K111 K1K1

56  86 K1K1 K11K 76 118 K111 K11K

57  87 K1K1 K111 77 119 K111 K111

58  88 K1K1 1KKK 78 12K K111 1KKK

59  89 K1K1 1KK1 79 121 K111 1KK1

5A  9K K1K1 1K1K 7A 122 K111 1K1K

5B  91 $ K1K1 1K11 7B 123 # K111 1K11

5C  92 D K1K1 11KK 7C 124 @ K111 11KK

5D  93 ) K1K1 11K1 7D 125 ' K111 11K1

5E  94 K1K1 111K 7E 126 = K111 111K

5F  95 K1K1 1111 7F 127 K111 1111

  Appendix D. Standard Character Set Code Table 373



 Standard Character Set Code Table  
 

Hex. Dec. EBCDIC Binary Hex. Dec. EBCDIC Binary

8K 128 1KKK KKKK AK 16K 1K1K KKKK

81 129 a 1KKK KKK1 A1 161 1K1K KKK1

82 13K b 1KKK KK1K A2 162 s 1K1K KK1K

83 131 c 1KKK KK11 A3 163 t 1K1K KK11

84 132 d 1KKK K1KK A4 164 u 1K1K K1KK

85 133 e 1KKK K1K1 A5 165 v 1K1K K1K1

86 134 f 1KKK K11K A6 166 w 1K1K K11K

87 135 g 1KKK K111 A7 167 x 1K1K K111

88 136 h 1KKK 1KKK A8 168 y 1K1K 1KKK

89 137 i 1KKK 1KK1 A9 169 z 1K1K 1KK1

8A 138 1KKK 1K1K AA 17K 1K1K 1K1K

8B 139 1KKK 1K11 AB 171 1K1K 1K11

8C 14K 1KKK 11KK AC 172 1K1K 11KK

8D 141 1KKK 11K1 AD 173 1K1K 11K1

8E 142 1KKK 111K AE 174 1K1K 111K

8F 143 1KKK 1111 AF 175 1K1K 1111

9K 144 1KK1 KKKK BK 176 1K11 KKKK

91 145 j 1KK1 KKK1 B1 177 1K11 KKK1

92 146 k 1KK1 KK1K B2 178 1K11 KK1K

93 147 l 1KK1 KK11 B3 179 1K11 KK11

94 148 m 1KK1 K1KK B4 18K 1K11 K1KK

95 149 n 1KK1 K1K1 B5 181 1K11 K1K1

96 15K o 1KK1 K11K B6 182 1K11 K11K

97 151 p 1KK1 K111 B7 183 1K11 K111

98 152 q 1KK1 1KKK B8 184 1K11 1KKK

99 153 r 1KK1 1KK1 B9 185 1K11 1KK1

9A 154 1KK1 1K1K BA 186 1K11 1K1K

9B 155 1KK1 1K11 BB 187 1K11 1K11

9C 156 1KK1 11KK BC 188 1K11 11KK

9D 157 1KK1 11K1 BD 189 1K11 11K1

9E 158 1KK1 111K BE 19K 1K11 111K

9F 159 1KK1 1111 BF 191 1K11 1111

374 HLASM V1R3 Language Reference  



  Standard Character Set Code Table
 

Hex. Dec. EBCDIC Binary Hex. Dec. EBCDIC Binary

CK 192 11KK KKKK EK 224 111K KKKK

C1 193 A 11KK KKK1 E1 225 111K KKK1

C2 194 B 11KK KK1K E2 226 S 111K KK1K

C3 195 C 11KK KK11 E3 227 T 111K KK11

C4 196 D 11KK K1KK E4 228 U 111K K1KK

C5 197 E 11KK K1K1 E5 229 V 111K K1K1

C6 198 F 11KK K11K E6 23K W 111K K11K

C7 199 G 11KK K111 E7 231 X 111K K111

C8 2KK H 11KK 1KKK E8 232 Y 111K 1KKK

C9 2K1 I 11KK 1KK1 E9 233 Z 111K 1KK1

CA 2K2 11KK 1K1K EA 234 111K 1K1K

CB 2K3 11KK 1K11 EB 235 111K 1K11

CC 2K4 11KK 11KK EC 236 111K 11KK

CD 2K5 11KK 11K1 ED 237 111K 11K1

CE 2K6 11KK 111K EE 238 111K 111K

CF 2K7 11KK 1111 EF 239 111K 1111

DK 2K8 11K1 KKKK FK 24K K 1111 KKKK

D1 2K9 J 11K1 KKK1 F1 241 1 1111 KKK1

D2 21K K 11K1 KK1K F2 242 2 1111 KK1K

D3 211 L 11K1 KK11 F3 243 3 1111 KK11

D4 212 M 11K1 K1KK F4 244 4 1111 K1KK

D5 213 N 11K1 K1K1 F5 245 5 1111 K1K1

D6 214 O 11K1 K11K F6 246 6 1111 K11K

D7 215 P 11K1 K111 F7 247 7 1111 K111

D8 216 Q 11K1 1KKK F8 248 8 1111 1KKK

D9 217 R 11K1 1KK1 F9 249 9 1111 1KK1

DA 218 11K1 1K1K FA 25K 1111 1K1K

DB 219 11K1 1K11 FB 251 1111 1K11

DC 22K 11K1 11KK FC 252 1111 11KK

DD 221 11K1 11K1 FD 253 1111 11K1

DE 222 11K1 111K FE 254 1111 111K

DF 223 11K1 1111 FF 255 1111 1111

  Appendix D. Standard Character Set Code Table 375



 Bibliography  
 

 Bibliography

High Level Assembler
Publications

High Level Assembler General Information,
GC26-4943

High Level Assembler Installation and
Customization Guide, SC26-3494

High Level Assembler Language Reference,
SC26-4940

High Level Assembler Licensed Program
Specifications, GC26-4944

High Level Assembler Programmer's Guide,
SC26-4941

Toolkit Feature Publications
High Level Assembler Toolkit Feature User's Guide,
GC26-8710

High Level Assembler Toolkit Feature Debug
Reference Summary, GC26-8712

High Level Assembler Toolkit Feature Interactive
Debug Facility User's Guide, GC26-8709

High Level Assembler Toolkit Feature Installation
and Customization Guide, GC26-8711

 Related Publications
(Architecture)

Enterprise Systems Architecture/390 Principles of
Operation,SA22-7201

Vector Operations, SA22-7207

System/370 Enterprise Systems Architecture
Principles of Operation, SA22-7200

System/370 Principles of Operation, GA22-7000

System/370 Extended Architecture Principles of
Operation, SA22-7085

Related Publications for MVS
 OS/390 MVS:

OS/390 MVS JCL Reference, GC28-1757

OS/390 MVS JCL User's Guide, GC28-1758

OS/390 MVS Assembler Services Guide,
GC28-1757

OS/390 MVS Assembler Services Reference,
GC28-1910

OS/390 MVS Auth Assembler Services Guide,
GC28-1763

OS/390 MVS Auth Assembler Services Reference
ALE-DYN, GC28-1764

OS/390 MVS Auth Assembler Services Reference
ENF-ITT, GC28-1765

OS/390 MVS Auth Assembler Services Reference
LLA-SDU, GC28-1766

OS/390 MVS Auth Assembler Services Reference
SET-WTO, GC28-1767

OS/390 MVS System Codes, GC28-1780

OS/390 MVS System Commands, GC28-1781

OS/390 MVS System Messages, Vol 1 (ABA-ASA),
GC28-1784

OS/390 MVS System Messages, Vol 2 (ASB-EWX),
GC28-1785

OS/390 MVS System Messages, Vol 3 (GDE-IEB),
GC28-1786

OS/390 MVS System Messages, Vol 4 (IEC-IFD),
GC28-1787

OS/390 MVS System Messages, Vol 5 (IGD-IZP),
GC28-1788

MVS/ESA Version 5:

MVS/ESA JCL Reference, GC28-1479

MVS/ESA JCL User's Guide, GC28-1473

MVS/ESA Programming: Assembler Services
Guide, GC28-1466

MVS/ESA Programming: Assembler Services
Guide, GC28-1474

MVS/ESA Programming: Authorized Assembler
Services Guide, GC28-1467

MVS/ESA Programming: Authorized Assembler
Services Reference Volumes 1 - 4, GC28-1475,
GC28-1476, GC28-1477, GC28-1478

MVS/ESA System Codes, GC28-1486

MVS/ESA System Commands, GC28-1442

MVS/ESA System Messages Volumes 1 - 5 ,
GC28-1480, GC28-1481, GC28-1482, GC28-1483,
GC28-1484

MVS/ESA Version 4:

MVS/ESA JCL User's Guide, GC28-1653

376  Copyright IBM Corp. 1982, 1998



  Bibliography
 

MVS/ESA Application Development Reference:
Services for Assembler Language Programs,
GC28-1642

MVS/ESA JCL Reference, GC28-1654

MVS/ESA System Codes, GC28-1664

MVS/ESA System Messages Volumes 1 - 5,
GC28-1656, GC28-1657, GC28-1658, GC28-1659,
GC28-1660

 MVS/ESA OpenEdition:

MVS/ESA OpenEdition MVS User's Guide,
SC23-3013

 OS/390 OpenEdition:

OS/390 OpenEdition User's Guide, SC28-1891

 MVS/DFP:

MVS/DFP Version 3.3: Utilities, SC26-4559

MVS/DFP Version 3.3: Linkage Editor and Loader,
SC26-4564

 DFSMS/MVS:

DFSMS/MVS Program Management, SC26-4916

 TSO/E (MVS):

TSO/E Command Reference, SC28-1881

 TSO/E (OS/390):

OS/390 TSO/E Command Reference, SC28-1969

 MVS SMP/E:

SMP/E Messages and Codes, SC28-1108

SMP/E Reference, SC28-1107

SMP/E Reference Summary, SX22-0006

SMP/E User's Guide, SC28-1302

 OS/390 SMP/E:

OS/390 SMP/E Messages and Codes, SC28-1738

OS/390 SMP/E Reference, SC28-1806

OS/390 SMP/E Reference Summary, SX22-0037

OS/390 SMP/E User's Guide, SC28-1740

Related Publications for VM
VM/ESA CMS Application Development Guide,
SC24-5450

VM/ESA CMS Application Development Guide for
Assembler, SC24-5452

VM/ESA CMS Application Development Reference,
SC24-5451

VM/ESA CMS Application Development Reference
for Assembler, SC24-5453

VM/ESA CMS User's Guide, SC24-5460

VM/ESA XEDIT Command and Macro Reference,
SC24-5464

VM/ESA XEDIT User's Guide, SC24-5463

VM/ESA CMS Planning and Administration Guide,
SC24-5445

VM/ESA CP Command and Utility Reference,
SC24-5519

VM/ESA CP Planning and Administration,
SC24-5521

VMSES/E Introduction and Reference, SC24-5444

VM/ESA Service Guide, SC24-5527

VM/ESA CMS Command Reference, SC24-5461

VM/ESA SFS and CRR Planning, Administration,
and Operation, SC24-5649

VM/ESA System Messages and Codes Reference,
SC24-5529

VMSES/E 1.5 370 Feature Introduction and
Reference, SC24-5680

VM/ESA 1.5 370 Feature Service Guide for 370,
SC24-5429

Related Publications for VSE
VSE/ESA Administration, SC33-6505

VSE/ESA Guide to System Functions, SC33-6511

VSE/ESA Installation, SC33-6504

VSE/ESA Planning, SC33-6503

VSE/ESA System Control Statements, SC33-6513

 General Publications
BRIEF OS/390 Software Management Cookbook,
SG24-4775

  Bibliography 377



 Index  
 

 Index

Special Characters
*PROCESS statement 91

initiating the first control section 51
&SYSADATA_DSN system variable symbol 234
&SYSADATA_MEMBER system variable symbol 235
&SYSADATA_VOLUME system variable symbol 236
&SYSASM system variable symbol 236
&SYSCLOCK system variable symbol 237
&SYSDATC system variable symbol 237
&SYSDATE system variable symbol 238
&SYSECT system variable symbol 238
&SYSIN_DSN system variable symbol 240
&SYSIN_MEMBER system variable symbol 241
&SYSIN_VOLUME system variable symbol 242
&SYSJOB system variable symbol 243
&SYSLIB_DSN system variable symbol 243
&SYSLIB_MEMBER system variable symbol 244
&SYSLIB_VOLUME system variable symbol 244
&SYSLIN_DSN system variable symbol 245
&SYSLIN_MEMBER system variable symbol 246
&SYSLIN_VOLUME system variable symbol 246
&SYSLIST system variable symbol 247
&SYSLOC system variable symbol 249
&SYSM_HSEV system variable symbol 250
&SYSM_SEV system variable symbol 250
&SYSMAC system variable symbol 250
&SYSNDX system variable symbol

controlling its value using MHELP 350
definition 251

&SYSNEST system variable symbol 254
&SYSOPT_DBCS system variable symbol 255
&SYSOPT_OPTABLE system variable symbol 255
&SYSOPT_RENT system variable symbol 255
&SYSOPT_XOBJECT system variable symbol 256
&SYSPARM system variable symbol 256
&SYSPRINT_DSN system variable symbol 257
&SYSPRINT_MEMBER system variable symbol 258
&SYSPRINT_VOLUME system variable symbol 259
&SYSPUNCH_DSN system variable symbol 259
&SYSPUNCH_MEMBER system variable symbol 260
&SYSPUNCH_VOLUME system variable symbol 261
&SYSSEQF system variable symbol 262
&SYSSTEP system variable symbol 262
&SYSSTMT system variable symbol 263
&SYSSTYP system variable symbol 263
&SYSTEM_ID system variable symbol 264
&SYSTERM_DSN system variable symbol 264
&SYSTERM_MEMBER system variable symbol 265
&SYSTERM_VOLUME system variable symbol 266
&SYSTIME system variable symbol 267

&SYSVER system variable symbol 267

A
A-type address constant 136
absolute addresses, base registers for 193
absolute expression 43
absolute terms 26
ACONTROL instruction 92
ACTR instruction 346
ADATA assembler option 97
ADATA instruction 96
address constants

A-type 136
complex relocatable 136
S-type 138
V-type 139
Y-type 136

addressability
by means of the DROP instruction 152
by means of the USING instruction 192
dependent 48
establishing 46
qualified 47
relative 48
using base register instructions 47

addresses, relocatable or absolute 73
addressing mode (AMODE) 58
AEJECT instruction 226
AFPR assembler option 72, 92
AGO instruction

alternative statement format 346
general statement format 345

AGOB, synonym of AGO instruction 346
AIF instruction 342

alternative statement format 345
AIFB, synonym of AIF instruction 345
AINSERT instruction 97, 226
ALIAS instruction 99
ALIGN assembler option 116, 157
alphabetic character

defined 28
alternative statement format

AGO instruction 346
AIF instruction 345
continuation lines 15

AMODE
indicators in ESD 58
instruction to specify addressing mode 100

AMODE instruction 100
AND (SETA built-in function) 316

378  Copyright IBM Corp. 1982, 1998



  Index
 

AND (SETB logical operator) 325
AND NOT (SETB logical operator) 325
ANOP instruction 347
AREAD instruction 227
arithmetic (SETA) expressions

built-in functions 315
evaluation of 321
rules for coding 320
SETC variables in 321
using 314

arithmetic external function calls 338
arithmetic relations in logical expressions 327
ASCII translation table 13
ASPACE instruction 229
assembler instruction statements

base register instructions 47
data definition instructions 113
exit-control parameters 166
listing control instructions 189
operation code definition instruction 173
program control instructions 168
program sectioning and linking instructions 48
symbol definition instruction 163

assembler language
assembler instruction statements 3
coding aids summary 8
coding conventions of 13
coding form for 13
compatibility of 3
conditional assembly instructions 287
introduction to 2
machine instruction statements 3, 65
macro instruction statements 3
statements, summary of 357
structure of 20
summary of instructions 354

assembler options
ADATA 97
AFPR 72
ALIGN 116, 157
BATCH 308
COMPAT 11, 249, 275, 278, 279, 284, 291, 336
controlling output using 5
DBCS 11, 14, 31, 33, 34, 128, 129, 183, 191, 255,

269, 272, 273, 280, 322, 356, 364
DCBS 217, 219, 221, 223, 231, 356
DECK 166, 259, 261
EXIT 166
FLAG 15, 217, 232, 342
FOLD 13
LIBMAC 211
NOAFPR 71, 72
NOALIGN 116
NODECK 184, 185
NOLIST 183
NOOBJECT 184, 185

assembler options (continued)
NOXOBJECT 35, 56, 58
OBJECT 245, 246
OPTABLE 255
PROFILE 52
RA2 138
RENT 187, 255
specifying with PROCESS statements 91
SYSPARM 256
USING 196
XOBJECT 35, 56, 58, 97, 100, 101, 112, 151, 190,

245, 246
assembler program

basic functions 4
processing sequence 6
relationship to operating system 6, 7

associated data file
ADATA instruction 96
contents 5
writing to 96

attribute of relocatable term 43
attributes 43

count (K') 302
data 292
defined (D') 304
definition mode 307
in combination with symbols 295
integer (I') 301
length (L') 300
lookahead 307
number (N') 303
of paired relocatable term 43
operation code (O') 304
scaling (S') 301
summary of 361, 366
type (T') 296

B
B-type constant 126
base register instructions

DROP instruction 152
POP instruction 178
PUSH instruction 184
USING instruction 192

base registers for absolute addresses 193
BATCH assembler option 308
binary constant 126
binary self-defining term 33
bit-length specification 122
blank lines

ASPACE instruction 229
books

related publications 377
books for High Level Assembler 376

  Index 379



 Index  
 

books, High Level Assembler xiii
branching 342
branching with extended mnemonic codes 67
built-in functions

AND 316
arithmetic (SETA) expressions 315
BYTE 331
character (SETC) expressions 331
DOUBLE 332
FIND 316
INDEX 317
LOWER 332
NOT 317
OR 317
SIGNED 332
SLA 317
SLL 318
SRA 318
SRL 318
UPPER 332
XOR 318

BYTE (SETC built-in function) 331

C
C-type constant 127
CATTR instruction 101
CCW instruction 103
CCW0 instruction 103
CCW1 instruction 105
CD-ROM publications xiv
CEJECT instruction 106
character (SETC) expressions

built-in functions 331
using 329

character constant 127
character external function calls 339
character relations in logical expressions 327, 328

comparing comparands of unequal length 328
character self-defining term 33
character set

code table, standard 372
double-byte 11
standard 10
translation table 13

character string values, concatenation of 334
characters, special 279
CNOP instruction 107
code table, standard character set 372
coding aids summary 8
coding conventions, assembler language

comment statement 17
continuation line errors 15
continuation lines 14
field boundaries
standard coding format 13

coding conventions, assembler language (continued)
statement coding rules 17

coding made easier 8
COM instruction 54, 108
combining keyword and positional parameters 225,

274
comment statements

format 17
function of 210
internal macro 232
ordinary 232

comparisons in logical expressions 327
COMPAT assembler option 92, 284

MACROCASE suboption 11, 279
SYSLIST suboption 249, 275, 278, 284, 291, 336

compatibility, language 3
complex relocatable

EQU instruction 163
expressions 44

computed AGO instruction 346
concatenation of character string values 334
concatenation of characters in model statements 219
conditional assembly instructions

ACTR instruction 346
AGO instruction 345
AIF instruction 342
ANOP instruction 347
computed AGO instruction 346
extended AIF instruction 344
function of 225
GBLA instruction 311
GBLB instruction 311
GBLC instruction 311
how to write 287
LCLA instruction 312
LCLB instruction 312
LCLC instruction 312
list of 310
MHELP instruction 349
OPSYN assembler instruction, effect of 175
redefining 175
SETA instruction 314
SETAF instruction 338
SETB instruction 324
SETC instruction 329
SETCF instruction 339
substring notations in 340

conditional assembly language
summary 212
summary of expressions 364

constants
address 136
alignment of 116
binary 126
character 127
comparison with literals and self-defining terms 38

380 HLASM V1R3 Language Reference  



  Index
 

constants (continued)
decimal 134
duplication factor 119
fixed-point 131
floating-point 141
general information 115
graphic 129
hexadecimal 130
length attribute value of symbols naming 116
modifiers of 121
nominal values of 124
padding of values 117
subfield 1 119
subfield 2 120
subfield 3 121
subfield 4 124
summary of 359
symbolic addresses of 116
truncation of values 117
types of 113, 120

continuation line errors 217
continuation lines

description 14
errors in 15

continuation lines, unlimited number of 15
continuation-indicator field 13
control instructions 66
control sections

concept of 50
defining blank common 54
executable 50
first 51
identifying a 111, 186
reference 53
segments 57
unnamed 52

controlling the assembly 5
converting SETA symbol to SETC symbol 337
COPY instruction 110, 229
count attribute (K') 302
created SET symbols 292
CSECT instruction 111
Customization book xiii
CXD instruction 112

D
D' defined attribute 304
D-type floating-point constant 141
data attributes 292
data definition instructions

CCW instruction 103
CCW0 instruction 103
CCW1 instruction 105
DC instruction 113
DS instruction 154

data, immediate, in machine instructions 77
DBCS

See double-byte data
DBCS assembler option 11, 14, 31, 33, 34, 128, 129,

183, 191, 255, 269, 272, 273, 280, 322, 356, 364
&SYSOPT_DBCS system variable symbol 255
determining if supplied 255

DC instruction 113
DCBS assembler option 217, 219, 221, 223, 231, 356
decimal constant

P-type 134
packed 134
Z-type 134
zoned 134

decimal instructions 66
decimal self-defining term 32
DECK assembler option 166, 259, 261

&SYSPUNCH_DSN system variable symbol 259
&SYSPUNCH_VOLUME system variable

symbol 261
defined attribute (D') 304
definition mode 307
dependent addressing 48
dependent USING

domain 201
instruction syntax 199
range 201

DH-type floating-point constant 141
documentation

High Level Assembler 376
related publications 377

documentation, High Level Assembler xiii
DOUBLE (SETC built-in function) 332
double-byte character set (DBCS)

See double-byte data
double-byte data

code conversion in the macro language 322
concatenation in SETC expressions 334
concatenation of fields 221
continuation of 14, 15
definition of 11
duplication of 329
graphic constants 113, 129
graphic self-defining term 34
in C-type constants 128
in character self-defining terms 33
in comments 17
in keyword operands 273
in macro comments 233
in macro operands 223
in MNOTE operands 231
in positional operands 272
in PUNCH operands 183
in quoted strings 280
in remarks 19
in REPRO operands 185

  Index 381



 Index  
 

double-byte data (continued)
in TITLE operands 191
listing of macro-generated fields 219
notation xvi
shift-in (SI), DBCS character delimiter 11
shift-out (SO), DBCS character delimiter 11

DROP instruction 152
DS instruction 154
DSECT instruction 53, 158
dummy section

external 54
identifying 53, 158
See also external dummy sections

duplication factor in constants 119
DXD instruction 160

E
E format 78
E-Decks, reading in VSE 3
E-type floating-point constant 141
edited macros 212
edited macros in VSE 3
EH-type floating-point constant 141
EJECT instruction 161
elements and functions

data attributes 292
sequence symbols 306
SET symbols 288

END instruction 162, 308
ENTRY instruction 163
entry point symbol

referencing using the ENTRY instruction 163
transfer control to, using END instruction 162

EQU instruction 163
assigning the length 300

ESD entries 57
exclusive OR (XOR)

SETA built-in function 318
SETB logical operator 325

EXCP access method 104
EXIT assembler option

ADEXIT suboption 166
INEXIT suboption 166
LIBEXIT suboption 166
OBJECT 166
OBJEXIT suboption 166
PRTEXIT suboption 166
TRMEXIT suboption 166
XOBJECT 166

exit-control parameters 166
EXITCTL instruction 166
exiting macros 215
exits

See user I/O exits

explicit addresses 46
explicit length attribute 116
exponent modifier

floating-point constants 141
specify 124

expressions
absolute 43
arithmetic 314
character 329
complex relocatable 44
conditional assembly, summary of 364
discussion of 41
EQU instruction 163
evaluation of 43, 327
evaluation of character 333
logical 324
paired relocatable terms 43
relocatable 44
rules for coding 41, 326

extended AGO instruction 346
extended AIF instruction 344
extended branch mnemonics 67
extended continuation-indicator

double-byte data continuation 15
listing of macro-generated fields 219

extended mnemonic codes, branching with 67
extended SET statement 337
external dummy sections

CXD instruction to define an 112
discussion of 54
DXD instruction to define an 160

external function calls
arithmetic 338
character 339
SETAF instruction 338
SETCF instruction 339

external symbol dictionary entries 57
external symbols

ALIAS command 99
providing alternate names 99

EXTRN instruction 167

F
F-type fixed-point constant 131
field boundaries 13
FIND (built-in function) 316
first control section 51
fixed-point constant 131
FLAG assembler option 92, 217, 232

CONT suboption 15, 217
NOSUBSTR suboption 342

floating-point constants 141
floating-point instructions 66
FOLD assembler option 13

field boundaries
continuation-indicator field 13

382 HLASM V1R3 Language Reference  



  Index
 

FOLD assembler option (continued)
field boundaries (continued)

identification-sequence field 13
statement field 13

format notation, description xiv—xvi
format-0 channel command word 103
format-1 channel command word 105
FORTRAN communication 54
function calls

See external function calls

G
G-type constant 129
GBLA instruction 311
GBLB instruction 311
GBLC instruction 311
General Information book xiii
general instructions 65
generated fields, listing of 218
generating END statements 308
global scope system variable symbols 233
graphic constant 129
graphic self-defining term 34

H
H-type fixed-point constant 131
hardcopy publications xiii
header, macro definition 214
hexadecimal constant 130
hexadecimal self-defining term 32
High Level Assembler

publications xiii, 376
High Level Assembler General Information 376
High Level Assembler Installation and Customization

Guide 376
High Level Assembler Language Reference 376
High Level Assembler Licensed Program

Specifications 376
High Level Assembler Programmer's Guide 376
HLASM Toolkit publications 376

I
I' integer attribute 301
ICTL instruction 168
identification-sequence field 13
immediate data in machine instructions 77
implicit addresses 46
implicit length attribute 116
INDEX (built-in function) 317
inner and outer macro instructions 282
inner macro instructions 226
inner macro instructions, passing sublists to 278

input format control statement
See ICTL instruction

input/output operations 67
installation and customization

book information xiii
instruction statement format 17
instructions

assembler
ACONTROL 92
ADATA 96
ALIAS 99
AMODE 100
CATTR 101
CCW 103
CCW0 103
CCW1 105
CEJECT 106
CNOP 107
COM 108
COPY 110
CSECT 111
CXD 112
DC 113
DROP 152
DS 154
DSECT 158
DXD 160
EJECT 161
END 162
ENTRY 163
EQU 163
EXTRN 167
ICTL 168
ISEQ 168
LOCTR 169
LTORG 171
OPSYN 173
ORG 175
POP 178
PRINT 178
PUNCH 183
PUSH 184
REPRO 185
RMODE 185
RSECT 186
SPACE 187
START 188
TITLE 189
USING 192
WXTRN 202

conditional assembly
ACTR 346
AGO 345
AIF 342
ANOP 347
GBLA 311
GBLB 311

  Index 383



 Index  
 

instructions (continued)
conditional assembly (continued)

GBLC 311
LCLA 312
LCLB 312
LCLC 312
SETA 314
SETAF 338
SETB 324
SETC 329
SETCF 339

macro
AEJECT 226
AINSERT 97, 226
ASPACE 229
COPY 229
MEXIT 229
MNOTE 230

integer attribute (I') 301
internal macro comment statement format 17
internal macro comment statements 232
ISEQ instruction 168

J
J-type length constant 151

K
K' count attribute 302
keyword parameters 225, 272

L
L' length attribute 300
L-type floating-point constant 141
labeled USING 197

domain 199
range 198

labels, on USING instructions 197
Language Reference xiii
LCLA instruction 312
LCLB instruction 312
LCLC instruction 312
length attribute

(L') 300
assigned by modifier in DC instruction 121
bit-length specification 122
DC instruction

address constant 136
binary constant 126
character constant 128
decimal constant 134
fixed-point constant 132
floating-point constant 143
graphic constant 129
hexadecimal constant 130

length attribute (continued)
duplication factor 119
EQU instruction 300
explicit length 116
exponent modifier 124
implicit length 116
value assigned to symbols naming constants 116

length attribute reference 36
length counter, for control sections 56
length fields in machine instructions 76
length modifier

constant 121
exponent modifier 121
length modifier 121
scale modifier 121
syntax 121

length of control section 56
LH-type floating-point constant 141
LIBMAC assembler option 92, 211
library macro definitions 211
license inquiry x
Licensed Program Specifications xiv
linkages

by means of the ENTRY instruction 163
by means of the EXTRN instruction 167
by means of the WXTRN instruction 202
symbolic 59

linking 48
listing control instructions

AEJECT instruction 226
AINSERT instruction 97, 226
ASPACE instruction 229
CEJECT instruction 106
EJECT instruction 161
PRINT instruction 178
SPACE instruction 187
TITLE instruction 189

listing of generated fields 218
literal pool 41, 172
literals

differences between constants, self-defining terms,
and 38

duplicate 173
explanation of 38
general rules for usage 39
type attribute 299

local scope system variable symbols 233
location counter reference

effect of duplication factor in constants 119
effect of duplication factor in literals 119
overview 34

location counter setting 55
LOCTR instruction 169
logical (SETB) expressions 324
logical AND 325

384 HLASM V1R3 Language Reference  



  Index
 

logical operators 325
logical OR 325
logical XOR 318
lookahead mode 307
LOWER (SETC built-in function) 332
LTORG instruction 171

M
machine instruction formats

E format 78
QST format 78
QV format 79
RI format 79
RR format 80
RRE format 81
RS format 81
RSE format 82
RSI format 83
RX format 83
S format 84
SI format 85
SS format 86
SSE format 87
VR format 87
VS format 88
VST format 88
VV format 89

machine instruction statements
addresses 73
control 66
decimal 66
examples of 78
floating-point 66
formats 69
general 65
immediate data 77
input/output 67
length field in 76
operand entries 71
registers, use of 71
symbolic operations codes in 70

machine instructions, publications 376
macro comment statement format 17
macro definition header (MACRO) 214
macro definition trailer (MEND) 214
macro definitions

body of a 217
combining positional and keyword parameters 225
comment statements 232
COPY instruction 229
description 208
format of 214
header 209, 214
how to specify 213
inner macro instructions 226

macro definitions (continued)
internal macro comment statements 232
keyword parameters 225
MEXIT instruction 229
MNOTE instruction 230
model statements 209
nesting in 282
parts of a macro definition 209
positional parameters 224
prototype 209
subscripted symbolic parameters 225
symbolic parameters 223
trailer 209, 214
where to define in a source module 213
where to define in open code 213

macro instruction
alternative ways of coding 269
description 211
description of 268
format of 268
general rules and restrictions 282
inner and outer 282
M type attribute 297
multilevel sublists 277
name entry 270
name field type attribute 297
operand entry 271
operation entry 270
passing sublists to inner 278
passing values through nesting levels 283
prototype 214
sublists in operands 275
summary of 357
values in operands 278

macro language
comment statements 210
conditional assembly language 212
defining 208
library macro definition 211
macro instruction 211
model statements 209
processing statements 210
source macro definition 211
summary of 361
using 208

macro library 212
MACRO statement (header) 214
macros

continuation line errors 217
edited macros 212
exiting 215
format of a macro definition 214
how to specify 213
library macro definition 211
macro definition 208
macro definition header (MACRO) 209, 214

  Index 385



 Index  
 

macros (continued)
macro definition trailer (MEND) 209, 214
macro instruction 211
macro library 212
macro prototype statement 209
MACRO statement (header) 214
MEND statement (trailer) 215
MEXIT instruction 229
MNOTE instruction 230
model statements 209
 prototype

(see also prototype, macro instruction)
source macro definition 211
using macros 208

manuals
High Level Assembler 376
related publications 377

manuals, High Level Assembler xiii
MEXIT instruction 229
MHELP instruction 349
mnemonic codes

extended, branching with 67
machine instruction 70

MNOTE instruction 230
model statements

explanation of 217
function of 209
rules for concatenation of characters in 219
rules for specifying fields in 221
summary of 357
variable symbols as points of substitution in 217

modifiers of constants
exponent 124
length 121
scale 123

multilevel sublists 277
MVS publications 376

N
N' number attribute 303
name entry coding 18
nested macros, system variable symbols in 285
nesting

levels of 282
recursion 282

nesting levels, passing values through 283
nesting macro instructions 282
NOAFPR assembler option 71, 72
NOALIGN assembler option 116
NODECK assembler option 184, 185
NOLIST assembler option 183
nominal values of constants (literal)

address 136
binary 126
character 127

nominal values of constants (literal) (continued)
decimal 134
fixed-point 131
floating-point 141
graphic 129
hexadecimal 130

NOOBJECT assembler option 184, 185
NOPRINT operand

POP instruction 178
PRINT instruction 182
PUSH instruction 184

NOT (SETA built-in function) 317
notation, description xiv—xvi
NOXOBJECT assembler option 35, 56, 58
number attribute (N') 303

O
O' operation code attribute 304
OBJECT assembler option 166, 245, 246
object external class name

establishing 101
omitted operands 278, 279
online publications xiv
open code 213, 214, 309
operand entries

combining positional and keyword 274
in machine instructions 71
keyword 272
multilevel sublists in 277
omitted 278, 279
positional 271
special characters in 279
statement coding rules 19
sublists in 275

operands
compatibility with earlier assemblers 279
omitted 278, 279
sublists in 275
unquoted operands 279
values in 278

operating system, relationship to assembler
program 6, 7

operation code attribute (O') 304
operation codes, symbolic 70
operation entry coding 18
OPSYN instruction 173
OPTABLE assembler option 255

&SYSOPT_OPTABLE system variable symbol 255
determining value 255

OR (SETA built-in function) 317
OR (SETB logical operator) 325
OR NOT (SETB logical operator) 325
ordinary comment statements 232
ordinary symbols 28

386 HLASM V1R3 Language Reference  



  Index
 

ORG instruction 175
organization of this manual xii
OS/390 MVS

publications 376

P
P-type decimal constant 134
packed decimal constant 134
paired relocatable terms 43

definition 44
parameters

combining positional and keyword 225
keyword 225
positional 224
subscripted symbolic 225
symbolic 223

parentheses, terms in 26
pool, literal

See literal pool
POP instruction 178
positional parameters 224, 271
predefined absolute symbols

illegal use 326
in logical expressions 326

previously defined symbols 31
PRINT instruction 178
private code 51, 52, 165
private control section 51, 52
process statements

See *PROCESS statement
processing statements

conditional assembly instructions 225
COPY instruction 229
function of 210
inner macro instructions 226
MEXIT instruction 229
MNOTE instruction 230

PROFILE assembler option 52
program control instructions

CNOP instruction 107
COPY instruction 110
END instruction 162
ICTL instruction 168
ISEQ instruction 168
LTORG instruction 171
ORG instruction 175
POP instruction 178
PUNCH instruction 183
PUSH instruction 184
REPRO instruction 185

program sectioning 48
See also sectioning, program

program sectioning and linking instructions
AMODE instruction 100
CATTR instruction 101

program sectioning and linking instructions (continued)
COM instruction 54, 108
CSECT instruction 111
CXD instruction 112
DSECT instruction
DXD instruction 160
ENTRY instruction 163
EXTRN instruction 167
LOCTR instruction 169
RMODE instruction 185
RSECT instruction 186
WXTRN instruction 202

Programmer's Guide xiv
prototype, macro instruction

alternative ways of coding 216
format of 215
function of 214
name field 215
operand field 216
operation field 215
summary of 357

publications
general 377
High Level Assembler xiii, 376
HLASM Toolkit 376
machine instructions 376
MVS 376
MVS SMP/E 377
online (CD-ROM) xiv
OS/390 MVS 376
OS/390 SMP/E 377
TSO (MVS) 377
TSO (OS/390) 377
VM 377
VSE 377

PUNCH instruction 183
PUSH instruction 184

Q
Q-type offset constant 150
QST format 78
qualified addressing 47
qualified symbols 197
QV format 79

R
RA2 assembler option 92, 138
railroad track format, how to read xiv—xvi
reading edited macros in VSE 3
redefining conditional assembly instructions 175
registers, use of, by machine instructions 71
related publications 377
relative addressing 48

  Index 387



 Index  
 

relocatability attribute 43
relocatable expression

complex 44
EQU instruction 163

relocatable terms 26
See also self-defining terms

remarks entries 19
RENT assembler option 187, 255

&SYSOPT_RENT system variable symbol 255
determining if supplied 255

REPRO instruction 185
required items xv
residence mode (RMODE) 58
RI format 79
RMODE

indicators in ESD 58
instruction to specify residence mode 185

RMODE instruction 185
RR format 80
RRE format 81
RS format 81
RSE format 82
RSECT instruction 186
RSI format 83
rules for model statement fields 221
RX format 83

S
S' scaling attribute 301
S format 84
S-type address constant 138
scale modifier 121, 123
scaling attribute (S') 301
scope of SET symbols 288
sectioning, program

addressing mode of a control section 100
control sections 50
CSECT instruction 111
defining 160
ESD entries 57
external symbols 167
first control section 51
identifying a blank common control section 54
identifying a dummy section 53
length counter, for control sections 56
location counter setting 55
maximum length of control section 56
multiple location counters in a control section 169
read-only control section 186
residence mode of a control section 185
source module 49
total length of external dummy sections 112
unnamed control section 52
weak external symbols 202

segments of control sections 57
self-defining terms

binary 33
character 33
comparison with literals and constants 38
decimal 32
graphic 34
hexadecimal 32
overview 31
using 32

sequence symbols 28, 306
SET symbols

assigning values to 314
created 292
declaring 310
define global 311
define local 312
description of 288
extended 337
external function calls 338, 339
scope of 288
SETA (set arithmetic) 314
SETB (set binary) 324
SETC (set character) 329
specifications 289
specifications for subscripted 291
subscripted 288

SETA
arithmetic expression 314
built-in functions 315
instruction format 314
symbol in operand field of SETC

in arithmetic expressions 315
leading zeros 337
sign of substituted value 337

symbols, subscripted 314
symbols, using 322

SETA instruction 314
SETAF instruction 338
SETB

AND 325
AND NOT 325
built-in functions 316
character relations in logical expressions 327, 328
exclusive OR 325
instruction format 324
logical AND 325
logical expression 324
logical operators 325
logical OR 325
OR 325
OR NOT 325
symbols, subscripted 324
symbols, using 328
XOR 325
XOR NOT 325

388 HLASM V1R3 Language Reference  



  Index
 

SETB instruction 324
SETC

built-in functions 331
character expression 329
character expressions 331
instruction format 329
SETA symbol in operand field 337
substring notation 329
symbols, subscripted 329

SETC instruction 329
SETCF instruction 339
shift codes (double-byte character set) 11
shift left arithmetic (SETA built-in function) 317
shift left logical (SETA built-in function) 318
shift right arithmetic (SETA built-in function) 318
shift right logical (SETA built-in function) 318
shift-in (SI), DBCS character delimiter 11
shift-out (SO), DBCS character delimiter 11
SI (shift-in) character

continuation of double-byte data 15
continuation-indicator field 14
double-byte character set 11

SI format 85
SIGNED (SETC built-in function) 332
SLA (SETA built-in function) 317
SLL (SETA built-in function) 318
SMP/E (MVS)

publications 377
SMP/E (OS/390)

publications 377
SO (shift-out) character

continuation of double-byte data 15
continuation-indicator field 14
double-byte character set 11

softcopy publications xiv
source macro definitions 211
SPACE instruction 187
special characters 279
SRA (SETA built-in function) 318
SRL (SETA built-in function) 318
SS format 86
SSE format 87
stacked items xv
START instruction 188

beginning a source module 49
control section 50
syntax 188

statement coding rules 17
statement field 13
structure 20

assembler language 20
subfield 1 of constant 119
subfield 2 of constant 120
subfield 3 of constant 121
subfield 4 of constant 124

sublists
compatibility with Assembler H 249
effect of COMPAT(SYSLIST) assembler option 275,

278
in operands 275
multilevel 277
passing, to inner macro instructions 278

subscripted SET symbols 288, 291
subscripted symbolic parameters 225
substring notation

arithmetic expressions 315
assigning SETC symbols 329, 340
concatenating double-byte data 334
concatenation 337
definition 340
duplicating double-byte data 330
duplication factor 329
evaluation of 341
level of parentheses 321
using count (K') attribute 293

symbol definition (EQU) instruction 163
symbol length attribute reference 36
symbol qualifiers 197
symbol table 27
symbolic linkages 59
symbolic operation codes 70

defining 173
deleting 173

symbolic parameters 223
symbols

attributes in combination with 295
defining 29
explanation of 27
extended SET 337
labeled USING 197
length attribute reference 36
ordinary 28
previously defined 31
qualifiers 197
restrictions on 30
sequence 28, 306
system variable 233
USING instruction labels 197
variable 28
variable, as points of substitution in model

statements 217
syntax notation, description xiv—xvi
SYSPARM assembler option 256

&SYSPARM system variable symbol 256
system macro instructions 211
system variable symbols

&SYSADATA_DSN 234
&SYSADATA_MEMBER 235
&SYSADATA_VOLUME 236
&SYSASM 236
&SYSCLOCK 237

  Index 389



 Index  
 

system variable symbols (continued)
&SYSDATC 237
&SYSDATE 238
&SYSECT 238
&SYSIN_DSN 240
&SYSIN_MEMBER 241
&SYSIN_VOLUME 242
&SYSJOB 243
&SYSLIB_DSN 243
&SYSLIB_MEMBER 244
&SYSLIB_VOLUME 244
&SYSLIN_DSN 245
&SYSLIN_MEMBER 246
&SYSLIN_VOLUME 246
&SYSLIST 247
&SYSLOC 249
&SYSM_HSEV 230, 250
&SYSM_SEV 230, 250
&SYSMAC 250
&SYSNDX 251
&SYSNEST 254
&SYSOPT_DBCS 255
&SYSOPT_OPTABLE 255
&SYSOPT_RENT 255
&SYSOPT_XOBJECT 256
&SYSPARM 256
&SYSPRINT_DSN 257
&SYSPRINT_MEMBER 258
&SYSPRINT_VOLUME 259
&SYSPUNCH_DSN 259
&SYSPUNCH_MEMBER 260
&SYSPUNCH_VOLUME 261
&SYSSEQF 262
&SYSSTEP 262
&SYSSTMT 263
&SYSSTYP 263
&SYSTEM_ID 264
&SYSTERM_DSN 264
&SYSTERM_MEMBER 265
&SYSTERM_VOLUME 266
&SYSTIME 267
&SYSVER 267
discussion of 233
in nested macros 285
summary of 367
variability 233

T
T' type attribute 296
terms 26
terms in parentheses 26
TITLE instruction 189
Toolkit Customization book xiv
Toolkit installation and customization

book information xiv

trailer, macro definition 214
translation table 13
TSO (MVS)

publications 377
TSO (OS/390)

publications 377
type attribute

(T') 296
literals 298, 299
name field of macro instruction 297
undefined type attribute 298
unknown type attribute 298

types of constants 120

U
undefined type attribute 298
unknown type attribute 298
unnamed control section 52
unquoted operands 279
unsigned integer conversion 337
UPPER (SETC built-in function) 332
user I/O exits 166
user records

ADATA instruction 96
USING assembler option

WARN suboption 196
USING instruction 192

base registers for absolute addresses 193
discussion of 192
domain of a 196
range of a 195
using 193

for executable control sections 193
for reference control sections 193

V
V-type address constant 139
values in operands 278
variable symbols 28

See also symbols
variable symbols as points of substitution 217
variable symbols, system

&SYSADATA_DSN 234
&SYSADATA_MEMBER 235
&SYSADATA_VOLUME 236
&SYSASM 236
&SYSCLOCK 237
&SYSDATC 237
&SYSDATE 238
&SYSECT 238
&SYSIN_DSN 240
&SYSIN_MEMBER 241
&SYSIN_VOLUME 242
&SYSJOB 243

390 HLASM V1R3 Language Reference  



  Index
 

variable symbols, system (continued)
&SYSLIB_DSN 243
&SYSLIB_MEMBER 244
&SYSLIB_VOLUME 244
&SYSLIN_DSN 245
&SYSLIN_MEMBER 246
&SYSLIN_VOLUME 246
&SYSLIST 247
&SYSLOC 249
&SYSM_HSEV 250
&SYSM_SEV 250
&SYSMAC 250
&SYSNDX 251
&SYSNEST 254
&SYSOPT_DBCS 255
&SYSOPT_OPTABLE 255
&SYSOPT_RENT 255
&SYSOPT_XOBJECT 256
&SYSPARM 256
&SYSPRINT_DSN 257
&SYSPRINT_MEMBER 258
&SYSPRINT_VOLUME 259
&SYSPUNCH_DSN 259
&SYSPUNCH_MEMBER 260
&SYSPUNCH_VOLUME 261
&SYSSEQF 262
&SYSSTEP 262
&SYSSTMT 263
&SYSSTYP 263
&SYSTEM_ID 264
&SYSTERM_DSN 264
&SYSTERM_MEMBER 265
&SYSTERM_VOLUME 266
&SYSTIME 267
&SYSVER 267
summary of 366

VM publications 377
VR format 87
VS format 88
VSE publications 377
VST format 88
VV format 89

W
WXTRN instruction 202

X
X-type constant 130
XOBJECT assembler option 35, 58, 97, 112, 151, 166,

190, 245, 246
alias string 100
CATTR instruction 101
entry point 100
maximum value of control section 56

XOR (SETA built-in function) 318
XOR (SETB logical operator) 325
XOR NOT (SETB logical operator) 325

Y
Y-type address constant 136

Z
Z-type decimal constant 134
zoned decimal constant

See Z-type decimal constant

  Index 391



We'd Like to Hear from You

High Level Assembler for MVS & VM & VSE
Language Reference
Release 3

Publication No. SC26-4940-02

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

� Electronic mail—Use one of the following network IDs:

– IBMMail: USIB2VVG at IBMMAIL
– IBMLink: HLASMPUB at STLVM27

 – Internet: COMMENTS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the
information is presented. To request additional publications, or to comment on other IBM
information or the function of IBM products, please give your comments to your IBM
representative or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.



 

 Readers' Comments

High Level Assembler for MVS & VM & VSE
Language Reference
Release 3

Publication No. SC26-4940-02

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? � Yes � No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �
Grammatically correct and consistent � � � � �
Graphically well designed � � � � �
Overall satisfaction � � � � �



Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC26-4940-02 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Department J58
International Business Machines Corporation
PO BOX 49023
SAN JOSE CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

SC26-4940-02



 

 



IBM

Program Number: 5696-234

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

High Level Assembler Publications

SC26-4941 High Level Assembler Programmer's Guide
GC26-4943 High Level Assembler General Information
GC26-4944 High Level Assembler Licensed Program Specifications
SC26-4940 High Level Assembler Language Reference
SC26-3494 High Level Assembler Installation and Customization Guide

High Level Assembler Toolkit Feature Publications

GC26-8709 High Level Assembler Toolkit Feature Interactive Debug Facility User's Guide
GC26-8710 High Level Assembler Toolkit Feature User's Guide
GC26-8711 High Level Assembler Toolkit Feature Installation and Customization Guide
GC26-8712 High Level Assembler Toolkit Feature Debug Reference Summary

SC26-494K-K2


	Contents
	Notices
	Trademarks

	About this Manual
	Who Should Use this Manual
	Programming Interface Information
	Organization of this Manual
	IBM High Level Assembler for MVS & VM & VSE Publications
	Hardcopy Publications
	Online Publications
	Related Publications
	Syntax Notation
	Double-Byte Character Set Notation

	Summary of Changes
	Performance and Usability
	Programmer Productivity
	Diagnostic Information

	Part 1.  Assembler Language—Structure and Concepts
	Chapter 1.  Introduction
	Language Compatibility
	Assembler Language
	Machine Instructions
	Assembler Instructions
	Macro Instructions

	Assembler Program
	Basic Functions
	Associated Data
	Controlling the Assembly
	Processing Sequence

	Relationship of Assembler to Operating System
	Coding Made Easier
	Symbolic Representation of Program Elements
	Variety in Data Representation
	Controlling Address Assignment
	Relocatability
	Sectioning a Program
	Linkage between Source Modules
	Program Listings


	Chapter 2.  Coding and Structure
	Character Set
	Standard Character Set
	Double-Byte Character Set
	Translation Table

	Assembler Language Coding Conventions
	Field Boundaries
	Statement Field
	Continuation-Indicator Field
	Identification-Sequence Field

	Continuation Lines
	Alternative Statement Format
	Continuation of double-byte data

	Comment Statement Format
	Instruction Statement Format
	Statement Coding Rules


	Assembler Language Structure
	Overview of Assembler Language Structure
	Machine Instructions
	Assembler Instructions
	Conditional Assembly Instructions
	Macro Instructions

	Terms, Literals, and Expressions
	Terms
	Symbols
	Self-Defining Terms
	Location Counter Reference
	Symbol Length Attribute Reference
	Other Attribute References

	Literals
	Literals, Constants, and Self-Defining Terms
	General Rules for Using Literals
	Literal Pool

	Expressions
	Rules for Coding Expressions
	Evaluation of Expressions
	Absolute and Relocatable Expressions



	Chapter 3.  Addressing, Program Sectioning, and Linking
	Addressing
	Addressing within Source Modules: Establishing Addressability
	How to Establish Addressability

	Base Register Instructions
	Qualified Addressing
	Dependent Addressing
	Relative Addressing

	Program Sectioning and Linking
	Source Module
	Beginning of a Source Module
	End of a Source Module

	Control Sections
	Executable Control Sections
	First Control Section
	Unnamed Control Section

	Reference Control Sections
	Dummy Control Sections
	Common Control Sections
	External Dummy Sections

	Location Counter Setting
	Use of Multiple Location Counters

	Literal Pools In Control Sections
	External Symbol Dictionary Entries
	Establishing Residence and Addressing Mode
	Symbolic Linkages
	Establishing symbolic linkage
	Referring to external data
	Branching to an external address
	Establishing an external symbol alias




	Part 2.  Machine and Assembler Instruction Statements
	Chapter 4.  Machine Instruction Statements
	General Instructions
	Decimal Instructions
	Floating-Point Instructions
	Control Instructions
	Input/Output Operations
	Branching with Extended Mnemonic Codes
	Statement Formats
	Symbolic Operation Codes
	Operand Entries
	Registers
	Register Usage by Machine Instructions
	Register Usage by System

	Addresses
	Implicit Address
	Explicit Address
	Relative Address
	Relocatability of Addresses
	Machine or Object Code Format

	Lengths
	Immediate Data

	Examples of Coded Machine Instructions
	E Format
	QST Format
	QV Format
	RI Format
	RR Format
	RRE Format
	RS Format
	RSE Format
	RSI Format
	RX Format
	S Format
	SI Format
	SS Format
	SSE Format
	VR Format
	VS Format
	VST Format
	VV Format


	Chapter 5.  Assembler Instruction Statements
	*PROCESS Statement
	ACONTROL Statement
	ADATA Instruction
	AINSERT Instruction
	ALIAS Instruction
	AMODE Instruction
	CATTR Instruction (MVS and CMS Only)
	CCW and CCW0 Instructions
	CCW1 Instruction
	CEJECT Instruction
	CNOP Instruction
	COM Instruction
	COPY Instruction
	CSECT Instruction
	CXD Instruction
	DC Instruction
	Rules for DC Operand
	General Information About Constants
	Length Attribute Value of Symbols Naming Constants
	Alignment of Constants

	Padding and Truncation of Values
	Padding
	Truncation

	Subfield 1: Duplication Factor
	Subfield 2: Type
	Subfield 3: Modifier
	Length Modifier
	Scale Modifier
	Exponent Modifier

	Subfield 4: Nominal Value
	Binary Constant—B
	Character Constant—C
	Graphic Constant—G
	Hexadecimal Constant—X
	Fixed-Point Constants—F and H
	Decimal Constants—P and Z
	Address Constants
	Hexadecimal Floating-Point Constants—E, EH, D, DH, L, LH
	Binary Floating-Point Constants—EB, DB, LB
	Floating-Point Special Values
	Literal Constants
	Offset Constant—Q
	Length Constant—J


	DROP Instruction
	DS Instruction
	How to Use the DS Instruction

	DSECT Instruction
	DXD Instruction
	EJECT Instruction
	END Instruction
	ENTRY Instruction
	EQU Instruction
	Using Conditional Assembly Values

	EXITCTL Instruction
	EXTRN Instruction
	ICTL Instruction
	ISEQ Instruction
	LOCTR Instruction
	LTORG Instruction
	Literal Pool
	Addressing Considerations
	Duplicate Literals

	OPSYN Instruction
	Redefining Conditional Assembly Instructions

	ORG Instruction
	POP Instruction
	PRINT Instruction
	Process Statement
	PUNCH Instruction
	PUSH Instruction
	REPRO Instruction
	RMODE Instruction
	RSECT Instruction
	SPACE Instruction
	START Instruction
	TITLE Instruction
	Deck ID in Object Records
	Printing the Heading
	Printing the TITLE Statement
	Sample Program Using the TITLE Instruction
	Page Ejects
	Valid Characters

	USING Instruction
	How to Use the USING Instruction
	Base Registers for Absolute Addresses
	Ordinary USING Instruction
	Range of an Ordinary USING Instruction
	Domain of an Ordinary USING Instruction

	Labeled USING Instruction
	Range of a Labeled USING Instruction
	Domain of a Labeled USING Instruction

	Dependent USING Instruction
	Range of a Dependent USING Instruction
	Domain of a Dependent USING Instruction


	WXTRN Instruction


	Part 3.  Macro Language
	Chapter 6.  Introduction to Macro Language
	Using Macros
	Macro Definition
	Model Statements
	Processing Statements
	Comment Statements

	Macro Instruction
	Source and Library Macro Definitions
	Macro Library
	System Macro Instructions

	Conditional Assembly Language

	Chapter 7.  How to Specify Macro Definitions
	Where to Define a Macro in a Source Module
	Format of a Macro Definition
	Macro Definition Header and Trailer
	MACRO Statement
	MEND Statement

	Macro Instruction Prototype
	Alternative Ways of Coding the Prototype Statement

	Body of a Macro Definition
	Model Statements
	Variable Symbols as Points of Substitution
	Listing of Generated Fields
	Rules for Concatenation
	Rules for Model Statement Fields
	Name Field
	Operation Field
	Operand Field
	Remarks Field


	Symbolic Parameters
	Positional Parameters
	Keyword Parameters
	Combining Positional and Keyword Parameters
	Subscripted Symbolic Parameters

	Processing Statements
	Conditional Assembly Instructions
	Inner Macro Instructions
	AEJECT Instruction
	AINSERT Instruction
	AREAD Instruction
	Assign Character String Value
	Assign Local Time of Day

	ASPACE Instruction
	COPY Instruction
	MEXIT Instruction
	MNOTE Instruction

	Comment Statements
	Ordinary Comment Statements
	Internal Macro Comment Statements

	System Variable Symbols
	Scope and Variability of System Variable Symbols
	&SYSADATA_DSN System Variable Symbol
	&SYSADATA_MEMBER System Variable Symbol
	&SYSADATA_VOLUME System Variable Symbol
	&SYSASM System Variable Symbol
	&SYSCLOCK System Variable Symbol
	&SYSDATC System Variable Symbol
	&SYSDATE System Variable Symbol
	&SYSECT System Variable Symbol
	&SYSIN_DSN System Variable Symbol
	&SYSIN_MEMBER System Variable Symbol
	&SYSIN_VOLUME System Variable Symbol
	&SYSJOB System Variable Symbol
	&SYSLIB_DSN System Variable Symbol
	&SYSLIB_MEMBER System Variable Symbol
	&SYSLIB_VOLUME System Variable Symbol
	&SYSLIN_DSN System Variable Symbol
	&SYSLIN_MEMBER System Variable Symbol
	&SYSLIN_VOLUME System Variable Symbol
	&SYSLIST System Variable Symbol
	&SYSLOC System Variable Symbol
	&SYSMAC System Variable Symbol
	&SYSM_HSEV System Variable Symbol
	&SYSM_SEV System Variable Symbol
	&SYSNDX System Variable Symbol
	&SYSNEST System Variable Symbol
	&SYSOPT_DBCS System Variable Symbol
	&SYSOPT_OPTABLE System Variable Symbol
	&SYSOPT_RENT System Variable Symbol
	&SYSOPT_XOBJECT System Variable Symbol
	&SYSPARM System Variable Symbol
	&SYSPRINT_DSN System Variable Symbol
	&SYSPRINT_MEMBER System Variable Symbol
	&SYSPRINT_VOLUME System Variable Symbol
	&SYSPUNCH_DSN System Variable Symbol
	&SYSPUNCH_MEMBER System Variable Symbol
	&SYSPUNCH_VOLUME System Variable Symbol
	&SYSSEQF System Variable Symbol
	&SYSSTEP System Variable Symbol
	&SYSSTMT System Variable Symbol
	&SYSSTYP System Variable Symbol
	&SYSTEM_ID System Variable Symbol
	&SYSTERM_DSN System Variable Symbol
	&SYSTERM_MEMBER System Variable Symbol
	&SYSTERM_VOLUME System Variable Symbol
	&SYSTIME System Variable Symbol
	&SYSVER System Variable Symbol


	Chapter 8.  How to Write Macro Instructions
	Macro Instruction Format
	Alternative Ways of Coding a Macro Instruction
	Name Entry
	Operation Entry
	Operand Entry
	Positional Operands
	Keyword Operands
	Combining Positional and Keyword Operands


	Sublists in Operands
	Multilevel Sublists
	Passing Sublists to Inner Macro Instructions

	Values in Operands
	Omitted Operands
	Unquoted Operands
	Special Characters
	Ampersands
	Single Quotation Marks
	Shift-out (SO) and Shift-in (SI)
	Quoted Strings
	Attribute Reference Notation
	Parentheses
	Blanks
	Commas
	Equal Signs
	Periods


	Nesting Macro Instructions
	Inner and Outer Macro Instructions
	Levels of Nesting
	Recursion

	General Rules and Restrictions
	Passing Values through Nesting Levels
	System Variable Symbols in Nested Macros


	Chapter 9.  How to Write Conditional Assembly Instructions
	Elements and Functions
	SET Symbols
	Subscripted SET Symbols
	Scope of SET Symbols
	Scope of Symbolic Parameters
	SET Symbol Specifications
	Subscripted SET Symbols Specifications
	Created SET Symbols

	Data Attributes
	Combining with Symbols
	Type Attribute (T')
	Length Attribute (L')
	Scaling Attribute (S')
	Integer Attribute (I')
	Count Attribute (K')
	Number Attribute (N')
	Defined Attribute (D')
	Operation Code Attribute (O')

	Sequence Symbols
	Lookahead
	Lookahead Restrictions
	Sequence Symbols

	Open Code
	Conditional Assembly Instructions
	Declaring SET Symbols
	GBLA, GBLB, and GBLC Instructions
	Subscripted Global SET Symbols
	Alternative Format for GBLx Statements

	LCLA, LCLB, and LCLC Instructions
	Subscripted Local SET Symbols
	Alternative Format for LCLx Statements


	Assigning Values to SET Symbols
	SETA Instruction
	Subscripted SETA Symbols
	Arithmetic (SETA) Expressions
	Using SETA symbols

	SETB Instruction
	Subscripted SETB Symbols
	Logical (SETB) Expressions

	SETC Instruction
	Subscripted SETC Symbols
	Character (SETC) Expressions
	Using SETC Symbols

	Extended SET Statements
	SETAF Instruction
	SETCF Instruction

	Substring Notation
	Branching
	AIF Instruction
	Extended AIF Instruction
	Alternative Format for AIF Statement
	AIFB—Synonym of the AIF Instruction

	AGO Instruction
	Computed AGO Instruction
	Alternative Format for AGO Statement
	AGOB—Synonym of the AGO Instruction

	ACTR Instruction
	Loop Counter Operations

	ANOP Instruction


	Chapter 10.  MHELP Instruction
	MHELP Options
	MHELP Operand Mapping
	Combining Options


	Part 4.  Appendixes
	Appendix A.  Assembler Instructions
	Appendix B.  Summary of Constants
	Appendix C.  Macro and Conditional Assembly Language Summary
	Appendix D.  Standard Character Set Code Table
	Bibliography
	High Level Assembler Publications
	Toolkit Feature Publications
	Related Publications (Architecture)
	Related Publications for MVS
	Related Publications for VM
	Related Publications for VSE
	General Publications

	Index


